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Simple Summary: Thermal stress causes detrimental effects on the health, welfare, and production
of dairy cows, resulting in huge economic losses to the worldwide dairy cattle industry.
Understanding the genomic background of thermal stress can lead to more accurate genetic selection
strategies. In this study fourteen blood biochemical parameters were evaluated as potential biomarkers
for heat or cold stress. Moreover, twelve single nucleotide polymorphisms (SNPs) were detected in the
5′ flanking region of the HSP70, a gene known to be associated with thermal stress response in many
livestock species. Furthermore, four SNPs were significantly associated with lactate, and lipid peroxide
under heat stress, and with dopamine and superoxide dismutase under cold stress. In summary,
these molecular markers and bio-markers further our knowledge of thermotolerance in Holstein
cattle and can be used for improving breeding strategies for climate resilience.

Abstract: Thermal stress (heat and cold) has large economic and welfare implications for the
worldwide dairy industry. Therefore, it is paramount to understand the genetic background of coping
mechanism related to thermal stress for the implementation of effective genetic selection schemes
in dairy cattle. We performed an association study between 11 single nucleotide polymorphisms
having minor allelic frequency (MAF > 0.05) in the HSP70 gene with blood biochemical parameters.
The concentrations of growth hormone (GH), lactate (LA), prolactin (PRL), and superoxide dismutase
(SOD) in blood were significantly higher (p < 0.05), while the concentrations of blood urea nitrogen
(BUN), c-reactive protein (CRP), potassium (K+), lactate dehydrogenase (LDH), lipid peroxide
(LPO), and norepinephrine (NE) were significantly lower (p < 0.05) in heat-stressed animals as
compared to the control group. A significant (p < 0.05) increase in the concentrations of cortisol
(COR), corticosterone (CORT), and potassium (K+) was observed (p < 0.05), while the concentrations
of adrenocorticotrophic hormone (ACTH), dopamine (DA), GH, LDH, NE, PRL, and SOD were
significantly lower in cold-stressed animals as compared to the control group (p < 0.05). Furthermore,
SNP A-12G and C181T were significantly associated with LA (p < 0.05), while A72G was linked with
LPO (p < 0.05) in heat-stressed animals. Moreover, the SNPs A-12G and SNP C131G were significantly
associated (p < 0.05) with DA and SOD under cold stress condition, respectively. These SNPs markers
significantly associated with fluctuations in blood biochemical parameters under thermal stress
provide a better insight into the genetic mechanisms underlying climatic resilience in Holstein cattle.
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1. Introduction

Livestock experiences different stressors throughout their lives including physical, nutritional,
chemical, psychological, and thermal stress [1,2]. Among them, thermal stress is the most intriguing
factor influencing production, reproductive efficiency, health, and the well-being of the high-producing
animals [3,4]. In tropical and sub-tropical regions, increased temperature and humidity are the major
constraints in livestock production [5], whereas the extremely low temperature in temperate areas also
negatively impacts welfare and productivity [1]. The dairy cattle thermo-neutral zone (TNZ) lies in
the range of 4 ◦C to 24 ◦C, within which the animal maintains a body temperature of 38.4–39.1 ◦C for
normal physiological functions [6]. Temperatures above or below the TNZ threshold can result in heat
or cold stress, respectively. The temperature and humidity index (THI) index has been widely used to
evaluate thermal stress load in dairy cattle populations [7,8]. The THI threshold for heat stress has
been documented to be around 67 [9] and 72 [7,10], and cold stress response is usually activated under
THI 38 [11].

Among other effects, thermal stress directly influences feed intake, milk yield, reproductive
performance, growth rate and even can cause premature death in harsh conditions [12,13]. Dairy cattle
are usually more vulnerable to heat stress because high-producing animals generate more metabolic
heat during lactation [5,14,15]. Heat stress is a complex trait as it triggers various physiological and
hormonal responses through multiple molecular mechanisms [16]. Moreover, heat stress disturbs the
normal regulation of oxidant/anti-oxidants, and thus, causing severe cellular damage through enzymatic
and non-enzymatic activities [17,18]. It is also well-known that ambient temperature lower than the
TNZ can result in increased feed intake and decreased feed conversion [19]. Temperature-stressed
cows also have altered lipids, carbohydrates, and amino acids metabolism [20,21]. Therefore, plasma
hormones related to stressor effects are key indicators of the cows’ physiological state and reflect the
physiological compensations underlying stress exposure [22]. Various studies have reported that the
biological processes involved in complex responses to thermal stress are related to hormonal changes,
including insulin, adrenocorticotrophic hormone, dopamine, cortisol, nor-epinephrine, and prolactin
concentration [15,21,23]; antioxidants activities, such as superoxide dismutase, glutathione peroxidase;
metabolites levels (e.g., blood urea nitrogen, lactate, lipid peroxide) [16,24,25].

Within-breed genetic variation exists for thermo-tolerance and disease resistance [26,27], and thus,
genetic and genomic selection for improved heat or cold resistance may increase the resilience and
well-being of dairy cattle [2]. Moreover, it will have important implications in the productivity,
and long-term sustainability of the dairy industry as the incidence of extreme temperatures is becoming
inevitable in the majority of geographic regions around the world [28,29]. HSP70 is one of the key genes
from the heat shock protein (HSP) family, which are associated with thermal stress response [30–33].
The heat shock protein 70 (HSP70) is involved in many biological activities, including the proper
folding of new and abnormal proteins, apoptosis, and cellular immunity [27,33]. Furthermore,
HSP70 accomplishes a key role in the normal physiological activities of cells. HSP70 has both inducive
and constitutive forms that reduce stress by increasing the chaperone activity [34]. Besides, HSP70 has
been shown to regulate protein transport across the cell membrane using energy and hydrolysis,
and consequently, maintaining the integrity of the cellular protein [33]. Both in vivo and in vitro
studies have shown that HSP70 is also involved in neuro-protection [35].

The 5′ flanking region of the HSP70 gene is rich in binding sites of various transcription factors,
and the mutations in this region can affect the expression of the HSP70 mRNA, stability, and translation
of the HSP70 protein [36,37]. Abundant genetic variation has been reported in the DNA sequence of
the HSP70 gene to discover their link with thermal tolerance capabilities of the animal, the example of
which is the investigated variance in the HSP70 gene associated with heat resistance in Tharparkar
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cattle [10]. The variation in the promoter region of the HSP70 gene has been reported to significantly
affect the response of fibroblasts to heat stress. Moreover, the mutation in the AP2 locus in the cattle
HSP70 gene results in a significant decrease in the HSP70 transcription level [38]. Basirico et al.
found that two mutation sites (g895 C/- and g1128 G/T) in the 5′ UTR region of HSP70 in Holstein
cattle significantly affected the viability of PBMCs and the expression levels of the HSP70 gene after
exposure to heat-stressed condition, the expression level of the HSP70 gene in mutant individual cells
showed significant increase in comparison to the wild type [39]. Polymorphisms in the HSP70 gene in
different sheep breeds raised under thermal stress have shown significant influence (p < 0.05) on the
blood metabolites such as glucose, serum glutamic-oxaloacetic transaminase (SGOT), phosphorous,
triglycerides, and cholesterol [40]. Furthermore, a study conducted by Hu et al. reported significant
alteration in four blood metabolites in cattle under cold stress; ACTH (adreno-corticotropic hormone),
T3 (tri-iodothyronine), T4 (thyroxine), and K+ (potassium) [27].

Genetic variation in the 5′ flanking region of the HSP70 gene in Chinese Holstein cattle population
and their association with heat or cold stress-related blood biochemical parameters are still unknown.
Therefore, this study investigates the naturally occurring fluctuations in blood biochemical parameters
during heat and cold stress and its association with the genetic polymorphism in the 5′ flanking region
of the HSP70 gene in Chinese Holstein cattle. The ultimate goal is to identify significant genetic markers
and biomarkers that can be used to genetically improve thermo-tolerance in dairy cattle.

2. Material and Methods

2.1. Animals’ Selection and Sampling

The experiment was performed in agreement with the Committee on Ethics of Animal
Experimentation from the Beijing Jiaotong University, Beijing, China (Code ID: SS-QX-2014-06).
A total of 196 healthy lactating Holstein cows were selected to evaluate the impact of heat or cold stress
on blood biochemical parameters. Out of the total 196 animals, 178 animals were sampled in August
2014 (heat stress period) when THI was higher than 78, 120 in November 2014 (TNZ, THI = 55.43),
and 126 in January 2015 (cold stress period) after THI dropped to below 38. Furthermore, rectal
temperature was measured three times daily during the three sampling months, and average monthly
rectal temperature was calculated then. Most of the animals were repeatedly measured across sampling
periods. These animals were raised at the Sanyuan dairy farm in Beijing, China. All the animals
were maintained under general management practices, fed in a scattered hurdle with a full mixed
ration three times a day and unrestricted access to fresh drinking water. Experimental cows were
kept in a semi-open barn, with sprinklers above the feeding line and fans over the stall space. In the
summer, cooling sessions were performed during feeding periods. Free-stall fans and sprinklers were
operational during the entire month of August (hottest period in the area). During night time, cows
were allowed to rest in the outer-barn free yard, according to the weather conditions. Milking was
carried out three times a day (morning, afternoon, and evening). In August cows were subjected to a
rigorous cooling session of 30 min prior to milking.

Blood samples were collected from the coccygeal vein into anticoagulant-mixed and
anticoagulant-free tubes. The anticoagulant-free blood samples were centrifuged at 3000 rpm/min
for 10 min. The upper serum layer was parted and frozen at −80 ◦C for the determination of blood
biochemical parameters. Furthermore, the anticoagulant-mixed blood was used to extract genomic
DNA according to the kit instruction (DP318-02, TIANGEN Biotech—Beijing, Co. Ltd., Beijing, China).

2.2. THI Calculation

The temperature and relative humidity in percentage (RH) were measured using an automatic
weather station (Model: P4581, Comet System S.R.O., Bezrucova, Czech Republic) located within the
lactating-cows’ pen. THI was recorded from 1 August (summer), where the THI was higher than
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78 continuously for 7 days, while THI for the TNZ condition was recorded after 1 November and for
cold stress after 1 January. Furthermore, THI was calculated as [41]:

THI = 0.8 × AT + (RH (%)/100) × [(AT − 14.4) + 46.4] (1)

where AT is the air temperature in Celsius degree (◦C) and RH denotes the percentage (%)
relative humidity.

2.3. Detection of Blood Biochemical Parameters

Fourteen blood metabolites were evaluated as potential indicators of heat or cold stress response,
including ACTH (adrenocorticotrophic hormone), COR (cortisol), CORT (cortisone), CRP (c-reactive
protein), DA (dopamine), GH (growth hormone), LPO (lipid peroxide), NE (nor-epinephrine),
PRL (prolactin), and SOD (superoxide dismutase), which were measured using radioimmune-assay [42].
Moreover, BUN (blood urea nitrogen), LA (lactate), and LDH (lactate de-hydrogenase) were detected
by the colorimetry technique [43], while K+ (potassium) was measured through an electrolyte analyzer.
The laboratorial work was done at the Beijing Huaying Biotechnology Research Institute, Beijing, China.

2.4. PCR Amplification and Sequencing

The isolation of genomic DNA from the blood samples was performed according to the
manufacturer instruction (DP318-02, TIANGEN Biotech Co., Ltd., Beijing, China). The primer
for the targeted region (5′ flanking area) of the HSP70 gene was constructed based on DNA sequence
AY149618.1 (GenBank accession number) using the Primer version 3.0 (PREMIER Biosoft, San Diego,
CA, USA). The forward primer was 5′GTCGTGTAGCCCTTAATTCTA3′, and the reverse primer was
5′ACGCAGGAGTAGTGGTG3′. The amplification system of PCR was 50 µL, including 2 µL bovine
genomic DNA (50 ng/µL), 5 µL 10× PCR Buffer, 4 µL dNTP Mixture (2.5 mM), 2 µL forward primer
(10 µM), 2 µL reverse primer (10 µM), and 0.25 µL rTaq enzyme (5 U/µL). The reaction conditions
were 94 ◦C 5 min; 94 ◦C 45 s; 58 ◦C 30 s; 72 ◦C 60 s; 30 cycles; and 72 ◦C for 5 min. The purification
of the PCR product was done using the Gel Extraction Kit (Omega Bio-Tek, Norcross, GA, USA).
Furthermore, the amplified fragments were sequenced both in forward and reverse directions using
BigDye® Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher, South San Francisco, CA, USA).

2.5. Detection of SNPs in the 5′ Flanking Region of the HSP70 Gene

The PCR amplification products were sent to the Bioengineering Co. Ltd. laboratory (Shanghai,
China) for sequencing. Single nucleotide polymorphisms (SNPs) located in the 5′ flanking region of
the HSP70 gene were detected by analyzing the polymorphic loci of the target sequence in the DNA
samples of 196 Holstein cows using the DNAMAN version 6.0 (Lynnon Biosoft, San Ramon, CA, USA)
and Chromas2.0 (Technelysium, South Brisbane, Australia) software.

2.6. Association Analyses

The MIXED procedure implemented in SAS9.2 software (SAS Institute Inc., Cary, NC, USA) was
applied to estimate the effect of heat or cold stress on blood metabolites of Holstein cows. The statistical
model for the effect of heat or cold stress on blood metabolites is described as:

y = µ + SEA + PAR + Cow + b1 × DIM + b2 × DIM2 + e (2)

where “y” is the individual blood biochemical content measured in January, August, or November;
“µ” is the mean of each blood biochemical content; “SEA” is the fixed effect of season; “PAR” is the
fixed effect of parity; “Cow” is the individual effect of the animal; “DIM” is the effect of days in milk;
“b1” and “b2” are the regression coefficients and “e” is the residual term.
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Subsequently, association analyses between the HSP70 gene polymorphisms and blood metabolites
affected by heat or cold stress were performed using the GLM procedure of SAS 9.2 (SAS Institute Inc.,
Cary, NC, USA). The model is presented as:

y = µ + SNP + PAR + b1 × DIM + b2 × DIM2 + e (3)

where “y” is the individual blood biochemical content measured in August or January; “µ” is the
average of each blood biochemical content; “SNP” is the fixed effect of different genotypes of each SNP;
“PAR” is the fixed effect of parity; “DIM” is the effect of days in milk; “b1” and “b2” are the regression
coefficients, and “e” is the residual term. The significance threshold used was p < 0.05.

3. Results

3.1. Air Temperature, THI, and Rectal Temperature during Thermal Stress and TNZ Period

The average temperature and THI in the experimental cowshed were monitored for three months
as shown in Table 1. The threshold categories set for thermal stress are mild, moderate, and extreme [44].
The currently reported categories set for THI are: 68 ≤ THI < 72, is considered to cause mild heat
stress, 73 ≤ THI < 79 represents moderate heat stress, and 80 ≤ THI < 89 indicates, while THI ≥ 90 is
considered as fatal/emergency state [45]. In Beijing, the average temperature and THI of the cows-shed
in August/2014 was 31.80± 2.80 ◦C and 81.57± 3.20, respectively, and the daily average THI greater than
78 was observed for 21 days in August/2014, which lasted for 8 h. This indicates that the experimental
animals were under severe heat stress (72.40 < THI < 89.68). The average temperature and THI in
November/2014 were 12.76 ± 3.92 ◦C and 55.43 ± 5.43, respectively, showing that the cows were under
TNZ conditions. The average temperature in January/2015 was −6.70 ± 2.35 ◦C and the average THI
was 25.63 ± 4.67 revealing that the cows were under mild cold stress. The animals’ rectal temperatures
were recorded three times daily during the three months of sampling, and the average monthly rectal
temperature was calculated. The rectal temperature in August (summer) showed a significant increase
as shown in Table 1, indicating that an external increase in temperature and THI has a positive effect
on the internal body temperature.

Table 1. Air temperature, temperature and humidity index (THI), and rectal temperature calculated
during three different seasons.

Parameter August/2014 November/2014 January/2015

Temperature (◦C) 31.80 ± 2.80 12.76 ± 3.92 −6.70 ± 2.35
Min~Max Temperature (◦C) 22.87–36.35 4.86–19.91 −9.89–−1.90

THI 81.57 ± 3.20 55.43 ± 5.43 25.63 ± 4.67
Min~Max THI 72.40–89.68 40.84–63.92 18.10–36.69

Rectal temperature 38.68 ± 0.03 a 38.53 ± 0.03 b 38.51 ± 0.03 b

Note: a,b Different letters in the last row indicate significant differences between the periods (p < 0.01).

3.2. Heat or Cold Stress Effect on Blood Biochemical Parameters of Holstein Cows

Analysis of variance shows that season, parity, and individual cows had a significant effect
on a variety of blood biochemical parameters (p < 0.05). The parity and individual effects were
adjusted through the least square method and season comparison was performed as shown in Table 2.
The blood concentration of GH, LA, PRL, and SOD under heat stress condition increased significantly
(p < 0.05) as compared to the TNZ condition, while there was a significant decrease (p < 0.05) in BUN,
CRP, K+, LDH, LPO, and NE. Furthermore, the concentration of COR, CORT, and K+ was higher
under cold stress conditions compared to TNZ (p < 0.05), while the concentrations of ACTH, DA,
GH, LDH, NE, PRL, and SOD were significantly lower (p < 0.05) under cold stress. The significant
changes in blood metabolites in response to thermal stress indicate that they are potential biomarkers
for thermo-tolerance.
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Table 2. Changes in the blood biochemical parameters under heat or cold stress.

Blood Parameters Heat Stress
(LSM ± SE) 1

TNZ
(LSM ± SE) 1

Cold Stress
(LSM ± SE) 1 p-Value 2

ACTH (pg/mL) 23.26 ± 0.51 ab 24.08 ± 0.62 a 21.43 ± 0.63 b 0.008
BUN (mmol/L) 5.00 ± 0.07 b 5.59 ± 0.09 a 5.39 ± 0.09 a <0.0001
COR (ng/mL) 95.66 ± 1.38 b 95.07 ± 1.67 b 104.20 ± 1.69 a <0.0001

CORT (ng/mL) 286.64 ± 0.92 b 286.17 ± 1.12 b 292.90 ± 1.13 a <0.0001
CRP (mg/L) 2.99 ± 0.08 b 4.40 ± 0.09 a 4.18 ± 0.09 a <0.0001
DA (ng/mL) 73.28 ± 1.89 ab 78.12 ± 2.28 a 67.22 ± 2.32 b 0.0027
GH (ng/mL) 5.26 ± 0.05 a 3.95 ± 0.07 b 3.41 ± 0.07 c <0.0001
K+ (mmol/L) 14.49 ± 0.13 c 16.44 ± 0.16 b 17.43 ± 0.16 a <0.0001
LA (mmol/L) 2.22 ± 0.02 b 2.05 ± 0.03 a 2.06 ± 0.03 a <0.0001
LDH (U/L) 901.82 ± 17.47 b 1008.61 ± 21.03 a 951.36 ± 21.40 b <0.0004

LPO (nmol/L) 5.49 ± 0.04 b 5.80 ± 0.05 a 5.74 ± 0.05 a <0.0001
NE (pg/mL) 355.34 ± 5.53 b 425.06 ± 6.72 a 408.18 ± 6.78 b <0.0001
PRL (uIU/L) 292.64 ± 2.69 a 221.04 ± 3.27 b 209.26 ± 3.30 c <0.0001
SOD (U/mL) 120.28 ± 0.92 a 111.64 ± 1.12 b 93.54 ± 1.13 c <0.0001

1 Multiple comparisons were performed by the Bonferroni t-test after adjusted for the significant fixed effects. LSM,
least-square means; SE, standard error. a,b,c Different letters in the same row indicate significant differences between
the two months (p < 0.05). 2 p < 0.01 indicates highly significant differences among seasons; (p < 0.05) indicates a
significant difference among seasons.

3.3. SNPs in the 5′ Flanking Region of the HSP70 Gene

The 5′ flanking region of the HSP70 gene was amplified and sequenced in 196 Holstein cows.
Based on the reference sequence of Holstein Friesian (AY149618.1), the amplified product was 624 bp
including 399 bp of the 5′ flanking region, 208 bp of the untranslated region (5′ UTR), 17 bp of the
coding region, and 225 bp of the first exon. The target region was then sequenced and analyzed further
for SNP detection. The SNPs observed in the 5′ flanking region of the HSP70 gene in Holstein cows are
shown in Figure 1. Total of 12 SNPs were identified, in which all these SNPs were reported in our
previous study except SNP A-221G, and A-12G [27]. Six out of the 12 SNPs (A-261T, A-221G, C-135-,
A22T, G105T, and C131G) were not found in the dbSNP database (www.ncbi.nlm.nih.gov). Out of these
six SNPs, three SNPs (A-261T, A-221G, and C131G) did not have the information on chromosomal
position. The gene and chromosomal location, accession number, and allelic frequency information of
the 12 SNPs are presented in Table 3.

Table 3. SNPs detected in the 5′ flanking region of the HSP70 gene in Chinese Holstein cows.

SNP Gene Position 1 Chromosome Position Accession Number Allele Frequency 2

1 −261 NA NA A:0.8053 T:0.1947
2 −221 NA NA A:0.0053 G:0.9947
3 −135 23:27,334,006 NA C:0.7193 −:0.2807
4 −12 23:27,333,887 rs445536803 A:0.1754 G:0.8246
5 +22 23:27,333,854 NA A:0.9474 T:0.0526
6 +45 23:27,333,831 rs211506802 A:0.7965 T:0.2035
7 +72 23:27,333,804 rs471604061 A:0.9263 G:0.0737
8 +94 23:27,333,782 rs438646103 A:0.1860 G:0.8140
9 +102 23:27,333,774 rs478612967 A:0.4158 C:0.5842

10 +105 23:27,333,771 NA G:0.6456 T:0.3544
11 +131 NA NA C:0.9421 G:0.0579
12 +181 23:27,333,726 rs473916108 C:0.5895 T:0.4105

Note: 1 The transcription initiation site is +1; 2 allele frequency of each SNP in the 196 individuals used in this study.

www.ncbi.nlm.nih.gov
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Figure 1. Diagrammatic representation of the detected SNPs within the 5′ flanking region of the HSP70
gene in Chinese Holstein cattle. The nucleotide position is according to the sequence alignment of
Holstein Friesian cattle (AY149618.1).

3.4. Association Analyses of SNPs and Blood Biochemical Parameters Related to Thermal Stress

Association analyses were performed between 11 SNPs with a MAF greater than 0.05 (Table 3)
and the blood biochemical parameters significantly related to thermal stress response in cattle (Table 2).
Four SNPs (A-12G, A72G, C131G, and C181T) detected in the 5′ flanking region of the HSP70 gene were
significantly associated with blood biochemical parameters (LA, DA, LPO, and SOD) in Holstein cows
under heat or cold stress (Table 4). Under heat stress, SNP 4 (A-12G) and 12 (C181T) were significantly
associated with LA content in blood (p < 0.05). The Bonferroni t-test indicates that the LA content
in individuals with the GG genotype of the SNP A-12G was significantly higher compared to the
AG genotype, while the individuals with TT genotype of SNP C181T had a higher LA concentration
under heat stress conditions. Furthermore, SNP 7 A72G was significantly associated with LPO content
(p < 0.05), in which the LPO content in individuals with AA and AG genotypes was significantly higher
compared to the GG genotype. Moreover, the polymorphism located within the 5′ flanking area of
the HSP70 gene was also significantly associated with the blood biochemical parameters under cold
stress (Table 4). For instance, SNP 4 (A-12G) was significantly correlated with DA content (p < 0.05), in
which AA genotype individuals had significantly higher DA concentration compared to AG and GG
genotypes. SNP 11 (C131G) was also associated with SOD activity (p < 0.05), in which SOD activity was
significantly higher (p < 0.05) in individuals with GG genotype compared to CC and CG genotypes.

Table 4. Significantly associated SNPs in the 5′ flanking region of the HSP70 gene of Holstein cows
with the blood metabolites under thermal stress.

SNPs Stress
Blood

Biochemical
Parameters

p-Value 1 Genotype
Number

of
Animals

Least Squares
Mean + Standard

Error 2

4
(A-12G)

Heat stress LA (mmol/L) 0.03

AA 13 2.16 ± 0.12 ab

AG 33 2.06 ± 0.08 b

GG 124 2.27 ± 0.05 a

Cold stress DA (ng/mL) 0.03

AA 9 84.66 ± 7.44 a

AG 26 62.08 ± 4.68 b

GG 86 65.74 ± 3.02 b
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Table 4. Cont.

SNPs Stress
Blood

Biochemical
Parameters

p-Value 1 Genotype
Number

of
Animals

Least Squares
Mean + Standard

Error 2

7
(A72G) Heat stress LPO (nmol/mL) 0.02

AA 152 5.51 ± 0.06 a

AG 14 5.80 ± 0.15 a

GG 4 4.72 ± 0.36 b

11
(C131G) Cold stress SOD (U/mL) 0.04

CC 110 96.47 ± 1.21 b

CG 10 94.60 ± 3.11 ab

GG 1 113.12 ± 6.42 a

12
(C181T) Heat stress LA (mmol/L) 0.05

CC 81 2.16 ± 0.15 b

CT 28 2.19 ± 0.08 ab

TT 61 2.34 ± 0.06 a

Note: 1 p < 0.05 indicates significantly associated with the blood biochemical parameters. 2 a,b Different letters
in the same column indicate a significant difference between genotypes (p < 0.05) based on the Bonferroni t-test.
The association between all the 11 SNPs and blood biochemical parameters was done, but only 4 SNPs were found
significantly associated with the above blood biochemical parameters.

4. Discussion

THI is widely used to quantify thermal stress in dairy animals [29,46]. When THI exceeds 72,
the animals experience heat stress [12,29], and cold stress for THI lower than 38 [11]. In the present
study, the average THI exceeded 72, showing that animals were under heat stress in August/2014 and
cold stress in January/2015 when the average THI was lower than 38. The rectal temperature recorded
during the summer significantly increased, while no significant changes in the rectal temperature
was observed during the winter period, as shown in the Table 1. Thermal stress causes physiological,
hormonal, biochemical, and molecular responses for the sake of cell survivability in harsh and stressful
environments [15,16,21]. Our findings show that there were significant changes in blood metabolites
of Holstein cattle under heat or cold stress as shown in Figure 2, in agreement with other studies in
Holstein and Jersey cattle [47,48].

In our study, the concentration of PRL, GH, LA, and SOD significantly increased while BUN,
CRP, K+, LDH, LPO, and NE decreased in heat-stressed cows compared to the TNZ. The animal body
increases heat dissipation under heat stress, which manifests as shortness of breath, rapid heartbeat,
and disorder of metabolic pathways [5]. The change in PRL has a direct relationship with increased
rectal temperature [49], which is consistent with our study. PRL is not only correlated with milk
production but also involved in thermoregulation by maintaining water and electrolytes balance [50].
The increase in PRL is to meet up with the increased demand for water and electrolytes during heat
stress [51]. GH establishes a prominent position along with PRL in milk synthesis, as well as partitioning
of energy toward the mammary gland for milk synthesis during heat stress [52]. The animal experiences
negative energy balance during heat stress because of reduced feed intake [21]. The possible reason
for increased GH is to enable maintenance of the energetic status of the animal during heat stress
condition [52]. LA increased during heat stress in the leg and pectoral muscles of chickens [53], as well
as in the blood of Holstein cattle [54], which corroborates with our findings. Heat-stressed cows
showed increased gluconeogenesis as compared to TNZ conditions [55], and presumably increased
utilization of LA and alanine for glucose synthesis [21,55,56]. Besides the animals dissipating heat
through panting and sweating during heat stress that results in dehydration [57], the increase in LA
may also be due to decreased blood volume as a result of dehydration and lower blood flow toward the
muscle during heat stress [58]. Heat stress induces oxidative stress that stimulates certain body defense
mechanisms and increase oxidative stress-related biomarkers such as SOD in order to scavenge free
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radicals [59]. Various studies claimed that heat stress increases the blood SOD in cows [60], goats [61],
and mice [62], which is similar to our findings.
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BUN is normally originated from rumen and through de-amination of the amino acids by the
liver [63]. Srikandakumar et al. reported that the BUN content in dairy cattle decreased during
heat stress by 1.48 mmol/L and 0.65 mmol/L, respectively, which is consistent with the results of
this study [64]. The decrease in BUN concentration suggests an alteration in protein catabolism,
and the nitrogenous re-partition during heat stress [15]. Moreover, heat stress elevates the marginal
vasodilation to dissipate more heat resulting in decreased blood drift to the organs [15], besides
the increased dehydration status reducing blood flow to the kidneys. The decrease in BUN during
heat stress may also be due to the malfunctioning of the kidneys during heat stress [65]. CRP is
known as a sensitive inflammation marker, the decrease in CRP may be due to liver dysfunction
due to heat stress, as CRP is liver originated during diseases or under severe stress. Another study
claimed that CRP is correlated with milk production and is at peak during high lactation [66], thus the
decrease of CRP in heat-stressed cows may also be as a result of decreased milk production due to
reduced feed intake during heat stress. LPO decreased during heat stress conditions, likely as defensive
capability of HSP70 [67], and the increased activity of the antioxidant defense system against per-oxides,
which includes various enzymes such as SOD, catalase (CAT), and glutathione per-oxidase during
heat stress [68–70]. Previous studies have shown that LDH concentration is lower in the summer in
comparison to the TNZ, as also noticed in the current study, and is thought to be the consequence of
the reduced thyroid activity during heat stress [71,72].

The main physiological response of animals under cold stress is to up-surge heat production and
decrease heat dissipation in order to up-hold a constant body temperature, besides it also changes
the endocrine hormone regulation [73]. Similar to our study, the DA level in chickens decreased
after exposure to severe cold stress [74], which may be due to the damage of neural spikes of DA
neuron releasing DA. In our study, the COR and CORT plasma levels were higher under cold stress,
while different studies showed a similar trend in the increase of blood COR in pigs and dairy cattle
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under cold stress [19,75]. Moreover, a recent study showed that blood COR increased in dairy cattle
after the exposure to heat stress for a long duration [76], likely to reduce metabolic heat production [11].
Similar to heat stress, in order to maintain body temperature and elevate energy production, cows
under cold stress can reduce production performance and immunity [77]. Based on the above evidences,
the increase in COR may be an adaptive strategy and reflect a shielding action favoring an increase
in metabolic heat production under cold stress. Furthermore, cold stress was also found to increase
corticosterone and thyroxin levels. In summary, heat or cold stress caused significant changes in
blood metabolites in Holstein cows, which had a great impact on the physiological state of the cows
and reflect the physiological compensations that cows undergo at various lactation intensities and/or
stress exposure. Therefore, the aforementioned metabolites can be used as bio-markers for evaluating
tolerance to thermal stress.

The HSP70 protein family not only acts as a molecular chaperone to assist the folding/unfolding,
congregation, and transportation of new and abnormal proteins, inhibit cell apoptosis, and protect
cells from stress damage, but also stimulate the rapid response of the immune system and regulate the
activation of immune cells and the production of cytokines [78,79]. SNPs provide tools to carry out
association analyses and the identification of genetic markers for the selection of important traits [27,80].
It has been reported that SNPs in the 5′ flanking region of the HSP70 gene in Duroc boars show
association with semen quality under heat stress, and suggested that those SNPs can contribute as
genetic markers for breeding for improved heat tolerance in pigs [81]. Polymorphisms in the 5′ flanking
regions of the HSP70 gene validate its association with the blood metabolites such as T3 and T4 in
Sanhe cattle under severe cold stress [27]. Deb et al. reported that the variation of the AP2 binding
element in the promoter region of the HSP70 gene could affect heat stress response of Frieswal hybrid
cattle [82]. The rectal temperature and respiratory frequency of homozygous genotype individuals
were significantly lower (p < 0.05) than those of heterozygous individuals. We identified a total of
twelve SNPs in the 5′ flanking region of the HSP70 gene (Table 4). All these SNPs were previously
reported under cold stress by our group except SNP A-221G, and A-12G [27]. However, the inclusion of
three distinct weather conditions with respective representation of important biochemical parameters
in high producing cows, constitute salient features of this association study. We found that four SNPs
were significantly associated with the various blood biochemical parameters (Table 3) related to heat or
cold stress in Chinese Holstein cows. Under heat stress three SNPs (A-12G, C181T, and A72G) were
significantly associated with the blood metabolites LA, and LPO. Under cold stress SNPs, A-12G and
C131G were significantly associated with DA and SOD, respectively. The validation of these blood
biomarkers under heat stress and their association with the polymorphisms in the 5′ flanking region
suggest them as indicators of thermal stress in Holstein cattle. Furthermore, the polymorphisms in the
5′ flanking region associated with these biochemical indicators reveal that three SNPs (A-12G, A72G,
C181T) may be used as molecular marker for the selection of heat resilient animals, while A-12G and
C131G may be used as biomarkers for cold tolerance. Future studies should perform associations with
whole-genome markers to identify other SNPs associated with the biomarkers defined here.

5. Conclusions

This study has taken a novel approach for the characterization of blood biochemical profile of
lactating Holstein cows under three thermal conditions. The association analysis performed hereafter
identified SNPs in the 5′ flanking region of the HSP70 gene, which are significantly associated with
the indicators of thermal tolerance. An antagonistic trend of gluconeogenesis-related biochemical
parameters between cold and heat stress depicts the cow’s physiological alterations to thermal
challenges. SNP A-12G and C181T were significantly associated with lactate; SNP A72G with lipid
per-oxide under heat stress; while SNP A-12G was significantly associated with dopamine; and SNP
C131G was linked with superoxide dismutase under cold stress. Moreover, these SNPs may be used as
candidate molecular markers for thermo-tolerance in Chinese Holstein cattle.
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