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The introduction of microarray techniques to cancer research brought great expectations
for finding biomarkers that would improve patients’ treatment; however, the results of
such studies are poorly reproducible and critical analyses of these methods are rare. In
this study, we examined global gene expression in 97 ovarian cancer samples. Also, val-
idation of results by quantitative RT-PCR was performed on 30 additional ovarian cancer
samples. We carried out a number of systematic analyses in relation to several defined
clinicopathological features. The main goal of our study was to delineate the molecular
background of ovarian cancer chemoresistance and find biomarkers suitable for prediction
of patients’ prognosis. We found that histological tumor type was the major source of vari-
ability in genes expression, except for serous and undifferentiated tumors that showed
nearly identical profiles. Analysis of clinical endpoints [tumor response to chemotherapy,
overall survival, disease-free survival (DFS)] brought results that were not confirmed by
validation either on the same group or on the independent group of patients. CLASP1 was
the only gene that was found to be important for DFS in the independent group, whereas
in the preceding experiments it showed associations with other clinical endpoints and with
BRCA1 gene mutation; thus, it may be worthy of further testing. Our results confirm that
histological tumor type may be a strong confounding factor and we conclude that gene
expression studies of ovarian carcinomas should be performed on histologically homo-
geneous groups. Among the reasons of poor reproducibility of statistical results may be
the fact that despite relatively large patients’ group, in some analyses one has to com-
pare small and unequal classes of samples. In addition, arbitrarily performed division of
samples into classes compared may not always reflect their true biological diversity. And
finally, we think that clinical endpoints of the tumor probably depend on subtle changes in
many and, possibly, alternative molecular pathways, and such changes may be difficult to
demonstrate.

Keywords: epithelial ovarian cancer, gene expression profiling, oligonucleotide microarrays, tumor histology,
survival time, molecular markers, genomic medicine, CLASP1

INTRODUCTION
Since the report describing the use of microarray technique in
cancer research by Golub et al. (1), great expectations were born
concerning better cancer classification, discovery of new mol-
ecular markers and finally, individualization of patient’s treat-
ment. Disappointingly, after 15 years of research, most potential
genomic medicine tools remain at experimental stage and their
clinical validity and utility has not been established (2). Although
some new biomarkers have emerged from the microarray studies,
very few were introduced into clinical practice [e.g., Ref. (3–18);
reviewed recently in Ref. (19)]. For ovarian cancer, only one single
new biomarker, HE4 was cleared by FDA and one multi-marker
test OVA1 (Vermillion Inc.) was developed. HE4, similarly to

CA125, is accepted for monitoring and recurrence of the disease,
while OVA1 is approved for women with undefined ovarian mass,
to assess whether they should be referred to the oncology specialist.
None of these biomarkers are suitable for ovarian cancer screening.

We performed a microarray study, which was carefully designed
and based on relatively large collection of well characterized
clinical samples. Our primary goal was to dissect the molecu-
lar background of tumor chemoresistance and to find molecular
markers suitable for prediction of therapy failure as well as patient’s
outcome (prognosis). In addition, we performed a number of
systematic analyses of gene expression patterns related to sev-
eral defined clinicopathological and molecular features. However,
in most comparisons we obtained low numbers of statistically
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significant genes, majority of which were not validated by real-time
RT-PCR. Nonetheless, our results allowed for some considerations
concerning biology of ovarian cancer and brought some important
hints concerning the analysis of expression data.

MATERIALS AND METHODS
CLINICAL SAMPLES
Surgical samples of ovarian cancer were obtained during pri-
mary surgery, then snap-frozen in liquid nitrogen and stored
at −80°C. Only samples from patients without neo-adjuvant
chemotherapy were used. The tissue samples were collected at
the Maria Skłodowska-Curie Memorial Cancer Center and Insti-
tute of Oncology in Warsaw, Poland. Altogether, we analyzed 97
ovarian cancer specimens: 71 serous, 11 endometrioid, 9 clear cell,
and 6 undifferentiated [classified according to the criteria of the
World Health Organization (20)]. The tumors were graded in a
four-grade scale, according to the criteria given in Ref. (21).

The majority of clinical analyses were performed on a group
of 72 samples (68 serous and 4 undifferentiated) with complete
clinical data (Table 1). Of those, 32 patients were treated with
platinum/cyclophosphamide, while 40 patients were treated with
taxane/platinum regimen. Since it was not possible to obtain a
group uniform as to residual tumor size, we chose samples from
patients in whom the residual tumor apparently did not influence
treatment results, e.g., sensitivity to chemotherapy in a patient
with large residual tumor or progression in a patient with small
residual tumor. Detection of hereditary mutations in BRCA1 gene
was done according to Ref. (22). For external validation of the
selected genes, we used an independent set of 30 serous ovarian
cancers. Detailed criteria of evaluation of the tumors and clinical
endpoints were given previously (23).

RNA ISOLATION
Total RNA was isolated from three to five sections (20 µm thick) of
frozen tumor using RNeasy Mini Kit (Qiagen) with simultaneous
on-column DNase I digestion. RNA purity and concentration were
estimated with ND-1000 spectrophotometer (NanoDrop Tech-
nologies). RNA quality was assessed using Agilent platform: RNA
6000 Nano LabChip Kit, RNA Integrity Number software, and

the Agilent 2100 Bioanalyzer (Agilent Technologies). The sam-
ples with RIN values above 7 (full range: 0–10) were accepted for
further processing.

OLIGONUCLEOTIDE MICROARRAYS
We used HG U133 Plus 2.0 Gene Chip oligonucleotide arrays
(Affymetrix). The hybridizations were carried out as described
in Ref. (24). Briefly: total RNA (8 µg) was used for synthesis
of double stranded cDNA. Biotinylated cRNA was synthesized
with the BioArray High Yield RNA Transcript Labeling Kit (Enzo
Diagnostics). Both cDNA and cRNA were purified with Gene
Chip Sample Cleanup Module (Affymetrix). cRNA (16 µg) was
fragmented and hybridized to the microarray for 16 h at 45°C.
The microarrays were stained, washed, and subsequently scanned
with GeneChip Scanner 3000 (Affymetrix). Data were acquired
using GCOS 1.2 software (Affymetrix). The preprocessing was
performed by Robust Multi-array Analysis (RMA, Bioconductor).

REVERSE-TRANSCRIPTION AND QUANTITATIVE PCR
Half a microgram of total RNA was taken for cDNA synthesis using
Omniscript RT Kit (Qiagen), random primers (4 µM, Sigma-
Aldrich), oligo(dT) primer (1 µM, QBiogene Inc.), and RNase
inhibitor (10 U, Fermentas). The reaction was performed in 20 µl
of total volume, according to manufacturer’s protocol, using ther-
mocycler UNO II (Biometra). The cDNA was diluted 10-fold and
a 5-µl aliquot was taken for real-time PCR performed using Taq-
man 2× PCR Master Mix (Roche), Exiqon probe (100 nM), and
appropriate primers (200 nM each; Data Sheet 1 in Supplementary
Material) designed using dedicated software from the Roche web
site. The reaction was carried out using ABI PRISM7700 Sequence
Detection System (Applied Biosystems) and the following thermal
conditions: 2 min at 50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C,
1 min at 60°C, and 1 min at 72°C. The experiments were performed
in triplicates. The relative amount of cDNA was calculated using
comparative ∆C t method. ∆C t values of the samples of interest
were compared with a calibrator (RNA of known concentration
pooled from several samples). The C t values of both the calibrator
and the samples of interest were normalized to the expression of
three control genes, ATP6V1, HADHA, and UBE2D2.

Table 1 | Characteristics of the group of patients and tumor samples.

Characteristics Numbers of samples (n)

Status n Status n Status n Status n

Histology Serous 71 Endometrioid 11 Clear cell 9 Undifferentiated 6

CHT-response CR 48 PR 14 SD 3 P 7

Platinum-sensitivity Highly sensitive 12 Moderately sensitive 27 Resistant 33

FIGO stage FIGO II 3 FIGO III 59 FIGO IV 10

Tumor grade G2 9 G3 49 G4 19

Residual tumor R0 15 R1 36 R2 21

BRCA1 mutation Mutation 19 No mutation 53

R0, residual tumor less than 1 cm; R1, residual tumor between 1 and 5 cm; R2, residual tumor larger than 5 cm. Chemotherapy (CHT) response described as clinical

status of the patient after first line treatment: CR, complete response; PR, partial response; SD, stable disease; P, progression. Platinum-sensitivity: tumors were

classified as highly sensitive when DFS was >732 days, moderately sensitive when 180 > DFS > 732 and resistant when DFS <180 days.
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METHODS OF DATA ANALYSIS
Gene expression comparisons by Welch t -test were performed
using GeneSpring 7.2 software (Agilent), with non-corrected
threshold of p-value <0.001. False Discovery Rate (FDR) was
estimated by Benjamini–Hochberg algorithm. Two-way analysis
of variance (ANOVA), with random variance assumption and
global testing were carried out by procedures implemented in
BRB Array (developed by Richard Simon and Amy Peng Lam;
available on the National Cancer Institute website). Class predic-
tion procedure was carried out using support vector machines
(SVM) class prediction engine with leave-one-out cross-validation
(BRB Array Tools). Sensitivity and selectivity of classification
as well as positive predictive values (PPV) and negative predic-
tive values (NPV) were assessed. Biological significance of the
differences in gene expression pattern was analyzed using Gene
Ontology and Biocarta1 databases. Gene lists were analyzed using
GOHyperG2 and Bioconductor Package3. Three types of tests were
used for estimation of signaling pathways statistical significance:
least squares, Kolmogorov–Smirnoff, and Hotelling test. Statis-
tical significance of real-time PCR results was estimated using
non-parametric Kolmogorov–Smirnov test by SPSS 13 software
(SPSS), with two-sided p-value threshold of p < 0.05.

DATA ANALYSIS WORKFLOW
In the majority of the analyses, we used Welch test for selection
of genes with changed expression. When we compared more than
two classes, we used one-way ANOVA, while for selection of genes
in pairwise comparisons, we used post hoc Tukey test. For esti-
mation of statistical significance of each gene, two types of selec-
tion criteria were applied: uncorrected p-value <0.001 and FDR
<10%. Biological significance of gene lists obtained in consecutive
comparisons was analyzed by searching for over-represented func-
tional gene classes (according to Gene Ontology database) and
signaling pathways (Biocarta repository). With the usage of linear
discriminant analysis, we also checked whether selected gene lists
may be used for classification of samples. Global test was used to
confirm if a given gene list is statistically significant (25).

VALIDATION OF THE MICROARRAY RESULTS
First, we used qRT-PCR to compare expression level of 18 selected
genes in the tissue samples that were used for microarray exper-
iments. This set of samples was called a training set. Then, we
analyzed expression level of selected genes in samples derived
from an independent group of patients. This set of samples was
called a test set. Disease-free survival (DFS) and overall survival
(OS) were analyzed by the Kaplan–Meier method and compared
between groups using the log-rank test. Differences in charac-
teristics between groups of patients according to the quantitative
real-time PCR estimated gene expression levels were evaluated by
the χ2 test. A p-value of <0.05 was considered statistically sig-
nificant. The analyses of survival time were performed using R
Statistical Software.

1www.biocarta.com
2www.geneontology.org
3www.bioconductor.org

RESULTS
We analyzed global gene expression pattern in ovarian cancer
with respect to several defined clinicopathological and molec-
ular features of the tumor. These were: histological tumor type
and grade, FIGO (International Federation of Gynecologists and
Obstetricians) clinical stage, the volume of residual tumor left
after surgery, and a germline BRCA1 gene mutation. Among the
clinical endpoints analyzed, there were response to the first line
chemotherapy, DFS, and OS. Full lists of genes obtained in these
comparisons, the results of hierarchical clustering, as well as the
lists of over-represented gene ontology classes and signaling path-
ways characteristic for each trait are presented as supplementary
Data Sheets.

HISTOLOGICAL TYPE OF THE TUMOR
Epithelial ovarian cancers have heterogeneous histology; serous
carcinomas are the most frequent ones while endometrioid,
mucinous, clear cell, and undifferentiated tumors are relatively
rare. All analyses performed in this study by alternative bioinfor-
matic algorithms indicated that histological type of the tumor was
the strongest factor affecting global gene expression pattern. When
all four histological types were compared using one-way ANOVA,
we found 3526 probe sets with significantly changed expression
(FDR <10%; Data Sheet 2 in Supplementary Material). This dif-
ference was also significant in the global test (3651 probe sets,
p < 0.001). None of the other features analyzed were associated
with that large number of differentially expressed genes.

The annotated genes from the list obtained from ANOVA
were taken for analysis of signaling pathways. Among significantly
affected pathways were those engaged in cell cycle regulation,
apoptosis, ubiquitination and sumoylation, signaling by estrogen
receptor, GATA3, Trefoil factor, PTEN, and STAT (Data Sheet 3 in
Supplementary Material).

We also performed pairwise comparisons (post hoc class com-
parison, Tukey test) to assess how many genes are differentially
expressed between each two histological types of ovarian cancer
(Table 2). Most pronounced molecular differences were observed
between serous and clear cell tumors (625 differentially expressed
probe sets with p < 0.001 and 40 probe sets with FDR <10%).
Endometrioid and undifferentiated types were equally different
from clear cell tumors. In the comparison of endometrioid and
clear cell tumors, we observed 233 differentially expressed probe
sets, p < 0.001 (12 probe sets with FDR <10%). Comparison
of undifferentiated and clear cell tumors gave 237 probe sets,
p < 0.001 (11 probe sets with FDR <10%).

Table 2 | Pairwise comparisons of different histological types of

ovarian cancer (post hoc comparison,Tukey test).

Endometrioid Undifferentiated Serous

Clear cell 233/12 237/11 625/40

Endometrioid – 38/0 176/0

Undifferentiated – 2/0

Given in the table are the numbers of probe sets with significantly changed

expression (no. of probe sets with p < 0.001/no. of probe sets with FDR <10%).
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On the contrary, undifferentiated tumors were characterized by
almost identical gene expression pattern to serous tumors (only
two differentially expressed probe sets, p < 0.001; none of the
probe sets with FDR <10%). Also in the global test, the difference
between serous and undifferentiated tumors was insignificant (43
probe sets, p= 0.28). Taking into account this striking similarity,
we decided to merge serous and undifferentiated ovarian cancer
samples into one group and excluded clear cell and endometrioid
tumors from the subsequent analyses in order to reduce unwanted
sources of variability.

We also performed a linear discriminant analysis to check
whether we can properly classify tumor samples according to the
histological type, based on the expression level of selected genes
(3526 probe sets selected in ANOVA were used for this purpose).
Results of classification are given in Table 3. In total, we observed
only 20% of incorrectly classified samples; the best classifica-
tion rate was achieved for serous cancer (89%). Interestingly, all
undifferentiated samples were wrongly classified as serous, again
indicating that gene expression pattern of these two histological
types is very similar.

FIGO STAGE
Clinical cancer stage is one of the major prognostic factors. Ovar-
ian cancer, which is the most deadly gynecological cancer, is usually
diagnosed at an advanced stage. Our collection of samples was
typical in this respect: the majority of patients were diagnosed at
FIGO III stage. In order to analyze whether the advancement of
the disease may be reflected by the changes in gene expression pat-
tern, we compared 3 samples from patients diagnosed at stage II,
59 samples from stage III, and 10 samples from stage IV tumors
(72 tumor samples in total).

When we used one-way ANOVA for comparison of three FIGO
classes, we found 541 differentially expressed probe sets passing
criterion of p < 0.001 (538 probe sets with FDR <10%). Among
the most significant genes were FOXE 1 (Forkhead box E1), FLRT2
(Fibronectin leucine rich transmembrane protein 2), and GRK6
(G protein-coupled receptor kinase 6).

However, in the global test the difference between FIGO stages
appeared insignificant (25 probe sets, p= 0.75). Consequently,
when we used the genes selected in ANOVA for classification of
samples, the results were poor. Although 71% of samples were
properly classified, the specificity was unacceptably low in respect
to stage II and stage IV samples (Table 4).

Also, in the subsequent pairwise comparisons (Tukey test) we
found very low numbers of genes differentiating FIGO classes from
each other. There were only one gene differentiating stage II from
stage III and two genes showing changed expression between stage
II and stage IV. These were ATH1 (acid trehalase-like 1, yeast) and
AGR2 (anterior gradient homolog, Xenopus laevis) in stage II vs.
IV comparison; the latter one was also significant for stage II vs.
III difference.

For further analysis, we combined stage III and IV and com-
pared this group of samples with stage II. This comparison yielded
714 probe sets, p < 0.001 (Data Sheet 4 in Supplementary Mate-
rial) and 650 probe sets with FDR <10%. To better explore
biological differences between early and advanced tumors, we per-
formed analysis of gene ontology classes and signaling pathways

Table 3 | Classification of the tumor samples according to the

histological type using linear discriminant analysis.

Histology Sensi-

tivity

Speci-

ficity

PPV NPV No misclassified/

total no.

(% misclassified)

Clear cell 0.778 1 1 0.978 2/9 (22)

Endometrioid 0.667 0.966 0.727 0.955 4/11 (36)

Serous 0.889 0.741 0.901 0.714 8/71 (11)

Undifferentiated 0 0.892 0 0.933 6/6 (100)

All 20

PPV, positive predictive value; NPV, negative predictive value.

Table 4 | Classification of tumor samples according to FIGO stage

(linear discriminant analysis).

Stage Sensitivity Specificity PPV NPV % Properly classified

FIGO II 0 1 – 0.958

FIGO III 0.831 0.231 0.831 0.231

FIGO IV 0.2 0.823 0.154 0.864

All 71%

PPV, positive predictive value; NPV, negative predictive.

that may be affected in these two groups (Data Sheet 5 in Sup-
plementary Material). For this purpose, we used the annotated
genes present on the list of 714 probe sets (p < 0.001), differenti-
ating stage II from stage III/IV tumors. Among the most signifi-
cantly over-represented gene ontology classes were those linked to
the immunological processes, exogenous signal detection, neural
transmission, and differentiation. Signaling pathways (according
to Biocarta database), changed between early and advanced ovar-
ian cancer, were those connected with immunological response
and inflammation as well as cellular metabolism, apoptosis, PPAR,
PKC, and TNFR signaling. These results, although interesting,
must be taken with caution: possible bias could have been intro-
duced due to uneven number of samples in the groups (3 stage II
vs. 69 other samples).

GRADE
Histological tumor grade is the measure of cancer cells differenti-
ation, with the high grade being a factor indicating bad prognosis.
Among 77 analyzed tumor samples, 9 were defined as grade 2 (G2),
49 as G3, and 19 as G4. We were especially interested in defining the
molecular difference between G3 and G4 as grade 4 is nowadays
not commonly recognized, and most pathologists use the 3-grade
scale.

In one-way ANOVA, we found 327 (p < 0.001) and 152 (FDR
<10%) differentially expressed probe sets. In the global test, this
difference appeared to be significant (257 probe sets, p < 0.001).
However, in linear discriminant analysis only 55% of samples
were properly classified; such result may likely be achieved by
chance. Also, in pairwise comparisons (post hoc class comparison,
Tukey test), we found only very limited numbers of differentially
expressed genes: in G2 vs. G3 comparison – only one gene with
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p < 0.001 (10 probe sets with FDR <10%); for G2 vs. G4 and G3
vs. G4 comparisons no genes with p < 0.001 were obtained (5 and
1 probe set with FDR <10%, respectively).

These results indicate that although postulated tumor grade
4 may be distinguished histologically, it does not differ in gene
expression pattern from grade 3 tumors. Thus, we merged G3
and G4 groups and compared them against G2, using Welch test,
that yielded 411 (p < 0.001; Data Sheet 6 in Supplementary Mate-
rial) and 267 (FDR <10%) probe sets, among them there were
many uncharacterized or poorly characterized ones. Within this
gene set, most over-represented gene ontology classes were associ-
ated with hemopoiesis, amino acid metabolism, and MAP kinase
pathway (Data Sheet 7 in Supplementary Material). Among sig-
naling pathways from Biocarta database, significantly engaged in
this difference were: cdc25/chk1, pRB, src, sonic Hedgehog, G2/M
checkpoint, and “role of BRCA1, BRCA2, and ATR in cancer
susceptibility.”

CYTOREDUCTION
Usually, at the time of diagnosis, ovarian cancer spreads widely
inside peritoneal cavity. The state of the art treatment of patients
with this cancer is based on maximal possible surgical cytoreduc-
tion and adjuvant chemotherapy. The volume of residual tumor
left after surgery is one of most important prognostic factors; the
smaller is the size or volume of the residual tumor, the better for
the patient. The best prognosis is reported for patients with no
residual disease, while it is the worst for residual tumor above
5 cm in diameter. It has been already shown by Berchuck et al.
that different sizes of residual tumor (<1 and >1 cm) are linked
to different gene expression patterns (26). This might indicate that
the size of residual tumor may not only be attributable to the suc-
cessful removal of the tumor masses, but may be partially linked
to the underlying biologic properties of the cancer.

Our analysis was done using the data from 72 cancer samples
(serous and undifferentiated) for which the appropriate clinical
data were available. In 15 cases, the residual tumor had diameter
less than 1 cm (R0 group), 36 patients had tumor masses within
1–5 cm range (R1), while 21 cases had residual tumor over 5 cm in
diameter (R2). Using one-way ANOVA, we found 349 probe sets
with p < 0.001 and 63 probe sets with FDR <10%. Interestingly,
in the global test, this difference was statistically significant (187
probe sets, p < 0.001). However, in post hoc Tukey test, only a few
genes were found that differentiate the classes in pairwise com-
parisons. These were: one gene, p < 0.001 and seven genes, FDR
<10% for R0/R1 difference, zero genes, p < 0.001 and two genes,
FDR <10% for R1/R2 comparison and none for R0/R2. Thus, we
merged groups R1 and R2 and compared it against R0 (a com-
parison alike that in the study by Berchuck et al.). Two-hundred
and twelve probe sets with p < 0.001 (Data Sheet 8 in Supple-
mentary Material) but only two with FDR <10% were found
in Welch test. Only MAP3K7 gene was common in Berchuck’s
and in our analysis. Gene ontology assessment revealed functional
gene groups connected with embryo- and morphogenesis. The
analysis according to Biocarta database showed signaling pathways
related with chromatin remodeling as well as pathways regulated
by CDK5, AKT, estrogen receptor, CDC25, CHK1, pRB, Fas, TNF,
Ras, and NF-κB (Data Sheet 9 in Supplementary Material). The

list of 349 probe sets (p < 0.001) obtained in Welch test was val-
idated in linear discrimination analysis. Only 57% of the tumors
were properly classified into classes R0, R1, and R2, the result likely
obtained by chance.

RESPONSE TO CHEMOTHERAPY
Ovarian cancer usually responds well to the first line chemother-
apy and patients achieve either complete remission (CR) or partial
remission (PR). Fewer numbers of tumors respond poorly, leading
either to the stabilization of the disease [stable disease (SD)] or to
progression (P). Among 72 tumor samples of serous or undiffer-
entiated histology with sufficient clinical data, 62 were obtained
from patients with either CR or PR, as it was established prospec-
tively. These samples were classified as “chemotherapy-sensitive.”
Another 10 samples were obtained from patients with SD or
progression (P) and were classified as “chemotherapy-resistant.”
Merging of SD and P samples seemed not only biologically valid,
but was also justified by the low numbers of samples in these
groups, the factor that can cause bias in the results of microar-
ray data analysis. We found 196 differentially expressed probe
sets, p < 0.001 (9 probe sets with FDR <10%) when compar-
ing CR/PR vs. SD/P samples in Welch test (Data Sheet 10 in
Supplementary Material). Majority of the top genes were unchar-
acterized, except for SNX8 (sorting nexin 8) and FGF12 (fibroblast
growth factor 12). Gene ontology analysis (done on the anno-
tated genes present at the list of 196 probe sets with p < 0.001)
revealed only six functional classes significantly changed in this
comparison, containing genes related with neuronal development,
regulation of cell division, and WNT1 signaling (Data Sheet 11
in Supplementary Material). Analysis of signaling pathways (Bio-
carta repository) revealed only two affected pathways: “cyclins
and cell cycle regulation” and the second one concerned with
the neuronal signaling. To check whether the genes selected in
Welch test may serve for classification of chemotherapy-sensitive
vs. resistant tumors, we applied linear discrimination analysis.
Although 81% of tumor samples were properly classified, the
test showed unacceptably low specificity (10%) in respect to
chemotherapy-sensitive samples and low sensitivity in detect-
ing resistant tumors (10%). Thus, this test is without practi-
cal clinical value in respect to prediction of tumor response to
chemotherapy.

PROGNOSTIC FACTORS
Among the genes that are differentially expressed in the tumors
from patients with short and long survival times,putative prognos-
tic molecular markers may be selected. Potentially, such markers
could serve to predict patients’ prognosis and individually tailor
the therapy in order to improve treatment outcome.

OVERALL SURVIVAL
The genes related to the OS were selected using Cox-regression
model. Seventy-two tumor samples with sufficient clinical data
were analyzed, all of serous or undifferentiated histology. We
found 93 differentially expressed probe sets, p < 0.001, however,
it must be noted that they were characterized by high FDR values
(between 12 and 21%; Data Sheet 12 in Supplementary Mate-
rial). The most significant were ATRX (α-thalassemia/mental
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retardation syndrome X-linked, RAD54 homolog) and PI3KR1
(phosphoinositide-3-kinase, regulatory subunit 1). Odds ratio
(OR) estimated for twofold increase in the expression level of those
genes were: 6 for ATRX and 14.5 for PI3KR1. Several genes showed
protective effect connected with its increased expression level (OR
<1). They were, e.g., tyrosine phosphatases PTPN2 and PTPRS
(OR= 0.24 and 0.31, respectively), MRPS10 (OR= 0.22), KCNC3
(potassium voltage-gated channel, Shaw-related subfamily, mem-
ber 3; OR= 0.31), and FBXW7 (F-box and WD-40 domain protein
7; OR= 0.32).

DISEASE-FREE SURVIVAL
The Cox-regression model was also applied to select the genes asso-
ciated with DFS. We analyzed 72 tumor samples. Eighteen probe
sets were selected with p < 0.001, however, FDR values were very
poor (~85%; Data Sheet 13 in Supplementary Material). Two genes
with the best p-values and highest OR rates calculated for twofold
expression increase were: CLASP1 (cytoplasmic linker associated
protein 1) and VAV2 oncogene (OD 3.5 and 3.7, respectively).
ATRX was also present on this list (OR= 3.15). Among the genes
with protective effect was CDC42EP4 (CDC42 effector protein,
Rho GTPase binding 4; OR= 0.4).

TECHNICAL VALIDATION OF THE MICROARRAY RESULTS
To verify the microarray results, we analyzed expression of selected
genes by quantitative RT-PCR. The same RNA samples were
used for qRT-PCR as were previously analyzed in the microar-
ray experiment. Fifteen genes related with OS were chosen for
validation; two of those genes (ATRX and CLASP1) also showed
an association with DFS. Four genes were confirmed to be
significantly associated with OS (p < 0.05; see also Figure 1).
These were CLASP1 (p= 0.005), MBNL1 [Muscle blind-like
(Drosophila), p= 0.0381], SPPL2B (signal peptide peptidase-like
2B, p= 0.0271), and VAV2 oncogene (p= 0.0133), however, cor-
relation of expression of ATRX and CLASP1 with DFS was not
validated.

We also analyzed three genes associated with CHT-response,
i.e., two cyclins: CCNB1 and CCNE1 and cyclin-dependent kinase
inhibitor 2A (CDKN2A), however, none of them were positively
validated by qRT-PCR.

Using the expression data obtained by real-time RT-PCR, we
also performed few other comparisons to check, whether the genes
previously selected as related to OS/DFS and CHT-response may
be significantly correlated with other features (Table 5). We ana-
lyzed the so-called platinum-sensitivity (classified as follows: DFS

FIGURE 1 | Real-time RT-PCR validation of the genes potentially
associated with OS. First row: technical validation in the initial set of samples
(the same samples that were used for the microarray experiment). Second

row: external validation in the independent patient group. The Kaplan–Meier
analysis plot of observed overall survival for patients with ovarian cancer by
log-rank test according to real-time RT-PCR estimated gene expression.
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Table 5 |Technical validation of microarray results by real-time RT-PCR.

No. Gene Related to (in microarray analysis) Statistical significance in real-time RT-PCR validation (p-value)

OS DFS CHT-response Platinum-sensitivity BRCA1 mutation

1 AGGF OS − 0.0818 0.0293

2 ATRX OS, DFS − −

3 CCNB1 BRCA1, CHT-response 0.0431 −

4 CCNE1 CHT-response 0.0342 −

5 CCNF OS −

6 CDKN2A CHT-response −

7 CLASP1 OS, DFS 0.0050 − 0.0005 0.0349

8 CTNND2 OS −

9 MRPS10 OS − 0.0215

10 MBNL1 OS 0.0381 0.0273

11 PIK3R1 OS −

12 PRKCA OS, TP53 mutation −

13 PSCD3 OS − 0.0183 0.008

14 PTPN2 OS − 0.0248

15 SPPL2B OS 0.0271 0.0684

16 STX7 OS −

17 USP1 OS −

18 VAV2 OS, DFS 0.0133

The third column describes the feature that appeared to be significantly linked with a given gene in microarray analysis. Only statistically significant correlations

measured at the validation step are shown. Minus in brackets, i.e., (−) indicates that the given gene was negatively validated in respect to the feature which it was

related to in the microarray analysis. OS and DFS were analyzed by the Kaplan–Meier method (log-rank test). CHT-response and platinum-sensitivity were analyzed

by Monte Carlo method (Kruskal–Wallis test). Correlations with the germline BRCA1 were calculated using Mann–Whitney U test. Statistically significant correlations

are indicated in bold.

<180 days means platinum-resistant tumor; DFS >180 means
platinum-moderately sensitive one; DFS >732 days (2 years)
means high platinum-sensitivity), as well as CHT-response (mea-
sured as CR and PR vs. SD and P). In addition, we analyzed
an association of selected genes with hereditary BRCA1 muta-
tion status. There are data indicating that tumors developing in
patients with hereditary BRCA1 mutation respond better to DNA-
damaging cytostatics than sporadic cancers, and thus BRCA1
testing may be important for therapeutic decisions [e.g., Ref. (27)].

Interestingly, CLASP1, in addition to its association with OS,
showed also strong correlation with CHT-response (p= 0.0005)
as well as with BRCA1 mutation status (p= 0.0349).

Expression of three genes: AGGF (angiogenic factor with G
patch and FHA domains 1), PSCD3 (pleckstrin homology 3),
and PTPN2 (protein tyrosine phosphatase, non-receptor type 2),
which was not validated to correlate with OS, was proven to corre-
late with platinum-sensitivity. One of them (PSCD3) also showed
correlation with CHT-response. Surprisingly, in this analysis,
expression of both cyclins (CCNB1 and CCNE1, not validated
in respect to CHT-response) proved to be significantly correlated
with OS.

VALIDATION IN THE INDEPENDENT GROUP OF PATIENTS
The clinical importance of potential prognostic and predictive
molecular markers must be reproducibly seen in different groups
of patients, if the markers are to be used in practice. Thus, four
genes that were validated in respect to OS (MBNL1, SPPLB2,VAV2,

and CLASP1) were further tested in the independent set of 30
ovarian cancer samples. Disappointingly, none of these genes were
validated according to OS in the independent set of samples. How-
ever, in this experiment, CLASP1 turned out to be related to DFS
again (Figure 2).

DISCUSSION
Expression microarrays are used to analyze molecular profiles of
cancer in order to better understand the biological background
of the disease. Another aim is to find new molecular markers,
therapeutic targets, and/or new classification approaches that will
enable better treatment of patients. Our study was intended to
achieve both goals. We searched for gene expression patterns
that may characterize histological types of ovarian cancer and
are related to its histological grade, FIGO stage, response to
chemotherapy, and survival times.

From the broad spectrum of features that we analyzed in our
study, only histological type of the tumor was a factor, which
showed a very strong impact on the gene expression pattern. Inter-
estingly, there was one exception: six undifferentiated tumors that
were available for this analysis, showed practically no difference in
gene expression pattern from serous cancers. If confirmed in other
studies, this may be an indication for evaluating these two groups
together in microarray analyses.

On the contrary, the differences between serous/undifferentiated,
endometrioid, and clear cell cancers were statistically highly signif-
icant. Moreover, the gene expression signature selected in respect
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FIGURE 2 | Real-time RT-PCR validation of the CLASP1 gene in relation to
DFS. Left: technical validation in the initial set of samples (the same samples
that were used for the microarray experiment). Right: external validation in

the independent patient group. The Kaplan–Meier analysis plot of observed
DFS for patients with ovarian cancer by log-rank test according to real-time
RT-PCR estimated gene expression.

to tumor histology allowed for a very precise sample classifi-
cation, with the sensitivity and specificity not achieved in any
other comparisons. Also unsupervised analysis, performed using
the singular value decomposition (SVD) showed that histologi-
cal type of the tumor is a major source of variability in the gene
expression pattern in ovarian cancer (not shown). This large dif-
ference in gene expression pattern may be not surprising when
we take into account that histological differences are clearly man-
ifested at the morphological level and are easily distinguishable
by light microscopy. On the other hand, these results, indicating
deep molecular divergence, may support the current knowledge
that ovarian cancer has a heterogeneous histological origin (e.g.,
fallopian, endometrioid, or endocervical) (28–32).

The histology of ovarian cancer was already analyzed in many
previous microarray studies (33–40), however, it has not been
regarded as a confounding factor in gene expression analysis in
respect to other features. Conversely, different factors have been
analyzed across various histological types. This may be one of the
reasons for discrepancies and low reproducibility of the findings.
Thus, a practical conclusion may be drawn that when searching
for the genes related to other features of ovarian cancer, the analy-
ses should be carried out on histologically homogenous groups
of samples. Alternatively, the influence of the histological type on
gene expression may be controlled by multivariate approach.

Except for evaluation of histological type, no other compar-
ison gave such a huge number of statistically significant genes.
This was the reason why we decided to use less stringent criteria
for gene selection (uncorrected p-value <0.001 and FDR <10%).
Analyzing gene expression patterns in tumor samples of differ-
ent grades, we focused mostly on the difference between grade 3

and 4, as the usage of the latter grade was abandoned in ovarian
cancer diagnostics. A study performed by members of our group
showed that the recognition of grade 4 might be important from
the clinical viewpoint, since patients with grade 4 ovarian can-
cer had worse response to taxanes than to DNA-damaging agents
(23). Thus, we expected that we would find differences between
grade 3 and 4 also at the molecular level. However, samples classi-
fication was poor and in pairwise comparison we found only one
gene with significantly changed expression (FDR <10%). It was
surprising, as in ANOVA we found 152 probe sets (FDR <10%)
differentiating between three grades (G2, G3, and G4), and this
difference was also significant in the global test. In our opinion,
this discrepancy may suggest that although tumor grade is gener-
ally associated with significant changes in gene expression pattern,
the subjectively defined grades 3 and 4 may not reflect these differ-
ences. An additional factor influencing the results of this analysis
may be the small and unequal size of the groups evaluated.

The problem also occurred when analyzing gene expression
profiles in relation to FIGO stages and residual tumor size. These
features were significant in the ANOVA and global tests, but the
number of genes with different expression found in pairwise com-
parisons was low and the quality of classification was poor. The
difference between FIGO II and FIGO III/IV was statistically sig-
nificant, however, this result may be an artifact related to uneven
samples distribution in the groups being compared.

As far as the residual tumor size is concerned, poor classification
of tumor samples may be due to the fact that debulking status did
not solely depend on the biological tumor profile, but also on the
changing attitude to optimal debulking over several years during
which our material was collected. Other factors influencing the

Frontiers in Oncology | Women’s Cancer January 2014 | Volume 4 | Article 6 | 8

http://www.frontiersin.org/Women's_Cancer
http://www.frontiersin.org/Women's_Cancer/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lisowska et al. Gene expression in ovarian cancer

results might be technical issues, such as skills of surgeons and the
equipment available. Our samples came from mid 1990s (patients
treated with platinum–cyclophosphamide, PC), and from early
2000s (patients treated with taxane–platinum, TP). The group
treated with PC had been generally less radically operated than the
group treated with TP (23). Thus, this may be the major reason
why it was hard to obtain reliable results in gene expression analy-
sis in respect to this parameter. In addition, the arbitrarily outlined
classes (R0–2) may not reflect intrinsic biological differences.

The most important, from the clinical point of view, is the
search for molecular markers suitable for prediction of tumor
response to the therapy. In the presented analysis, we were not able
to find a gene signature that would allow for good classification
of samples sensitive and resistant to chemotherapy. It seems that
chemosensitivity/resistance, in contrast to, e.g., histological type, is
a feature that may depend on subtle molecular changes, possibly in
many alternative pathways. Such differences may be hard to detect
by the methods applied. It has been shown recently, by comparing
the data from Cancer Cell Line Encyclopedia and Cancer Genome
Project, that discrepancies in drug sensitivity testing are common
even when performed on cell lines (41). Another reason for the
failure of this analysis may be again the fact that we analyzed two
cohorts of patients treated with different CHT regimens. Probably,
different molecular pathways were engaged in tumor response to
the two regimens and this could affect the results of our analyses.
It was not advisable, however, to divide patients into two groups
according to the CHT regimen, because this would result in biased
results due to small classes of samples.

We also searched for genes that may be related to patients’
prognosis, i.e., DFS and OS. Only 4 out of 15 genes, selected in
microarray analysis as associated with OS, were positively vali-
dated by qRT-PCR, and none were validated for DFS. Our further
attempts to validate these four genes in the independent set of
samples were unsuccessful. There may be several reasons for this
result. First, all genes selected in respect to survival time were of
low statistical significance in the microarray analysis. Second, con-
trarily to the initial group, the independent set of patients used for
validation was uniformly treated with TP regimen only. Therefore,
it might show results different from those obtained in the initial,
mixed group. Indeed, we observed that the initial group of patients
had different OS statistics than the test group (Table 6).

In general, the results of qRT-PCR validation were surprising.
Several genes that were selected as related to one feature appeared
to correlate with another factor(s). In our opinion, this observation
confirms that many clinical and biological features of the tumor
are difficult to define and that arbitrarily assigned groups of sam-
ples used in gene expression analyses not always reflect biologically
significant differences.

Our attempts to validate selected genes were rather unsuccess-
ful. It should be noted, however, that we performed an external
validation on the independent group of tumor samples, while
many other studies that claim finding potential biomarkers, were
confined just to the internal, technical validation [reviewed, e.g.,
in Ref. (2, 42)].

One of the most interesting genes selected in our study is
CLASP1 (cytoplasmic linker associated protein 1). It was asso-
ciated with both OS and DFS in the microarray analysis, although

Table 6 | Characteristics of the two groups of patients according to OS

statistics (days).

Group Minimal

OS

First

quartile

Median

OS

Third

quartile

Mean

OS

Max.

OS

Learning set 104 687 1131 1306 1773 4080

Test set 346 885.5 1199.0 1267.0 1468.0 4250

Learning set, ovarian cancer samples used for the microarray analysis; test set,

ovarian cancer samples from the independent group of patients, used for external

validation.

validation results were mixed. In the initial group of samples, it was
validated in respect to OS and showed significant association with
response to chemotherapy and with the presence of hereditary
BRCA1 mutation. Surprisingly, when we tried to validate CLASP1
in the independent set of samples it was statistically insignificant
in respect to OS, but it proved to be associated again with DFS.
CLASP1 is thought to play a role in the regulation of microtubule
dynamics in interphase and during cell division (43, 44). Thus,
the protein may be important in tumor cell response to taxanes.
Possibly, it may also be somehow engaged in differential response
to CHT in patients with hereditary, BRCA1 mutation-linked ovar-
ian cancer. Regardless of the inconsistent results of validation,
we think that CLASP1 may be worth further investigation as a
potential prognostic and predictive marker.

CONCLUSION
Our results confirm previous observations that histological type
of the tumor is the major source of variability in gene expres-
sion in ovarian cancer. This statement does not refer, however,
to the difference between serous and undifferentiated tumors. In
our analyses, these two histological types showed almost identical
gene expression pattern and were evaluated as one group. Tak-
ing into account large differences in molecular profile between
serous/undifferentiated vs. endometrioid vs. clear cell tumors, we
think that it is advisable to perform analyses of other clinical and
molecular features of ovarian cancer only on the histologically
homogenous groups of samples. In our opinion, the mixed results
of quantitative RT-PCR validation shed light on the general prob-
lem that is present in supervised analyses of microarray results. In
such approach, one arbitrarily defines the groups of tumors to be
compared in terms of gene expression pattern. Most likely, arbi-
trarily performed division of samples may not reflect biological
diversity of the tumors. In our opinion, this may be one of the
reasons why, the results of such studies are often inconclusive and
hard to replicate in different experimental settings.
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