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Transplantation of isolated germ cells from a fertile donor male into the seminiferous tubules of infertile recipients can result in
donor-derived sperm production. Therefore, this system represents a major development in the study of spermatogenesis and a
unique functional assay to determine the developmental potential and relative abundance of spermatogonial stem cells in a given
population of testis cells. The application of this method in farm animals has been the subject of an increasing number of studies,
mostly because of its potential as an alternative strategy in producing transgenic livestock with higher efficiency and less time and
capital requirement than the current methods. This paper highlights the salient recent research on germ cell transplantation in
farm animals. The emphasis is placed on the current status of the technique and examination of ways to increase its efficiency
through improved preparation of the recipient animals as well as isolation, purification, preservation, and transgenesis of the
donor germ cells.

1. Development of Male Germ Cell
Transplantation Technique in Rodents

Germ cell transplantation (GCT), also referred to as sper-
matogonial stem cell (SSC) transplantation, is a power-
ful technology first introduced in 1994 by Brinster and
colleagues. Although initially developed using a mouse
model, GCT has important applications in the study and
manipulation of spermatogenesis in many species. In this
method, testis cells obtained from a fertile donor male are
transferred into the seminiferous tubules of infertile recipient
testes where donor-derived sperm production can occur,
allowing the recipient to sire progeny [1, 2] (Figure 1). In
essence, donor SSCs deposited in the lumen of the recipient
seminiferous tubules are allowed by the Sertoli cells to
migrate to the basolateral compartment of the tubule, to
proliferate, form new colonies and initiate donor-derived
spermatogenesis [3, 4]. Following the original introduction
of GCT in mice [1, 2], the technique was also successful
among rats [5, 6]. In laboratory rodents, GCT not only
provides a unique opportunity for gaining new insight into

spermatogenesis and the biology of the stem cell niche,
but also presents a unique functional bioassay to test the
competence of putative SSCs. Furthermore, GCT also offers
a new strategy for preservation of male fertility and an
alternative approach for generation of transgenic animals
[7, 8].

2. Cross-Species Application of
Male Germ Cell Transplantation

Rather surprisingly, cross-species (xenogeneic/heterologous)
transplantation of testis cells from donor rats into recipient
mice resulted in complete rat spermatogenesis [9]. This
development sparked an interest in the idea of using the
laboratory mouse as a universal recipient model for testis
cells from different donor species. However, while hamster
testis cells transferred into recipient mouse testes also
developed complete donor-derived spermatogenesis [10],
GCT from genetically more distant donor species, including
farm animals, into mice only resulted in colonization or
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proliferation of SSCs but not in complete spermatogenesis
[11–15] (Table 1). This block in differentiation of donor
germ cells is believed to be due to the incompatibility of
donor germ cells and mouse Sertoli cells [16]. Although GCT
from nonrodent species into the mouse testis did not result
in complete spermatogenesis, it still is the only available
bioassay for detecting the colonization potential of SSCs in
a given population of donor testis cells from any species [11,
13, 17]. Interestingly, when (rather than transferring isolated
testis cells into the seminiferous tubules) small fragments
of testis tissue were transplanted under the back skin of
recipient mice, complete donor-derived spermatogenesis was
observed from a wide range of donor species, including farm
animal species [18–26].

3. Cell Transfer Techniques

The original procedures described for the transfer of donor
male germ cells into the seminiferous tubules of recipi-
ent mice could not be directly applied in farm animals.
Therefore, we used ultrasound-guided cannulation of the
centrally located rete testis [41] to infuse donor germ cells
by gravity flow which was successful in vivo for pigs and
goats [32, 33]. The procedure could be completed in 15–
30 min and resulted in filling of about half of the recipient
seminiferous tubules with donor cells. This methodology has
been successfully adapted for use in rams and bulls in vivo
[36, 40, 42]. Injection into the extratesticular rete testis using
ultrasound guidance or surgical dissection was also reported
to be applicable for use in rams [39, 43]. The success of
the rete testis injection approach was further shown through
donor-derived sperm production by the recipients [34, 44]
and birth of progeny carrying the donor characteristics [34,
40].

4. Preparation of Recipient Animals

The success of GCT between unrelated laboratory rodents
appears to depend on the availability of recipients of strain
that are genetically compatible with the donor animals, are
inherently immunodeficient, or have undergone immuno-
suppressive treatments [1, 45, 46]. Surprisingly, however,
recipient pigs, goats, sheep, and bulls with fully functional
immune systems did not reject germ cells from unrelated
donors, making the practical application of the approach
more feasible in farm animals [32–34, 39, 40].

Studies show that donor-derived spermatogenesis could
be significantly improved when the recipient’s endogenous
germ cells are suppressed or depleted [6, 47]. Unlike in lab-
oratory rodents, mutant animals with genetically impaired
spermatogenesis are not readily available for use in work with
farm animals. The azoospermic Klinefelter bull used in a
study was determined not to be a useful recipient model for
GCT [42], while limited donor-derived spermatogenesis was
observed after GCT into two boars affected by the immotile
short-tail sperm defect [37].

An alternative to the use of recipient animal models with
congenital germ cell deficiency is removal of endogenous

germ cells by cytoablative methods to facilitate further access
to, and the availability of, the stem cell niche. We and
others have achieved partial ablation of endogenous germ
cells using busulfan (a chemotherapy agent) treatment of
postnatal pigs [37, 48] and also during the in utero devel-
opment of piglets [48]. This latter approach is particularly
useful for preparation of piglets because treating a pregnant
sow will result in producing multiple potential recipients
at higher efficiency, but without the harmful health effects
observed after treating postnatal piglets [48]. Where the
facilities are available, local irradiation of testes can also be
very effective in reducing the number of endogenous germ
cells in recipient goats, rams and bulls [36, 48, 49].

For practical reasons, most researchers have used imma-
ture recipients for GCT in farm animals, while recipients
for GCT in laboratory rodents are typically adults. The use
of immature recipient testis not only facilitates access of
the transplanted donor germ cells to the tubular basolateral
compartment (because it lacks the hindering multiple layers
of germ cells), it also provides a more favorable environment
than adult testes for engraftment and expansion of donor
germ cells [50]. In our previous studies, we used immature
pig and goat recipients with no pretreatment [32–34],
resulting in ∼7% donor-derived progeny in goats [34],
while after preparation of immature recipients with testis
irradiation, the progeny rate averaged ∼8% or 10% in sheep
and goats, respectively, [27, 40]. These results may indicate
that while gradual progress in the efficiency of GCT in farm
animals is being achieved, recipient preparation of immature
recipients may not be as critical as that for adult recipients
[6, 50]. It may also be concluded that recipient preparation is
only part of the requirements for a successful GCT, and that
other aspects of the system also need to be optimized before
a higher efficiency is expected.

5. Preparation of the Donor Germ Cells

The efficiency of GCT is also highly dependent on the relative
abundance of SSCs transplanted [3, 51–53]. In the adult
testis, SSCs are a rare population, making up only∼0.02% to
0.2% of testis cells in mice and rats [54–56]. The efficiency of
colony establishment is also low, and only 1% [53] or 7–20%
of the transplanted SSCs will actually colonize the recipient
testis [3, 52, 53]. Naturally, increasing the number of SSCs in
the donor population of cells prior to GCT will have a direct
effect on the number of expected spermatogenic colonies in
recipients [51, 52, 57].

5.1. Choice of Donors. For GCT in rodents, several strategies
including the use of cryptorchid, vitamin-A deficient or Steel
(Sl) mutant mice can be used to increase the proportion
of nondifferentiated spermatogonia in the population of
donor cells [58–61]. Surgical induction of cryptorchidism in
the donor, 2-3 months prior to use in GCT, is a common
strategy resulting in elimination of a large number of
differentiated germ cells, and thereby up to 23-fold increase
in the relative number of SSCs [51]. These strategies have
not been well pursued for use in farm animal GCT, partly
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Table 1: Summary of germ cell transplantation in different donor and recipient species.

Donor-derived

Donor Recipient Colonization of SSCs Spermatocytes Spermatozoa Offspring Transgenic progeny

Mouse Mouse + + + [2] + + [1, 27, 28]

Rat Rat + + + + + [29, 30]

Rat Mouse + + + [9, 31] — —

Hamster Mouse + + + [10] — —

Rabbit Mouse + [11] — — —

Dog Mouse + [11] — — —

Pig Mouse + [13] — — —

Cattle Mouse + [13] — — —

Horse Mouse + [13] — — —

Baboon Mouse + [14] — — —

Mouse Pig − [32] − — — —

Goat Goat + [33] + + + + [34]

Cattle Cattle + [35] + + [36] — —

Cat Mouse + [12] — — —

Pig Pig + [32] + + [37] — —

Dog Dog + + + [38] — —

Sheep Sheep + + + [39, 40] + [40] —

+: positive results;: negative results.

Isolation of

germ cells

Mating or
in vitro fertilization

Allow time for
donor-derived

spermatogenesis

Recipient testis preparation
by busulfan injection

or irradiation

Transplantation
into recipient

testis

Offspring derived
from donors

Preservation of
cells by
hypothermic or
cryopreservation

Transfection
of SSC

Enrichment of

SSCs

Figure 1: A schematic representation of procedures involved in germ cell transplantation in farm animals. A single-cell suspension of
germ cells is prepared after enzymatic digestion of the donor testis for transplantation into recipient testes. Alternatively, the number of
spermatogonial stem cells (SSCs) can be enriched in the donor cells and the resultant cells can be used fresh or preserved (for short term
through hypothermic preservation or long-term by cryopreservation) and/or transfected with genes of interest before transplantation. The
recipient animal can be treated with busulfan or undergo local irradiation of the testes to reduce the number of endogenous SSCs, in
preparation for germ cell transplantation. Transplanted SSCs can form colonies of donor-derived spermatogenesis and produce sperm to
allow the recipient to sire progeny carrying the donor haplotype.
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to avoid the added complication of the procedure. On
the other hand, testes from immature donors have been a
frequent source of cells for use in farm animal GCT, because
they provide a population of cells with a naturally higher
proportion of germline stem cells than those of adults. In
the neonatal testis, gonocytes are the only type of germ
cells present, comprising 1-2% of total number of isolated
testis cells in rodents [62, 63] or ∼7% of intratubular
cells in piglets [48]. Gonocytes have germline stem cell
potential and upon transplantation into recipient testes are
able to establish complete spermatogenesis [62]. Therefore,
the neonatal/immature testis provides a logical source for
GCT, especially for farm animals.

5.2. Isolation of Donor Germ Cells. Procedures for isolation
of testis cells vary among laboratories, depending on the
target cell types and the donor species. Two-step enzymatic
digestion has been widely applied to isolate both gonocytes
and SSCs in many species. In the first digestion step, collage-
nase and hyaluronidase enzymes are usually used to largely
remove testis interstitial cells. As a second step, trypsin-
EDTA (with or without additional enzymes) is used to break
down seminiferous cords/tubules, while DNase is added to
prevent cellular aggregation [64]. Using two-step digestion
usually results in a maximum of 10% gonocytes/SSCs in the
freshly isolated testis cells [62, 63, 65–70]. As outlined above,
the proportion of SSCs can be increased using physically or
genetically modified donors [58–61].

After a systematic evaluation of several potential factors
affecting germ cell isolation, we recently developed a novel
three-step strategy (combining vortexing and digestion) to
isolate porcine testis cells with a gonocyte proportion of
∼40%, (among fresh cells and before applying enrichment
methods) [71] as compared with the conventional two-
step enzymatic digestion resulting in collection of ∼7%
gonocytes.

5.3. Enrichment/Purification of Donor Germ Cells. Depend-
ing on the donor cells, diverse strategies can be used to enrich
(but rarely purify) SSCs [72]. These strategies are generally
based on fluorophore-labeled antibody separation of testis
cells using fluorescent activated cell sorting (FACS) [51,
65, 68, 73–75], magnetic activated cell separation (MACS)
[57, 65, 75–78], forward/side scatter measurements in FACS
[51, 68, 79], density gradient centrifugation [43, 65, 67, 74,
80, 81], or differential plating [43, 65, 67, 74, 81]. Using
these approaches, SSCs have been enriched to as high as
75% in the population of donor testis cells from farm
animals [43, 65, 67, 74]. However, work on enrichment
of gonocytes, as opposed to SSCs, has been limited to a
few reports in rodents and pigs [69, 82–84]. We recently
assessed the efficiency of porcine gonocyte enrichment using
density gradient and differential plating strategies. We found
that gonocytes can be enriched to more than 80% using
either Nycodenz density gradient or differential plating (with
fibronectin and poly-D-lysine coatings), and to a purity of
more than 90% by combining the two strategies (Yang and
Honaramooz, unpublished data).

5.4. Preservation of Donor Testis Tissue and Cells. Different
from the situation for GCT in rodents, preparation of the
required high numbers of germ cells from testes of donor
farm animals for same day transplantation could be a time-
management challenge. Aside from the time needed for
collection of donor testes from farm animals, the high
volume of the tissue and presence of dense connective
tissue make the process of digestion time consuming and
often requiring the tissue or cells to be stored overnight
before GCT [32, 39, 40, 43, 74]. If the time required for
enrichment of germ cells followed by their transgenesis is
added, the preparation time could be longer, and the need
for preservation of the tissue/cells is even greater.

Cryopreservation of isolated germ cells allows their
storage for extended periods of time; however, not only is it
not suitable for short-term preservation, it can also damage
cells, as cryopreservation of bovine germ cells resulted in
cell survival rates of ∼50–70% [85]. We also showed the
feasibility of cryopreserving fragments of porcine testis tissue
[86, 87] resulting in a postdigestion cell survival of∼55–88%
while maintaining the in vivo developmental potential [86].

Short-term preservation of testis cells and tissue, on the
other hand, is necessary and could be more suitable for
immediate applications such as in GCT and for shipment of
cells/tissue between collaborating laboratories. Hypothermic
temperatures (above freezing point but below the body
temperature) cause a decrease in cellular metabolism rate,
oxygen demand, and energy consumption and therefore
prolong cell viability. Ice-cold storage of testis tissue for
1 or 2 days was suggested to improve donor-derived
spermatogenesis after xenografting [87, 88]. Testis tissue
stored at refrigeration temperature for 3 days maintained its
structural integrity [89], but cell viability starts to decrease
[87]. We recently showed that using proper media, isolated
cells from donor piglets could be maintained even at room
temperature for at least 24 hours and up to 6 days at
refrigeration temperature, resulting in up to 88% after-
storage cell viability, and without changing the germ cell
proportions or cell culture properties [89, 90].

5.5. Identification of Donor Cells after Transplantation. The
availability of donor models providing cells with visual
markers was critical for original development of GCT
technique in mice [1, 2], because they allowed monitoring
of the long-term fate of donor cells. Similar donor models
are not readily available for use in farm animal GCT.
Therefore, to track donor cells, researchers largely rely on
fluorescence labeling of donors cells (although only traceable
for a short period of time) [32, 39, 43] or use genetic
identification of donor-derived cells/sperm. As a proof-of-
principle study, we transplanted testis cells from transgenic
donor goats into testes of wild-type recipient goats, resulting
in production of donor-derived sperm and subsequently
transgenic progeny [34]. Microsatellite detection has also
been used to identify donor-derived sperm DNA in the
semen of recipient rams [44]. Alternatively, transplantation
of normal testis cells into recipients with genetic aberrations
such as the immotile short-tail sperm syndrome has been
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used to facilitate detection of normal pig sperm in the semen
of recipient pigs as indication of GCT success [37].

5.6. Insertion of Genes into Donor Germ Cells. All adult
stem cells have the ability to self-renew and to produce
differentiated cells; however, SSCs are unique because they
produce a lifetime supply of sperm in adults with the
potential to contribute genes to progeny. Therefore, if SSCs
are incorporated with genes of interest prior to transplan-
tation, their resultant sperm will carry the transgene in the
recipient. The desired genes for example can include those
of visual markers to facilitate GCT studies and to serve as
a step toward generating transgenic farm animals through
GCT. Methods of DNA delivery into cells include chemical,
lipofection, electroporation, and viral vectors. Compared
with nonviral methods, recombinant viral vectors generally
have very high cell transfection efficiency rates, and some are
able to integrate the transgene into the SSC genome for stable
expression. However, construction of the desired viral vectors
is more involved and their use requires a facility with a higher
biosafety level. Nonviral alternatives, on the other hand, are
relatively easy to use and pertain virtually no biosafety risk to
the operator or the public but their efficiency rates are usually
much lower.

The work in transgenesis of germ cells for farm animal
GCT is at early stages. Electroporation of bovine testis
tissue in vitro resulted in transfection of SSCs shown after
xenografting into the back of immunodeficient mice [91].
Transfection of pig germ cells was also reported after
injection of plasmids mixed with a lipofection reagent into
busulfan treated testes; however, it was unclear from the
report whether SSCs were indeed transfected [92].

In a preliminary study, we used a recombinant adenoas-
sociated virus (rAAV) containing the GFP reporter gene
and CMV promoter to transfect isolated pig testis cells in
vitro and observed GFP expression in cultured cells and
in spermatogenic colonies for several months after GCT
into recipient testes [93]. Subsequent use of rAAV vectors
carrying the GFP for transfection of goat testis cells prior
to GCT into recipient goats led to long-term expression of
GFP in recipient testes and presence of transgenic sperm
in 35% of the ejaculates. When semen from these recipient
goats was used for in vitro fertilization, 10% of embryos
were transgenic, showing germline transmission [27]. These
results indicate that transgenesis via GCT in farm animals is
a promising approach to generate transgenic animals.

6. Potential Applications of Male Germ Cell
Transplantation in Farm Animals

Although technically still at an experimental level, there are
significant potential applications for GCT in farm animals.
This includes genetic modification of farm animals through
transplantation of genetically altered male germ cells for
improving productivity traits or producing transgenic farm
animals. As such, GCT would be an alternative strategy to
the currently inefficient and costly methods of generating
transgenic farm animals [94, 95]. The development of

transgenic pigs, for instance, is of interest because of its
potential to provide tissues and organs for xenotransplan-
tation to humans and as a model for biomedical research
[96]. Genetically altered dairy goats, sheep, and cows are
also of significant economic value for the production of
biopharmaceutical proteins in their milk [95, 96]. It has
also been proposed that GCT can be used as an alternative
way to artificial insemination for dissemination of elite
sire bull genetics in extensive beef cattle grazing systems
where animal handling is a limiting factor [35, 97]. Another
important potential application of GCT is to restore fertility
by cryopreservation followed by transplantation of genetic
material from immature males (as shown for testis tissue
grafting [86]) of rare or valuable livestock breeds that die
while they are premature or from horses that undergo
early castration but display superior traits later in life.
The advantage of using SSCs for genetic dissemination or
fertility restoration is that SSCs can be harvested, cultured,
propagated, cryopreserved, or transfected and still preserve
the potential to colonize the recipient testes [1, 27, 28, 32,
34, 98–102]. Since SSCs can both self-renew and produce
a lifetime supply of sperm in adults, they have tremendous
potential in modifying the male germ line as compared with,
for example, the use of a finite amount of frozen semen from
a given donor.

7. Production of Live Progeny after
Male Germ Cell Transplantation

The birth of offspring carrying the donor haplotype after
mating of a recipient can be viewed as the most convincing
evidence for any successful GCT. In the initial report of
GCT in mice, some of the infertile recipients produced
enough donor-derived sperm to allow them to sire progeny
[1]. As summarized in Table 1, among nonrodent species,
live progeny has so far been produced following GCT in
only goats and sheep, with an efficiency of ∼7–10% [34,
40]. The field application of this new technology for farm
animals relies upon the efficient production of donor-derived
offspring in the end. Therefore, the feasibility and efficiency
of live offspring production via GCT in farm animals need to
be investigated further and improved (Figure 1).

8. Conclusions and Future Directions

In a short period of time since the first reports in 2002-
2003 [32–34, 36, 42], GCT in farm animals has shown
great potential and promising initial results. Currently the
percentage of donor-derived sperm in the semen of recipients
after GCT is rather low, but evidence indicates that the
efficiency can be improved. As we move beyond the stage
of proof-of-principle studies, it is expected that the research
in this area will focus more on improving a number of
factors related to the success rate of the technique and on
making it a viable option for downstream applications. These
improvements are especially needed for obtaining higher
numbers and purity of SSCs in the donor populations of
cells. Another area of high potential is work on increasing the
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efficiency of nonviral transfection of germ cells, particularly
if the ultimate transgenic animals are to be considered for
generating products for human consumption. There are
several advantages in pursuing farm animal transgenesis
through GCT. For instance, the time from GCT into prepu-
bertal recipient farm animals to first detection of transgenic
sperm in the ejaculate is only a few months. Therefore,
the time required to start collecting transgenic sperm may
be reduced by one generation to about one half of that
required by current methods. This time saving factor alone
can significantly reduce the maintenance cost and accelerate
the generation of a transgenic herd needed for large-scale
production.
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