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Abstract: Melanophryniscus admirabilis (admirable red-belly toad) is a microendemic and critically
endangered species found exclusively along 700 m of the Forqueta River, in a fragment of the Atlantic
Forest of southern Brazil. One of the greatest concerns regarding the conservation of this species
is the extensive use of pesticides in areas surrounding their natural habitat. In recent years, the
adaptation and persistence of animal species in human-impacted environments have been associated
with microbiota. Therefore, the present study aimed to characterize the oral bacterial community
of wild M. admirabilis and to address the question of how this community might contribute to this
toad’s adaptation in the anthropogenic environment as well as its general metabolic capabilities.
A total of 11 oral samples collected from wild M. admirabilis were characterized and analyzed via
high-throughput sequencing. Fragments of the 16S rRNA variable region 4 (V4) were amplified, and
sequencing was conducted using an Ion Personal Genome Machine (PGM) System with 316 chips. A
total of 181,350 sequences were obtained, resulting in 16 phyla, 34 classes, 39 orders, and 77 families.
Proteobacteria dominated (53%) the oral microbiota of toads, followed by Firmicutes (18%), Bac-
teroidetes (17%), and Actinobacteria (5%). No significant differences in microbial community profile
from among the samples were reported, which suggests that the low dietary diversity observed in this
population may directly influence the bacterial composition. Inferences of microbiome function were
performed using PICRUSt2 software. Important pathways (e.g., xenobiotic degradation pathways
for pesticides and aromatic phenolic compounds) were detected, which suggests that the bacterial
communities may serve important roles in M. admirabilis health and survival in the anthropogenic
environment. Overall, our results have important implications for the conservation and management
of this microendemic and critically endangered species.

Keywords: high-throughput sequencing; amphibian; bacteria; xenobiotic; anthropogenic action

Microorganisms 2021, 9, 220. https://doi.org/10.3390/microorganisms9020220 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0003-3335-8837
https://orcid.org/0000-0002-6767-8890
https://orcid.org/0000-0002-3484-8718
https://orcid.org/0000-0003-4166-9600
https://orcid.org/0000-0002-1029-5776
https://doi.org/10.3390/microorganisms9020220
https://doi.org/10.3390/microorganisms9020220
https://doi.org/10.3390/microorganisms9020220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9020220
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/2076-2607/9/2/220?type=check_update&version=1


Microorganisms 2021, 9, 220 2 of 11

1. Introduction

Amphibians are highly sensitive to environmental changes and represent the most
threatened vertebrate group, with approximately 33% (2390) of the 7166 known species
listed in a threatened category [1–3]. The anuran genus Melanophryniscus (Bufonidae)
comprises 29 species of small toads that are geographically restricted to South America,
occurring in Brazil, Paraguay, Bolivia, Uruguay, and Argentina [4]. Many species have
restricted distributions and are globally listed as threatened, near threatened [5], or data
deficient [3]. Among the 22 species of Melanophryniscus found in Brazil, Melanophryniscus
admirabilis (admirable red-belly toad) is a microendemic species found exclusively along
700 m of the Forqueta River in a fragment of the Atlantic Forest of southern Brazil [6].
M. admirabilis is one of the largest species in the genus (females grow up to 40 mm, while
males are smaller) [4]. They are easily distinguishable by their green dorsum with a
black belly as well as contrasting yellowish glands and red palms, soles, and inguinal re-
gion [6]. Its conspicuous coloration—associated with unken reflex behavior—is supposedly
a warning signal for potential predators that indicates toxicity due to their skin‘s alkaloid
compounds. These alkaloids are sequestered from their arthropod-rich diet (e.g., ants, bee-
tles, mites, and millipedes) and is released through their multicellular exocrine glands [7].
Approximately 170 alkaloids and 15 structural classes have already been identified in
9 species of Melanophryniscus [8], with 5,8-disubstituted indolizidines, 5,6,8-trisubstituted
indolizidines, pumiliotoxins, tricyclics, and decahydroquinolines being the most commonly
observed [9–11].

Melanophryniscus admirabilis is officially listed by International Union for Conservation
of Nature (IUCN) as critically endangered and is part of the Action Plan for the Conserva-
tion of Amphibians and Reptiles in southern Brazil [6]. Notably, this species’ main threats
include the ongoing loss of habitat quality resulting from anthropogenic infrastructures and
activities such as hydroelectric power generation, deforestation, pesticide use in tobacco
and soybean plantations, livestock activity, the illegal pet trade, and trampling by tourists
at reproductive sites [3]. Due to the vulnerability of the only known population of this
species, the conservation of M. admirabilis is a priority in Brazil. The few studies involving
this species largely focused on its biology, ecology [12], and ecotoxicology [13]. To date, no
work has been carried out to examine the microbiota composition and/or diversity in this
species. Notably, microbes serve an important role in maintaining animal health. Addition-
ally, the adaptation and persistence of animal species in human-impacted environments
have been associated with microbiota [2,14]. Determining microbiota composition could
promote a greater understanding of species’ physiological statuses and niche divergences
under differing environmental conditions [15,16].

To date, amphibian skin and gut microbiomes have been relatively well studied;
however, studies involving oral microbiome remain scarce [2,17–19]. The composition,
diversity, and function of microbial communities mirrors host species’ health maintenance
in the environment and may also reflect the ecological condition of the habitat. The com-
position of microbiota in frogs is governed by the endogenous environment, shaped by
their physical, physiological, and immune properties, and influenced by their surrounding
environments via their diet, which constitutes an important source of organisms in the
oral and gastrointestinal tracts of these animals. To ensure the successful conservation
of M. admirabilis, it is important to assess the microbiota of this species. Therefore, the
present study aimed to characterize the oral bacterial community of wild M. admirabilis and
address the question of how this community might contribute to this species’ adaptation in
the anthropogenic environment as well as its general metabolic capabilities.

2. Materials and Methods
2.1. Sample Collection

Eleven oral samples were collected from wild Melanophryniscus admirabilis (Figure 1;
Table 1). Samples were taken from active toads in the breeding sites in the Forqueta river’s
margins in the Perau de Janeiro locality, Arvorezinha, Rio Grande do Sul, Brazil (52◦18′ W,
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28◦51′ S). The area is situated at the southern end of the Atlantic Forest, in a transitional
phytoecological region between the mixed ombrophilous forest and the deciduous seasonal
forest [20].
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Figure 1. Wild Melanophryniscus admirabilis (admirable red-belly toads) in the Forqueta river’s mar-
gins at the Perau de Janeiro Arvorezinha, South Brazil. Oral sample collected from the M. admirabilis
(left; Photo: Márcio Borges-Martins). Melanophryniscus admirabilis in the breeding sites in the Forqueta
river’s margins at the Perau de Janeiro (right; Photo: Márcio Borges-Martins).

Table 1. Details of wild Melanophryniscus admirabilis (admirable red-belly toads) were analyzed in
this study.

SAMPLE (ID) SVL * (mm) MASS (g) SEX

AC421 31.51 3.1 Male
AC422 29.88 3 Male
AC423 30.63 3.2 Male
TA01 I 35.46 3.6 Female
TA02 II 33.62 3.2 Male
TA04 IV 31.50 2.7 Male

TA05 34.72 3.8 Female
TA07 VII 32.33 3.6 Male
TA10 X 33.87 4.2 Female
TA11 XI 33.67 4.1 Male
TA12 XII 35.07 3.9 Male

* SVL—Snout–vent length.

The oral swab collection was performed according to the sample collection proto-
col [21]. Oral samples were collected using commercially available sterile cotton-tipped
swab sticks. All samples were placed in sterile tubes, kept on ice, and sent to our laboratory
for storage at −80 ◦C. The toads were released back into the wild immediately after the
sample collection. All specimens were individually marked using a photo identification
protocol [12].

2.2. Ethics and Sampling Permits

This study was carried out following the recommendations of the Chico Mendes
Institute for Biodiversity Conservation (ICMBio) and was approved by the Research and
Ethics Committees at the Federal University of Rio Grande do Sul (Projects 19541, 25526,
and 25528). The protocol was approved by the Information and Authorization System in
Biodiversity (SISBIO), numbers 40004-5 and 10341-1 (for M. Borges-Martins). All possible
measures were taken to reduce the impact of our sampling protocol, which is part of a
larger program intended for the study, monitoring, and conservation of the only known
admirable red-belly toad population. Research priorities and protocols are also part of the
Action Plan for the Conservation of Amphibians and Reptiles in southern Brazil [12].



Microorganisms 2021, 9, 220 4 of 11

2.3. DNA Extraction, PCR-Amplification of Bacterial 16S rRNA Genes and Sequencing

Total DNA from the oral swab samples was extracted using a DNeasy Blood and
Tissue Kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s instructions. The
DNA concentration was determined using the Qubit, and DNA quality was verified using
the NanoDrop ND-1000 (Thermo Fisher Scientific, Waltham, MA, USA).

To characterize the bacterial community present in each oral sample, fragments of the
16S rRNA gene were amplified using the primers 515F and 806R [22]. Multiple samples
were PCR-amplified using barcoded primers linked with the Ion adapter “A” sequence and
the Ion adapter “P1′ ′ sequence to obtain a sequence of primer composed for A-barcode-806R
and P1-515F adapter and primers. PCR reactions were carried out with the Platinum Taq
DNA Polymerase High Fidelity kit (Invitrogen, Carlsbad, CA, USA). PCR was performed
with High Fidelity PCR buffer, 2U of Platinum Taq DNA Polymerase, 2 mM of MgSO4,
0.2 mM of dNTP Mix, 25 µg of Ultrapure BSA (Invitrogen, Carlsbad, CA, USA), 0.1 µM
of each forward primer, approximately 30 ng of DNA template, and ultrapure water to
complete a final volume of 25 µL per reaction. The PCR conditions were 94 ◦C for 5 min,
followed by 30 cycles of 94 ◦C for 45 s, 56 ◦C for 45 s, and 68 ◦C for 1 min, and a final
extension step of 68 ◦C for 10 min.

Samples were sequenced at the Universidade Federal do Pampa (UNIPAMPA, Bagé,
RS, Brazil). After purifying PCR amplicons using Agencount AMPure Beads (Beckman
Coulter), library preparation was carried out with the Ion OneTouchTM 2 System fitted
with the Ion PGMTM OT2 400 Kit Template (Thermo Fisher Scientific, Waltham, MA, USA)
from an initial amount of 100 ng of PCR product. Because all samples were sequenced
in a multiplexed Personal Genome Machine (PGM) run, barcode sequences were used
to identify each sample from the total sequencing output. Sequencing was conducted
on an Ion Personal Genome Machine (PGM) System (Thermo Fisher Scientific, Waltham,
MA, USA) with 316 chips, following the manufacturer’s instructions. Sequences have
been submitted to the European Molecular Biology Laboratory (EMBL) database under
accession number PRJEB33232. Despite the short-read lengths (~290 bp), this targeted gene
region should also provide sufficient resolution.

2.4. Bacterial Community Analysis

Bioinformatics analysis of 16S rRNA amplicons was performed using QIIME 2 version
2019.7 [22]. Raw sequence data were quality filtered, denoised, and chimera filtered using
the q2-dada2- plugin with DADA2 pipeline Callahan [23]. The 5′ and 3′ nucleotide bases
were trimmed from forward and reverse read sequences due to low quality. Reads with
several expected errors higher than 4 were discarded. Read length filtering was applied,
and the reads were trimmed at the first instance of a quality score less than or equal to
2. The resulting reads were truncated at 200 bp length. Chimera removal was performed
using the consensus method. The amplicon sequence variants (ASVs) obtained by DADA2
pipeline were merged into a single feature table using the q2-feature-table plugin.

The ASV’s were aligned with multiple alignment using fast Fourier transform (MAFFT)
(via q2-alignment) [24]. Taxonomy was assigned to the classify-sklearn naive Bayes taxon-
omy classifier [25]. The classifier was trained using extracted Greengenes 13_8 reference
sequences with 99% similarity from 16S rRNA variable region 4 (V4). The resulting fea-
ture table, rooted tree from reconstructed phylogeny, and taxonomy classification were
imported from QIIME2 to the R v3.6.1 environment for further data analysis using Micro-
biome v1.6.0 and Phyloseq v1.28.0 [26,27]. For Taxonomic analysis, the feature table was
transformed to compositional data for taxa bar plot composition visualization of the five
most abundant phylum and families using the plot composition function from Microbiome
R package [27].

The taxon diversity study (richness and evenness) within the samples was performed
by employing the Shannon diversity, the InvSimpson diversity, and the Chao1 index,
whereas the observed species metrics calculation and diversity between samples were
estimated using Microbiome and Phyloseq packages in R. The significance was estimated
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with a pairwise comparison using a non-parametric test Wilcoxon [28], using functions
from the Microbiome R package.

2.5. Functional Predictions from Amplicon Sequences

A predictive functional profile of the oral bacterial community was conducted us-
ing PICRUSt2 software [29] against Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [30]. PICRUSt2 output is a biom table with rows in terms of functional orthologs
(KO) and samples as columns. The KO terms levels were mapped into KEGG levels and
imported to statistical analysis of taxonomic and functional profiles (STAMP) software for
statistical analysis [31]. Briefly, samples were divided into two gender groups (F-M), and a
Welch’s t-test was performed to evaluate the significance of functional predictions with
p-value < 0.05. Benjamini–Hochberg adjusted p-value was calculated to control the false
discovery rate (FDR) in multiple testing. The KEGG groups were considered significantly
enriched by satisfying an FDR corrected p-value of 0.05.

3. Results

A total of 181,350 sequences were obtained from the oral samples of wild Melanophrynis-
cus admirabilis after discarding substandard sequences. Among these cleaned sequences,
we obtained 13,650 ASVs per sample, which were grouped into 1039 (ASVs). Sequence
analysis grouped the reads into 16 phyla, 34 classes, 39 orders, and 77 families.

Five phyla presented relative abundances greater than 1% and were present in all
evaluated samples. Among phyla, Proteobacteria dominated the oral microbiota of wild
M. admirabilis, with the highest relative abundance (53%), followed by Firmicutes (18%),
Bacteroidetes (17%), Actinobacteria (5%), and Fusobacteria (2%) (Figure 2; Table S1). These
sequences belonged mainly to seven orders: Burkholderiales (23%), Bacteroidales (14%),
Lactobacillales (8%), Clostridiales (8%), Enterobacteriales (7%) Pseudomonadales (5%), and
Actinomycetales (5%) (Table S2).
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Figure 2. Oral bacterial composition of wild Melanophryniscus admirabilis (admirable red-belly toads).
Taxonomic composition of the oral microbiota among the eleven samples was compared based on
the relative abundance (reads of a taxon/total reads in a sample).

While 77 families were detected in the oral samples, only 28 families exhibited a
relative average abundance of ≥1% (Table S3). Burkholderiaceae (16%), Prevotellaceae
(10%), Enterobacteriaceae (7%), Comamonadaceae (6%), and Streptococcaceae (6%) were
more abundant and were present in all samples evaluated (Figure S1).
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Alpha diversity metrics (Shannon, Chao1, Inverse Simpson index) did not exhibit any
identifiable change (p-value > 0.05) in bacterial community structure grouping samples by
sex (Figure 3).
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Figure 3. Alpha diversity comparisons of oral bacterial microbiota of wild Melanophryniscus admirabilis (admirable red-belly
toads). Alpha-diversity analysis based on Chao 1 diversity (top), Shannon diversity (middle), and InvSimpson diversity
(bottom), measure of species richness based on amplicon sequence variants (ASVs) of the eleven oral samples collected
from wild M. admirabilis. No significant difference among the samples was observed.

PICRUSt2 software was used to better understand the important role of the oral
bacterial microbiota present in wild M. admirabilis. Metabolic functions were enriched in
our samples, and functional features in 26 pathways were observed, including membrane
transport proteins, amino acids metabolism, carbohydrate metabolism, energy metabolism,
replication and repair systems, cofactor and vitamin metabolism, nucleotide metabolism,
xenobiotic biodegradation metabolism, lipid metabolism, the metabolism of other amino
acids, polypeptide and terpenoid metabolism, and the biosynthesis of other secondary
metabolites (Figure S2).

We correlated the microbial functional features (e.g., xenobiotic degradation and
metabolism) with toad habitat and diet. A total of 16 pathways were identified using PI-
CRUSt2 software (Figure 4; Table S4). Two of these pathways were related to benzoate and
toluene degradation, with an elevated frequency of amplicon sequence variants (average
number of ASVs = 54,486 and 36,950, respectively). The data analysis showed a higher
standard deviation for benzoate degradation and toluene degradation when compared to
polycyclic aromatic hydrocarbon degradation (Table S4). Other groups of xenobiotic activ-
ity included aminobenzoate degradation (average number of ASVs = 30,067), chloroalkane
and chloroalkene degradation (average number of ASVs = 25,160), drug metabolism-
cytochrome P450 (average number of ASVs = 19,923), naphthalene degradation (average
number of ASVs = 19,789), nitrotoluene degradation (average number of ASVs = 12,598),
ethylbenzene degradation (average number of ASVs = 9718), dioxin degradation and
biosynthesis (average number of ASVs = 6847), atrazine degradation (average number of
ASVs = 5576), and fluorobenzoate degradation (average number of ASVs = 5864) (Table S4).
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Level 2.

4. Discussion

The number of amphibian microbiome studies has been increasing in recent years to
facilitate an improved understanding of the diverse communities of bacteria, fungi, and
viruses that inhabit their bodies [2,17–19,32,33]. The skin microbiome has been extensively
studied due to its relationship to an emergent disease caused by the chytrid fungus (Batra-
chochytrium dendrobatidis) [2,32]. However, knowledge regarding the taxonomic content
of amphibian oral microbiota remains extremely limited [2,17–19]. In the present study,
we describe the bacterial communities present in the oral cavity of wild Melanophryniscus
admirabilis with the use of high-throughput sequencing for the first time

Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria (which
accounted for 95% of the oral microbial community composition), represent typical mucosal
taxa and were shared among all samples. These microbial phyla have been associated with
symbiotic roles and are commonly observed in the amphibian gastrointestinal tract [34–36].
Chang et al. [33] reported that Bacteroides, Firmicutes, and Proteobacteria were also
dominant among the intestinal microbiota of rice frogs (Fejervarya limnocharis) in natural
and farmland habitats. Moreover, according to a study performed in Canada and the
United States, over 75% of the gut microbial composition of Rana pipiens (northern leopard
frogs) included Proteobacteria and Firmicutes [37].

In oral samples of wild M. admirabilis, Proteobacteria represented 53% of the assigned
sequence variants. Notably, the diet route constitutes an important source of organisms
in the oral and gastrointestinal tract of these animals. The presence of Proteobacteria in
oral samples may be associated with the diet of this species being arthropod-rich because
this phylum was observed as dominant in the cuticular microbiomes of ants and the gut
microbiomes of arthropods [38]. However, the predominance of this phylum may also
be associated with the ability of M. admirabilis to synthesize bioactive secondary metabo-
lites that are frequently observed in several bacteria of this phylum [39]. For example,
Janthinobacterium lividum was present in amphibian guts and inhibited the growth of lethal
amphibian fungus [40]. Additionally, antifungal activity from the genus Pseudomonas
was discovered on the skin of Rana muscosa (mountain yellow-legged frogs) and R. pipi-
ens [41,42]. In this sense, the oral microbiota of amphibians should be investigated further
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because it may be a source of compounds with antimicrobial activity that affects their
associated microbial community diversity or composition.

The oral cavity of wild M. admirabilis was dominated by the orders Burkholderiales
(Burkholderiaceae and Comamonadaceae), Enterobacteriales (Enterobacteriaceae), and
Bacteroidales (Prevotellaceae). Some microorganisms belonging to these orders coexist
with frogs in their habitat. For example, Burkholderiales was found in the skins of ter-
restrial (Rhinella marina, Litoria nasuta, and Limnodynases convexiusculus) and arboreal (L.
caerulea, L. rubella, and L. rothii) anuran species [43]. Furthermore, Burkholderiaceae and
Comamonadaceae family members have diverse ecological niches and are found in soil,
animals, fungi, and water associated with plants [44,45]. Moreover, Bacteroidales have been
reported as symbiotic bacteria essential to the digestive activity of several organisms [40].

In the present study, we observed a similar composition among microbial commu-
nities in all oral samples. Recently, Chang et al. [33] hypothesized that the composition
of gut microbiota from frogs should be governed by the endogenous gut environment,
which is shaped by the physical, physiological, and immune properties of host species,
and would be less influenced by the surrounding environment. Here, we suggest that
the similarity observed across the oral bacteria communities present in M. admirabilis
might also be governed by the endogenous oral environment (e.g., saliva [46] and the
surrounding environment) because this frog species is microendemic and has a low dietary
diversity consisting of arthropods (e.g., Formicidae, Acari, and Coleoptera) that live in this
environment [47].

Based on metagenome predictions, one of the most striking observations was xeno-
biotic degradation in the bacterial community. The communities of bacteria associated
with this pathway could suggest positive effects on toad health among populations facing
anthropogenic pollutants. Melanophryniscus admirabilis belongs to a threatened class of
vertebrates, and its observed population decline is due to a combination of different factors,
including habitat degradation and fragmentation due to agriculture as well as exposure to
contaminants stemming from these activities [12]. Nutrient enrichment from agricultural
pollution may reshape the structure of the microbiome composition of aquatic animals and
increase their vulnerability to disease [2]. One study analyzed possible alterations to the
metabolic and oxidative parameters of total homogenate in M. admirabilis tadpoles exposed
to two concentrations of commercial formulations containing sulfentrazone (Boral®500 SC)
and two concentrations containing glyphosate (Roundup® Original). Significant alterations
in metabolic and oxidative parameters were observed in groups exposed to sulfentrazone
and glyphosate herbicides. However, the tadpoles of this species are capable of moderating
potential oxidative lipid damage [13]. Thus, in light of the results of the present study, we
suggest that the associated mobilization of enzymes and a microbial community capable of
degrading xenobiotics should have a positive effect on the persistence of M. admirabilis in
this human-impacted environment. Notably, additional factors such as habitat fragmenta-
tion, UV radiation, and exposure to other pollutants have negative effects that can interact
to affect the survival of these animals. Environmental contaminants such as xenobiotics can
alter host-associated microbial communities through the displacement of native bacterial
taxa by those capable of withstanding chronic exposure to toxic compounds [48]. Ulti-
mately, improving our knowledge of amphibian microbiomes is important to numerous
fields, including species conservation, the detection and quantification of environmental
changes and stressors, and the discovery of new compounds with medical applications.

5. Conclusions

Amphibians are important components of most ecosystems and serve a critical role in
many food webs, especially in highly diverse tropical areas. Melanophryniscus admirabilis
is a critically endangered and microendemic species whose survival is directly related to
our ability to understand its ecology, identify major anthropic impacts, and act to preserve
its habitat. This work advances current knowledges of the oral microbiota of this species.
Our data support the predominance of the phylum Proteobacteria in the oral microbiota
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of M. admirabilis. No significant differences among the microbial community profile from
different samples were reported, suggesting that low diet diversity in this population may
directly influence the bacterial composition. Oral microbiota contributed to a range of
metabolic pathways, with membrane transport, amino acid metabolism, carbohydrate
metabolism, replication, and repair predicted as the most prominent categories. The re-
sults of this study highlight the potential functional profiles of the xenobiotic degradation
pathway in the oral microbiota of these toads. These communities might serve important
roles in the health and survival of this species while also serving as an essential component
of a successful conservation strategy. Therefore, our results contribute to the knowledge of
ecological aspects of M. admirabilis’s oral microbiota, which may have important implica-
tions for the conservation and management of this critically endangered species because
it occurs in a narrow range of environmental conditions and is experiencing an ongoing
reduction in habitat quality.
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average of identified order (>1%) among the eleven oral samples of wild Melanophryniscus admirabilis
(admirable red-belly toads); Table S3, Percentage and average of identified family (>1%) among
the eleven oral samples of wild Melanophryniscus admirabilis (admirable red-belly toads); Table S4,
Relative abundance of amplicon sequence variants belonging to the persistent groups in relative
KEGG Level 2 of xenobiotic/drug metabolism identified among the eleven oral samples of wild
Melanophryniscus admirabilis (admirable red-belly toads); Figure S1, Five most abundant families
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