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Fungal infections are estimated to be the main cause of death for more than 1.5 million
people worldwide annually. However, fungal pathogenicity has been largely neglected.
This is notably the case for pulmonary fungal infections, which are difficult to diagnose
and to treat. We are currently facing a global emergence of antifungal resistance, which
decreases the chances of survival for affected patients. New therapeutic approaches
are therefore needed to face these life-threatening fungal infections. In this review, we
will provide a general overview on respiratory fungal infections, with a focus on fungi
of the genus Aspergillus. Next, the immunological and microbiological mechanisms of
fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its
interactions with the bacterial microbiota on lung fungal infections will be presented
from an ecological perspective. Finally, we will focus on existing and future innovative
approaches for the treatment of respiratory fungal infections.

Keywords: chronic respiratory disease, microbiome, mycobiome, aspergillosis, live biotherapeutic products,
disease management, environmental interference

RESPIRATORY FUNGAL INFECTIONS

Fungal pathogens are estimated to lead to more than 1.5 million deaths every year worldwide, with
a global burden exceeding one billion (1). Despite this, the issue of fungal pathogenicity has been
largely neglected (2, 3). Over the past two decades, the prevalence of invasive fungal diseases has
increased considerably (1). This has also been acknowledged in the case of healthcare-associated
invasive fungal infection (4, 5), for which a call to action was recently issued by the scientific
community (6). Moreover, the increased prevalence of invasive fungal diseases correlates with an
increasing number of vulnerable at-risk patients, which include among others, immunosuppressed
individuals due to transplants, AIDS, cancer, corticosteroid therapies or autoimmune diseases, or
patients undergoing major surgery (1, 7).

The most prevalent human fungal pathogens are the airborne opportunists Aspergillus spp.,
Cryptococcus spp., and Pneumocystis spp., as well as the human-associated commensal and
polymorphic fungal species Candida albicans (7, 8). These fungi are responsible for more than 90%
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of all reported fungal disease-related deaths (9). The latest
estimates of the annual burden of fungal diseases amount to
more than 14 million cases for all diseases within the pulmonary
aspergillosis spectrum, over 200,000 cases of cryptococcal
meningitis, 500,000 cases of Pneumocystis jirovecii pneumonia,
700,000 cases of invasive candidiasis, and over 10 million cases
of asthma with fungal sensitisation (1, 9, 10).

In the current review, we will first look at the full spectrum
of diseases caused by fungi of the genus Aspergillus, with
a particular focus on the pathogenesis and the underlying
immunological mechanisms. Then, lung ecology, and more
specifically the interaction of the respiratory mycobiota (fungal
composition) with the bacterial microbiota and the virome
will be discussed in the context of fungal infection. Finally,
we will discuss the current therapeutic approaches, as well as
future perspectives in therapeutic strategies for the fight against
pulmonary aspergillosis.

Pulmonary Aspergillosis: A Wide
Spectrum of Diseases
Aspergillus spp. are the most frequently isolated filamentous fungi
in humans and animals (11–13). These primarily saprotrophic
fungi are widespread in the environment and can be found in
soil and decaying biomass, especially in compost piles, where
they participate in the degradation of organic matter (14–16).
Their wide environmental distribution can be explained by the
competitiveness and adaptability of the Aspergillus genus (17).
Indeed, Aspergillus spp. are able to use multiple organic substrates
and adapt to a broad range of environmental conditions (12).
These fungi show a remarkable phenotypic plasticity in their
ecology and stress-responses, which are believed to be at the basis
of the success of Aspergillus spp. as opportunistic pathogens.

Fungi of the genus Aspergillus are associated with a large
variety of clinical manifestations ranging from allergic reactions
to life-threatening invasive infections. Such infections are
generally caused by Aspergillus fumigatus, Aspergillus flavus,
Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus,
with Aspergillus fumigatus being responsible for 90% of the
reported cases (12). Respiratory infections due to Aspergillus
spp. are caused by inhalation of airborne conidia, i.e., asexual
spores (14). These fungi produce large quantities of small
airborne conidia with a size of 2–5 µm in diameter (15, 18),
whose concentration can range from 1 to 100 per m3 in
air, but can reach up to 108 per m3 in some environments
(13). A human inhales approximately 100–1,000 conidia per
day, which can reach the lung alveoli due to their small size
(15). In immunocompetent individuals, inhaled conidia are
usually efficiently cleared either by mucociliary movement or
through phagocytosis by macrophages (Figure 1) (18). However,
depending on the immunological status of the host, Aspergillus
spp. can lead to a variety of pathologies (12).

Pulmonary aspergillosis is classified into three different groups
with distinct clinical manifestations (11, 13, 19). The disease
spectrum of pulmonary aspergillosis spans from hypersensitivity
responses (asthma or allergic bronchopulmonary aspergillosis—
ABPA), to colonization (i.e., presence of the fungus without any

clinical, radiological or laboratory indications of active fungal
disease), to infection (chronic or invasive aspergillosis). Figure 2
presents a diagram showing the disease spectrum of pulmonary
aspergillosis depending on the host status.

Hypersensitivity Responses
Although other fungi can cause allergic bronchopulmonary
mycoses (ABPM), the vast majority of hypersensitivity responses
are associated to Aspergillus spp. These can range from fungal
asthma to allergic bronchopulmonary aspergillosis (ABPA), the
latter being a complex type I, III, and IV hypersensitivity response
observed notably in patients with cystic fibrosis (CF) or chronic
asthma (13). Hypersensitivity to Aspergillus is characterized by
high levels of Aspergillus-specific IgE (19). ABPA affects close to
5 million patients worldwide (1, 10).

Colonization
In immunocompetent hosts, Aspergillus spp. may colonize the
lungs without any clinical manifestations (10). In a study from
Soubani and colleagues where Aspergillus spp. were isolated from
sputum samples of 66 elderly hospitalized patients, 92% cases
were determined to be Aspergillus colonization and only 4.5%
fulfilled the criteria of invasive aspergillosis (20). Appropriate
diagnostics and close monitoring should be considered in order
to discriminate simple colonization from invasive infection
(10, 11, 19). In immunocompromised patients, prior fungal
colonization in the lower respiratory airways is considered
an important risk factor for the development of invasive
aspergillosis (10).

Chronic Pulmonary Aspergillosis
Aspergillus spp. can also cause a chronic, non-invasive form
of infection called chronic pulmonary aspergillosis (CPA).
One form of CPA is aspergilloma, which is characterized by
the proliferation of the fungus inside a pre-existing cavity,
leading to the development of a fungus ball (21). Aspergilloma
typically occurs in immunocompromised patients previously
suffering from lung pathologies such as tuberculosis, lung
abscess, cysts, or tumors (21). Another form is chronic
cavitary pulmonary aspergillosis, also called chronic necrotizing
aspergillosis or complex aspergilloma. This is an inflammatory
form of the infection characterized by the production of serum
IgG antibodies directed to Aspergillus, elevated acute-phase
inflammation markers, and the absence of pulmonary or vascular
invasion. CPA usually occurs in immunocompetent or mildly
immunosuppressed patients. CPA, including aspergilloma, is
estimated to affect more than 3 million people worldwide (1).

Invasive Pulmonary Aspergillosis
On the other side of the disease spectrum, invasive pulmonary
aspergillosis (IPA) is the most severe and life-threatening form
of Aspergillus infection occurring in immunosuppressed patients.
IPA affects more than 300,000 patients annually and its mortality
rate ranges from 30 to 80% (1, 10). IPA is characterized by
the invasion of the lung tissue by Aspergillus hyphae, which
can be followed by angioinvasion and dissemination to other
organs in patients with prolonged neutropenia (22). Other at-
risk patients include individuals who underwent hematopoietic
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FIGURE 1 | Clearance of Aspergillus conidia in the immunocompetent host. (A) Aspergillus spp. conidia are transmitted through air and every individual inhales
thousands of conidia every day. (B) In the immunocompetent host, most of the inhaled conidia are trapped by the mucus layer secreted by the tracheal and
bronchial epithelium, and are efficiently eliminated through mucociliary clearance. (C) Due to their small size, conidia can eventually reach the alveoli, where they are
phagocytosed by alveolar macrophages. Modified from Palmieri (170).

stem cell transplantation, solid-organ transplantation, prolonged
corticosteroid therapy, or those who have AIDS (11, 13, 19).
Aspergillus spp. are the most common opportunistic fungal
pathogens causing invasive pulmonary aspergillosis in lung
transplant recipients, with an incidence of 40.5 cases per 1,000
patients annually, despite the use of prophylactic antifungal
treatments (23). Invasive aspergillosis most commonly occurs
within 1 year after transplantation, with the majority of the cases
reported within the first 6 months (23, 24).

Fungal Infections in Chronic Respiratory
Diseases
In healthy individuals, innate immune responses and specifically
macrophages and ciliated bronchial epithelial cells contribute to
the efficient clearance of fungal conidia. In patients with chronic
respiratory diseases, such as chronic obstructive pulmonary
disease (COPD), asthma, and CF, these clearance mechanisms
are impaired predisposing to fungal colonization and infection.
In the following paragraphs, we will summarize the role of fungal

pathogens in specific pulmonary diseases, focusing especially on
Aspergillus spp.

Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease patients are often affected
by exacerbations due to bacterial infections. The use of long-
term inhaled corticosteroids and courses of oral steroids
to treat exacerbations can predispose to fungal colonization
and infection, as these treatments lead to impaired host
immunity (25–27). In addition, in COPD, environmental fungal
sensitization has been associated with frequent exacerbations
(28). Bafadhel and colleagues reported that positive cultures
for filamentous fungi are common in COPD, however, this
finding was not related to exacerbations (26). Moreover, A.
fumigatus sensitization was associated with poor lung function
and, interestingly, patients with a positive A. fumigatus culture
were on higher inhaled corticosteroid doses and had higher
total and percentage sputum neutrophil counts (26). Recently,
Tiew and colleagues evaluated the airway mycobiome in COPD
patients in a multicenter study and observed that COPD patients
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FIGURE 2 | Disease spectrum of pulmonary aspergillosis. This diagram summarizes the diverse pathologies caused by Aspergillus spp., due to improper elimination
of conidia by mucociliary clearance or macrophage phagocytosis following inhalation. Depending on the immune status of the host, pulmonary aspergillosis can
range from allergic reaction (hypersensitivity) to life-threatening invasive infection (severe immunosuppression). Moreover, current burden and treatment information
are indicated. ABPA, allergic bronchopulmonary aspergillosis; CPA, chronic pulmonary aspergillosis; IA, invasive aspergillosis. Modified from Palmieri (170).

with very frequent exacerbations (≥3 per year) had an increased
number of fungal interactions (29), which is suggestive of a more
complex mycobiome. Using unsupervised hierarchical clustering
of the COPD mycobiome, the authors reported two distinct
patient clusters with variable clinical outcomes: the first cluster
was characterized by Saccharomyces and increased symptoms,
whereas the second cluster was characterized by Aspergillus,
Curvularia, and Penicillium and demonstrated poorer clinical
outcomes with increased exacerbations and higher mortality (29).

Innate immune cells and macrophages in particular play
an important role in the first line of pulmonary host defense.
In COPD patients, it has been demonstrated that alveolar
macrophages exhibit reduced phagocytic capacity (30, 31).
Monocyte-derived macrophages from both smokers and COPD
patients were shown to be defective in their phagocytic and
pro-inflammatory cytokine responses following A. fumigatus
exposure (32). This impairment in macrophage function may
consequently contribute to fungal germination, dissemination
and infection, and lung damage in COPD patients. There is
an increasing interest in understanding the direct influence
of fungal colonization and infection on COPD pathogenesis
and exacerbations. However, future research should continue to
consider the indirect effects of bacterial composition alterations
on fungal community composition in the lung through
inter-kingdom interactions, and the potential consequences
for COPD patients.

All diseases within the aspergillosis spectrum can be found
in COPD patients although their prevalence differ. Tiew and
colleagues have recently reviewed this topic in depth (33).

Asthma
Genetic and environmental factors drive asthma development,
progression and risk for exacerbation. Changes in fungal
community composition in the gut are associated with
susceptibility to develop asthma in humans (34, 35), however,
causality has not been established yet. Analysis of the airway
mycobiome in asthma patients (fungal-sensitized and non-fungal
sensitized) and healthy controls indicated that both the sputum
and bronchoalveolar lavage (BAL) mycobiome was dominated
by three species: A. fumigatus, C. albicans, and Mycosphaerella
tassiana, irrespective of health status (36). Interestingly, other
fungi such as Aspergillus tubingensis, a member of the A. niger
species complex, was also prominent in the BAL fluid. Alterations
in the balance of fungi detected in the lung were found to be
associated with several disease markers, including asthma status
and duration, and inflammatory biomarkers.

Fungi can play an important role in asthma development
as fungal colonization and sensitization often take place
in early life. Moreover, fungi are predominant triggers of
asthma exacerbations. Environmental presence of fungi, such as
A. alternata, in house dust has been associated with active asthma
symptoms (37). In addition, a meta-analysis of seven studies
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revealed that indoor presence of Cladosporium, Alternaria,
Aspergillus, and Penicillium was associated with enhanced asthma
exacerbations in both children and adults (38). Descriptive
and mechanistic studies have started to reveal the influence of
alterations in the gut bacterial and fungal composition on asthma
development (discussed in section “Gut-Lung Axis”). However,
the influence of a change in the composition of the pulmonary
bacterial community due to asthma, on the susceptibility to
develop a respiratory fungal infection, and subsequent asthma
exacerbation, is currently unexplored.

Cystic Fibrosis
Cystic fibrosis is a rare autosomal recessive disorder that causes
severe damage to the lungs, digestive system and other organs.
The microenvironment in the lungs of CF patients, which is
characterized by depletion of the airway surface liquid layer
leading to impaired mucociliary clearance, is ideal for microbial
colonization (39). Bacterial pathogens, and most commonly
Pseudomonas aeruginosa, are known contributors to disease
progression and exacerbations (40). Although fungi are often
isolated from the lower airways of CF patients, the clinical
impact of their presence and especially for the development of
non-allergic fungal disease is poorly understood (41, 42). The
most frequently detected fungi in the airways of CF patients
are Aspergillus spp., notably A. fumigatus, and Candida spp.
(43). The prevalence of Aspergillus colonization was highest in
adolescents and young adults (44). Risk factors for Aspergillus
colonization in people with CF include age and the use of inhaled
corticosteroids and antibiotics (44). Moreover, aggressive use of
antibiotics have been suggested to contribute to the increase
in fungal colonization (45). This suggests that inter-kingdom
interactions may be important in containing fungal colonization
in the respiratory tract.

Interestingly, A. fumigatus colonization in people with CF
is often preceded by P. aeruginosa infection (46). In patients
infected with both A. fumigatus and P. aeruginosa, more severe
clinical outcomes have been observed when compared to those
infected with P aeruginosa alone (47). P. aeruginosa can have
both antifungal and growth stimulating effects on A. fumigatus
resulting in: (1) inhibition, (2) reciprocal antagonism, and (3)
cooperation (48), which we will briefly describe here.

The main mechanisms by which P. aeruginosa can inhibit
A. fumigatus’ growth is via the release of phenazines, including
pyocyanin, phenazine-1-carboxamide, 1-hydroxyphenazine, and
phenazine-1-carboxylic acid. Phenazines are small diffusible
quorum-sensing molecules, which easily penetrate A. fumigatus
conidia, and are considered a strong virulence factor of
P. aeruginosa (49–51). The quorum-sensing system allows
bacteria to assess cell density and to regulate physiological
activities accordingly, which consequently modulate the
pathogenicity of the microorganisms (48, 52). Moreover,
nutrient availability and competition is also involved in
this inhibitory process. As an example, P. aeruginosa and
A. fumigatus can both compete for the utilization of iron as a
central nutrient for their survival (53). Although P. aeruginosa
has a variety of fungicidal mechanism, alterations in these
fungicidal capacities have been observed in clinical isolates from

CF patients (52, 54), indicating that there can be shifts between
inhibition and cooperation. Several cooperative interactions
have been described which stimulate growth and potentially
contribute to disease progression. Phenazines can stimulate
fungal growth via increasing iron bioavailability (50). Moreover,
pyochelin, a siderophore, can be used by A. fumigatus as a
ferrochelator. Interestingly, dimethyl sulfide, a volatile organic
compound released by P. aeruginosa, can communicate with
A. fumigatus and create a positive growth environment resulting
in stimulation of fungal growth (48, 55).

The Climax-Attack model (CAM) is a theory which has
been proposed for CF a few years ago grounded on basic
ecological principles (56). In this theory it is postulated that
there are two major functional communities in CF pulmonary
disease. The attack community consists of transient viral
and microbial populations that induce strong innate immune
responses. Consequent alterations in the immune response create
a microenvironment that facilitates a climax chronic community
having a reduced growth rate and being inherently resistant
to antibiotic therapy (56, 57). Soret and colleagues provided
important information on the involvement of the mycobiome
in the CAM model in CF pulmonary exacerbations. They
inferred an inter-kingdom network by plotting bacterial genera
significantly correlated with at least one fungal genus and vice
versa. Network analysis revealed three main clusters organized
around Aspergillus, Candida and Scedosporium genera (57).
The positively correlated OTUs predicted interactions of these
three fungal genera with bacteria belonging to Capnocytophaga,
Parvimonas, Streptococcus, or Veillonella. In addition, these
interactions were assessed using in vitro co-cultures between
A. fumigatus and Streptococcus mitis or Streptococcus oralis and
confirmed that both S. mitis and S. oralis enhanced A. fumigatus
growth. Such translational studies in which principles from
ecology are used to understand disease can potentially form
the basis for the future development of therapeutic strategies to
combat exacerbations.

SARS-CoV-2 Co-infection
The current SARS-CoV-2 coronavirus pandemic created the
perfect arena for the establishment of opportunistic fungal
co-infections. The use of high dose systemic glucocorticoids,
which are widely used as an anti-inflammatory medication for
COVID-19 (58–60), together with epithelial cell damage in
the lung following SARS-CoV-2 infection, expose patients to
opportunistic fungal infections, such as COVID-19 associated
invasive pulmonary aspergillosis (CAPA) (61). To date, over
100 cases of CAPA have been reported (61). Moreover, invasive
mucormycosis, also known as “black fungus,” has been largely
reported in convalescent COVID-19, particularly in India and
other Asian countries, in patients with uncontrolled diabetes
mellitus or immunosuppression (62). The main reason for the
increase in invasive mucormycosis cases has been pointed out
to be the elevated iron levels in the serum of convalescent
COVID-19 patients (62). Complementary to dexamethasone,
Tocilizumab, an IL-6 receptor antagonist, has been widely used
to treat COVID-19 in critically ill patients (63–65). IL-6 plays a
critical role not only in the cytokine storm in severe COVID-19
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(63, 65), but also in the innate immunity against fungal pathogens
such as A. fumigatus (66). Accordingly, IL-6 inhibition has been
associated with an increase in secondary infections in COVID-
19 patients (67). A recent case report described an invasive
Aspergillus infection in a COVID-19 patient following treatment
with tocilizumab (65). Moreover, IL-6 inhibiting drugs may
predispose COVID-19 patients to invasive mucormycosis (62).

MECHANISMS OF FUNGAL
INFECTIONS: FROM INNATE IMMUNE
RESPONSE TO pH MODULATION

Innate Immunity Against Aspergillus spp.
Despite constant exposure to A. fumigatus conidia, most people
do not develop fungal disease. This suggests an efficient
clearance of the conidia by the innate immune system in
immunocompetent individuals before the adaptive immune
system is activated (18). Upon inhalation, most resting conidia
arriving in the respiratory tract are deposited against the airway
fluid, due to turbulent airflow caused by the branching pattern of
the respiratory tract (18). The trapped conidia are then removed
by the ciliary action of the respiratory epithelium, which is the
first line of defense in the lung (18, 68).

Host Recognition of Fungal Pathogen-Associated
Molecular Patterns
Due to their small size, some of the inhaled conidia can reach
the respiratory alveoli. After 4–5 h, resting conidia become
swollen, and if not cleared, germinate and form hyphae within
12–15 h after arrival into the lungs (18). The maturation of
conidia triggers a morphological change leading to the loss
of the thin hydrophobic RodA protein layer, thus exposing
the immunogenic components of the inner cell wall (69–71).
These cell wall pathogen-associated molecular patterns (PAMPs)
include polysaccharides such as β-D-glucan, mannan, chitin, and
galactomannan, all of which are recognized by different pattern
recognition receptors (PRRs) (15, 72). A. fumigatus conidia
and hyphae can be recognized by the host via both soluble
(pentraxins, complement proteins, and pulmonary collectins)
and cell-associated microbial PRRs [Toll-like receptors (TLRs)
and C-type Lectin receptors (CLRs)] (73, 74).

Pentraxins, such as pentraxin-3 (PTX3), are secreted by
various cells, including neutrophils, dendritic cells, mononuclear
phagocytes, and pulmonary epithelial cells (75). They bind
to galactomannan on A. fumigatus conidia and facilitate
recognition by phagocytes such as alveolar macrophages (76,
77). In addition, pulmonary collectins include lung surfactant
proteins A and D and serve as opsonins. They bind to
A. fumigatus conidial carbohydrate structures in a calcium-
dependent manner. Surfactant proteins A and D have also
been shown to promote the agglutination of conidia and their
binding to neutrophils and alveolar macrophages, and improve
the phagocytosis and killing of conidia by neutrophils (78).

Toll-like receptors recognition of pathogens triggers a
signaling cascade leading to the activation of transcriptional
factors such as NF-κB, which controls the expression of pro-

and anti-inflammatory cytokines and chemokines (79). The
universal adaptor molecule MyD88 has been shown to play
a significant role in the signaling of TLRs, which induce the
production of various inflammatory cytokines and reactive
oxygen species (79). TLR2 and TLR4 have been implicated
in the recognition of A. fumigatus conidia and hyphae (80).
However, available data concerning their roles in A. fumigatus-
associated immunity are conflicting. Indeed, the A. fumigatus-
associated PAMPs for TLR2 and TLR4 remain undetermined.
TLR9 has also been shown to play a role in innate immunity
against A. fumigatus by recognizing fungal unmethylated CpG
DNA (81). Dectin-1 is a CLR primary receptor that recognizes
fungal β-glucan and that is essential for the mediation of the
proinflammatory response (80), and is widely expressed on
innate immune cells including macrophages, dendritic cells, and
neutrophils (82–84). Dectin-1 can also induce the expression
of the anti-inflammatory cytokine IL-10, indicating its dual
role in modulating the inflammatory response (85). Dectin-
2, another type of CLR, has recently been shown to be
implicated in the innate immune response against A. fumigatus.
Macrophages and dendritic cells express Dectin-2 and recognizes
α-mannan in the fungal cell wall’s outer layer. Accordingly,
in response to A. fumigatus infection, alveolar macrophages
upregulate Dectin-2. Moreover, Dectin-2 was shown to mediate
an NF-κB-dependent proinflammatory response against swollen
conidia (80). Finally, DC-SIGN is expressed at the surface of
dendritic cells and some macrophages, and binds to Aspergillus
conidia via the recognition of fungal galactomannan (18).
Genetic polymorphism in the above-mentioned PRRs, as well
as in cytokines, chemokines, and immune receptors genes, has
been associated with an increased susceptibility to pulmonary
aspergillosis (86–88). For instance, the Dectin-1 variant Y238X
has been shown to impair the production of several cytokines
such as IFN-γ and IL-10 by human peripheral mononuclear cells,
leading to an increased susceptibility to invasive aspergillosis
in patients receiving hematopoietic stem cell transplantation
(HSCT) (89). Furthermore, the Asp299Gly polymorphism in
TLR-4 is highly associated with chronic cavitary pulmonary
aspergillosis (86).

Cellular Immune Responses
Clearance of Aspergillus Conidia by Innate Immune Cells
and Epithelial Cells
Alveolar macrophages (AMs), neutrophils and epithelial cells
constitute the first line of defense against inhaled A. fumigatus
conidia (18). Alveolar macrophages phagocytose and kill conidia
either via oxidative mechanisms through the generation of
reactive oxygen species (ROS), or by non-oxidative mechanisms
through phagosomal acidification (80). Corticosteroids have been
shown to impair the capacity of AMs to kill conidia (18).
Neutrophils were initially thought to kill hyphae exclusively,
however, they have also been essential in killing germinating
conidia. Neutrophils bind and phagocytose swollen conidia to
trigger respiratory burst and degranulation. While the size of the
hyphae prevents phagocytosis, direct contact with neutrophils
can induce oxidative and non-oxidative mechanisms to damage
the hyphae (18). Moreover, respiratory epithelial cells, i.e.,
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bronchial and alveolar epithelial cells, as well as endothelial
cells, have been shown to participate actively in the innate
immune response against Aspergillus fumigatus strains Af293 and
CEA10 by phagocytosing and killing conidia in vitro (18, 90–
94). Furthermore, human peripheral blood monocytes have also
been shown to internalize Aspergillus conidia and inhibit their
germination and hyphal growth (95). Interestingly, both classical
(CD14+CD16−) and non-classical monocytes (CD14+CD16+)
were found to successfully internalize conidia (96). However,
only classical monocytes were able to inhibit Aspergillus hyphal
development (96). Lastly, dendritic cells (DCs) also have well-
documented roles in the defense against A. fumigatus. Immature
DCs (iDCs) have been shown to phagocytose opsonized and non-
opsonized conidia and hyphae, both of which are recognized
through PRRs such as Dectin-1, among others. TNF-α, IL-6, IL-
12, IL-1α, and IL-1β are the central proinflammatory cytokines
produced by iDCs upon recognition of A. fumigatus conidia and
hyphae (84, 97, 98).

Innate Lymphoid Cells and Innate-Like T Cells
Innate Lymphoid Cells (ILCs), γδ T cells, and mucosal associated
invariant T cells (MAIT cells) have also been reported to
have important roles in the innate immune response against
Aspergillus spp. ILCs, and particularly type 3 ILCs (ILC3s),
are commonly found in barrier epithelial surfaces, where
they contribute to the maintenance of mucosal homeostasis,
elimination of pathogens, regulation of the inflammatory
response, as well as tissue remodeling (99). γδ T cells are innate-
like T cells displaying features of both the innate and adaptive
immune system. They are mainly involved in the immune
surveillance and defense against pathogens in various peripheral
tissues, including the lung (100). γδ T cells have been reported
to produce IL-17A following challenge with A. fumigatus conidia
(101). Moreover, mice lacking γδ T cells were more susceptible
to A. fumigatus infection (102). Together with ILC3s, γδ T cells
were shown to produce IL-22, which is critical for an efficient
clearance of A. fumigatus (101, 103). Furthermore, deficiency in
IL-22 production resulted in an impaired production of cytokines
and chemokines and an impaired clearance of A. fumigatus in
the murine lung (101, 103). MAIT cells are a subset of CD8+
unconventional T cells which are abundant in mucosal surfaces
such as lung (100), and constitute up to 10% of the total T cells
present in the peripheral blood (104). Upon activation, MAIT
cells release proinflammatory cytokines such as IFNγ, TNFα,
IL-17, and IL-22, and are able to kill pathogens through the
production and release of cytotoxic compounds such as perforin
and granzymes (100, 104). MAIT cells have been shown to
be activated by T cell receptor (TCR)-dependent mechanisms
through direct contact with antigen presenting cells such as
dendritic cells in the case of bacteria and yeasts (105, 106),
and TCR-independent mechanisms via cytokines in the case
of viruses (107, 108). However, the activation of MAIT cells
by filamentous fungal pathogens such A. fumigatus is not yet
well-understood (104). Jahreis and colleagues showed that a fast
TCR-dependent response was elicited by MAIT cells against
several Aspergillus species, including A. fumigatus, A. terreus,
and A. flavus (104). This response is characterized by the

upregulation of activation markers, such as the CD69 antigen,
and the release of cytotoxic compounds such as granzyme A
and perforin (104). Finally, Natural Killer (NK) cells have also
been shown to have a role in the innate immune defense against
A. fumigatus (18).

Adaptive Immunity
Following a fungal encounter and the initial activation of the
innate immune system, adaptive immunity is rapidly organized
to clear the pathogen efficiently. Indeed, three different CD4+
T-helper cell lineages have been shown to play crucial roles in
pulmonary aspergillosis: Th1, Th2, and Th17 (109–111). Th1
cells response is associated with protective immunity through
the secretion of the pro-inflammatory cytokines TNFα and
IFNγ, which promote antifungal activity of macrophages and
neutrophils at the site of infection (110, 112, 113). Interestingly,
Th1 cells have been shown to induce a fungus-specific Th1
immunity to an epitope of the A fumigatus cell wall glucanase
Crf1. This antigen can be presented by DCs through three
common major histocompatibility complex (MHC) class II
alleles, which induces memory Th1 cells that are cross-reactive
to C. albicans (114).

Alternatively, Th2 cells response is rather associated with non-
protective immunity through the activation of M2 macrophages
and decrease of Th1 response (110, 113). Th2 responses
are predominant in patients suffering from ABPA, and are
characterized by a decrease in IFNγ and an increase in IL-4 and
IL-10 production, which in turn promotes humoral responses,
through IgE production, and allergy (112, 113). Interestingly,
fungal PAMPs have been shown to act as adjuvants enhancing
T cell responses (115–117). This is notably the case of chitin,
which is present in the fungal cell wall, in allergic disorders such
as asthma (118–122). Dubey and colleagues showed that mice
pre-treated with chitin before being challenged with A. fumigatus
extract had high IgE levels (123).

The role of Th17 cell response is less clear. On the one hand,
Zelante and colleagues showed that production of IL-17 and IL-
23 by Th17 is not protective in a murine A. fumigatus infection
model and inhibits Th1 cells development and antifungal activity
of neutrophils in vitro (124). This was confirmed by blocking
IL-17 and IL-23 production which showed increased clearance
of A. fumigatus. This protective effect of IL-17 and IL-23 has
been confirmed in an acute aspergillosis murine model, where
mice were sensitized with A. fumigatus (125). The IL-17 and IL-
23 -producing cells were identified by the authors as eosinophils
(125). On the other hand, Jolink and collaborators showed that
IL-17 provides a protective immunity by decreasing lung fungal
burden in a murine infection model (126). Moreover, a cross-
reactive Th17 response to C. albicans and A. fumigatus has also
been described during acute ABPA in humans (127). This strong
cross-reactive response is suggested to be rather induced by
C. albicans-specific Th17 cells upon encounter with A. fumigatus,
than by naïve T cells (127).

Lastly, regulatory T (Treg) cells have also been shown to have
a protective effect in the immune response in aspergillosis. Treg
cells have been shown to regulate the inflammatory response
caused by a strong Th1 response in the early phase of A. fumigatus
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infection, as well as in the case of allergic reaction due to Th2
responses (113, 128, 129).

There is evidence of oligoclonal expansion of T cells upon
exposure to A. fumigatus. For instance, stimulation with the
allergen Asp f 1 induced an oligoclonal expansion of antigen-
specific T cells directed to this antigen in ABPA and non-ABPA
patients (130). Furthermore, the p41 epitope of the A. fumigatus
extracellular cell wall glucanase Crf1 has also been shown to
induce an antigen-specific oligoclonal T cell response in HSCT
patients (114).

Virulence Factors and Immune Evasion
in Aspergillus fumigatus
Aspergillus fumigatus has evolved several virulence factors to
escape innate immune responses. These virulence factors include
the rodlet layer, DHN-melanin, ROS detoxifying enzymes,
and toxins. Resting conidia are surrounded by a rodlet layer
composed of hydrophobic RodA proteins (18, 80, 131, 132). This
protein coat masks cell wall β-1,3-glucans, and thus prevents
the detection of conidia by the innate immune response (69–
71). Moreover, the rodlet layer was found to participate in the
adherence of conidia to the pulmonary epithelium (131). DHN-
melanin is the major melanin pigment that gives a gray-green
color to A. fumigatus (133). It protects the integrity of the genome
in conidia from ultraviolet light, as well as ROS (131, 134).
It also masks fungal PAMPs, similar to the rodlet layer, and
permits the fungus to evade phagocytosis by interfering with the
acidification of the phagolysosome notably by interfering with
intracellular Ca2+ signaling (135, 136). Moreover, A. fumigatus
possesses a number of different enzymes for detoxifying ROS
produced by host phagocytic cells such as macrophages. These
enzymes include catalases, superoxide dismutase, glutathione
transferases, fatty acid oxygenases, and efflux pumps, all of
them either detoxifying H2O2 or superoxides, or expulsing ROS
extracellularly (131, 134). Finally, A. fumigatus secretes several
toxins considered as secondary metabolites, that further enable it
to evade the immune response. These toxins are virulence factors
crucial for A. fumigatus pathogenesis. For instance, gliotoxin
has been shown to have several immunosuppressive effects,
including inhibition of phagocytosis and neutrophil-derived
ROS production, as well as proapoptotic activities (137, 138).
Moreover, gliotoxin decreases ciliary movement and angiogenesis
(131, 134, 139). All these immunosuppressive effects are thought
to result from inhibition of the NF-κB signaling pathway (140),
which as mentioned above is a key mediator of inflammatory
responses (141).

pH Modulation as a Strategy to Colonize
the Host Tissues
Environmental pH is an extremely important factor influencing
not only fungal growth and development, but also fungal
physiology (142, 143). Indeed, pH modulation has been shown
to affect fungal enzyme activity (144), and to be a crucial
element controlling fungal pathogenicity. Fungal infections are
often accompanied by a shift in pH in the surrounding host
tissue (142), through the secretion of either acids or alkali (143).

The specific roles of acidification and alkalinization in fungal
pathogenesis discussed in this review are summarized in Figure 3.

Interestingly, fungi, including Aspergillus spp. and Candida
spp. are known to produce low molecular weight organic acids
(LMWOAs) such as oxalate, citrate, malate, formate, acetate,
and succinate, which contribute to pH modulation (145, 146).
Pathogenic fungi acidify their environment in order to enhance
the activity of enzymes, as well as to damage the host tissues
(143, 147). For instance, in the case of C. albicans, acidification
through acetate excretion has been shown to allow the production
of aspartyl proteases (143, 148–150), which are major virulence
factors in this pathogen (151).

Oxalic acid is a known pathogenicity factor for the
phytopathogenic fungi Sclerotinia sclerotiorum and Botrytis
cinerea (152, 153). This acid is secreted in the host tissues and
accumulates in the form of oxalate, leading to a pH decrease.
Additionally, as oxalate is a strong chelator of divalent metallic
cations, it can sequester calcium ions, with multiple possible
structural and physiological consequences for the host (146). In
the case of plant pathogens, the formation of calcium oxalate
(CaOx) crystals in the middle lamella weakens the cell wall
structure and facilitates infection. Moreover, oxalate can inhibit
plant defenses and induce programmed cell death, which is also
beneficial for necrotrophic pathogens (17, 146, 153).

The significance of a similar production of oxalic acid or other
LMWOAs by Aspergillus spp. to infect the human lung is an
active topic of research. Indeed, although many aspects of the
ecology of Aspergillus spp. have been investigated in relation to
their pathogenicity, one aspect that has been largely ignored is its
ability to lower the pH of its environment. This may be necessary
for their capacity to colonize or cause infection, via the secretion
of oxalic acid or other low molecular weight organic acids.
Several studies have reported the presence of CaOx crystals in the
case of pulmonary aspergillosis (154–164), and the detection of
CaOx crystals has been proposed as an easy tool for differential
diagnosis (162). In most of the reported cases, oxalate deposition
was associated with A. niger infection, but some reports also
include infection caused by A. flavus or A. fumigatus (159).
Oxalic acid and oxalate crystals are thought to cause host tissue
damage (including in pulmonary blood vessels), as well as tissue
injury via iron-dependent generation of free radicals (157, 163).
A mechanical role of CaOx crystals was recently reported by Yi
et al. (164) in a case of pulmonary angioinvasive aspergillosis
in a Burkitt’s lymphoma patient with severe neutropenia, with
pathophysiological examinations showing the presence of CaOx
crystals around and within the walls of blood vessel. Aside
from mechanical damage to the host tissues, the formation of
CaOx could also have a dramatic effect on cell physiology.
Indeed, calcium is an extremely important secondary messenger
in many cell types, including those of the immune system
(165). During immune stimulation, Ca2+ mobilization from
extracellular medium or cellular compartments is essential to
increase intracellular Ca2+ concentration (166), and thus Ca2+

chelation has been shown to inhibit the immune response
in vitro (167, 168). All this suggests a potential role of oxalic
acid also in the inhibition of the immune response. Despite
these converging indications, a potential link between oxalic acid
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FIGURE 3 | Roles of acidification and alkalinization mechanisms in fungal pathogenesis. This scheme summarizes the different roles of acidification and alkalinization
mechanisms in fungal pathogenesis for the colonization of the host tissues.

production and pathogenicity for Aspergillus spp. in animals has
only been recently proposed (169, 170). Indeed, we demonstrated
that oxalic acid production by A. niger led to a strong pH
decrease, as well as calcium ion sequestration and precipitation
in the form of CaOx crystals in differentiated 3D bronchial
epithelial tissues. Moreover, we showed that the addition of the
soil oxalotrophic bacterium Cupriavidus oxalaticus inhibited the
growth of A. niger, and reverted pH values and free calcium
concentrations back to physiological levels. Furthermore, CaOx
crystals were no longer observed, suggesting the consumption
of oxalic acid by C. oxalaticus (169, 170). However, the exact
contribution of oxalic acid in the pathogenesis of A. niger still
needs to be determined. Conversely, oxalic acid production
by Candida spp. has never been confirmed experimentally,
although these fungi are listed as oxalate-producers in the Human
Metabolome Database (HMDB0002329).

Fungal pathogens are also known to manipulate the pH
of their environment through alkalinization. This is notably
the case of C. albicans. Alkalinization has been shown to
facilitate the invasion of the host tissues, and the evasion of the
immune system through neutralization of acidic macrophages
phagosomes (150). Alkalinization of the host environment occurs
through the excretion and accumulation of ammonia (NH3),
which is then converted into ammonium ions (NH4+) by the

urease (143, 150). Moreover, a lack of carbon is required for
ammonia-mediated alkalinization to occur (142). Furthermore,
C. albicans has been shown to auto-induce its switch to the hyphal
growth form through the release of ammonia (171). Coccidioides
spp. has been reported to excrete urease and ammonia to destroy
the host tissue (172, 173). St Leger and colleagues have shown that
A. fumigatus produced small amounts of ammonia in minimal
medium, leading to a pH increase and allowing the production
of active proteases (174). However, to the best of our knowledge,
the role of environmental alkalinization in the pathogenesis of
A. fumigatus has never been investigated.

LUNG ECOLOGY

Lung Homeostasis
Contrary to the gut, whose microbiota has been extensively
studied, the lungs were considered sterile for a long time (175).
However, the lung is now known to harbor a diverse microbiota
composed of bacteria, fungi and viruses (176, 177). The bacterial
composition in the lung has been studied in depth over the past
years, although many studies have remained descriptive and in-
depth mechanistic analyses are scarce. In the healthy lung, the
microbiota is dominated by the genera Prevotella, Streptococcus,
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and Veillonella (178, 179). In patients with an acute or chronic
respiratory disease the composition differs (180–183). Recent
data provide clear evidence for the role of the airway microbiota
(184), for instance, in the modulation of the host immune
response or mucus production (185).

Whereas, the influence of bacterial community composition
on lung homeostasis and disease has been a very active
area of investigation, our knowledge on the involvement
of fungi in these processes is still limited. Using fungal
ribosomal RNA gene sequencing of BAL and sputum
samples, it has been demonstrated that the mycobiota of
the healthy lung mainly consists of environmental agents
Davidiellaceae, Cladosporium, Aspergillus, Eurotium, Penicillium,
and Candida (181). Epithelial cells of inner and outer
body surfaces (e.g., intestine, skin, and lung) are the first
physical barrier which interacts with commensals and are
also important producers of antimicrobial peptides and
immune mediators that regulate immune homeostasis and
host defense (186, 187). Fungi colonize all barrier surfaces, and
investigations into the influence of fungi on host immunity
during homeostasis and disease are more advanced in the
intestine and the skin. The influence of fungal seeding and
colonization on immune maturation in the lung remains to
be investigated, and we can learn from the findings in the
intestine and skin and translate those to the lung in the future
(188–190).

Gut-Lung Axis
In-depth analysis of the microbiome has revealed profound
differences in composition between various body compartments
(191, 192). The importance of inter-organ communication
and the role of the microbiome herein has been increasingly
recognized (193). Respiratory diseases have not only been
associated with microbial dysbiosis in the lung, but also in the
gut (194). The gut microbiota composition has been shown to
influence the immune responses of distant organs, including
lungs, through the systemic dissemination of metabolites such as
short chain fatty acids (SCFAs), or through the direct seeding of
bacteria from the gut to the lungs by gastro-oesophageal reflux
and microaspiration. This crosstalk between the gut and the lung
compartment is called the gut-lung axis (195). The metabolites or
bacteria can consequently have a stimulatory effect on the local
immune cells (194–196), and ultimately impair or contribute to
the development or progression of respiratory disease.

Recent studies in which fungal composition in the gut
was altered using antifungal drugs, provide evidence for an
immunoprotective role of the gut mycobiota (197, 198). For
example, prolonged oral administration of antifungal drugs
led to an exacerbation of allergic airway inflammation in
an experimental mouse model. Antifungal treatment led
to alterations in several fungal species, with an increase in
Aspergillus, Wallemia and Epicoccum spp., and an observed
decrease in Candida spp. The enhanced allergic airway
inflammatory response was recapitulated when orally
supplementing mice with a mixture of the three enriched
fungi. This indicates that disruption of commensal fungi can
influence both local and distal immune responses. Whether oral

antifungal drugs also affect lung mycobiome composition is
currently unexplored.

Disruption of bacterial communities using antibiotics can
induce fungal dysbiosis and vice versa, suggesting an important
role for inter-kingdom interactions (197). Indeed, the bacterial
microbiome is likely to have an influence on the composition
of the fungal microbiome, either directly through bacterial-
fungal interactions or indirectly through its impact on host
immunity, thus making the lung environment more permissive
or restrictive to fungal growth (196). Interestingly, using a
gnotobiotic approach, van Tilburg and colleagues demonstrated
that the presence of gut bacteria, but not fungi, in early life
could reduce allergic airway inflammation in a respiratory OVA
sensitization and challenge model. These outcomes suggested
that homeostatic control of allergic airway inflammation is
dependent on bacterial presence, and that intestinal colonization
with fungi can skew this inflammatory response (199).

Although a link between the lung bacterial microbiota
composition and the disease outcome in patients with invasive
pulmonary aspergillosis has been recently demonstrated (200),
many knowledge gaps still exist regarding the link between
the pulmonary microbiota and Aspergillus spp. infections. For
instance, alteration of the air-blood barrier, and in particular
enhanced access to the extracellular matrix, is a known risk factor
for fungal infection (201), especially in the case of Aspergillus
(202). Therefore, investigating the role of the lung microbiota and
specific bacterial community compositions on the strengthening
of the air-blood barrier is of clinical importance. The integration
of principles from ecological theory will be key to elucidate
the bacterial—fungal interactions of the gut and pulmonary
microbiota and their human host. This will contribute to
identifying microbial groups from within the airway microbiota,
or their metabolites, for the development of therapeutic tools to
control Aspergillus (179, 196).

CURRENT THERAPEUTIC STRATEGIES

The prompt diagnosis and treatment of invasive fungal
pulmonary infections such as pulmonary aspergillosis is crucial
to prevent associated complications and fatal outcomes. As the
clinical presentations and radiological changes are non-specific,
biopsy and histopathological analysis remains the gold standard
for securing the diagnosis, but is frequently contraindicated in
clinically marginal patients. Moreover, colonization is difficult
to discriminate from a true invasive infection, and fungal blood
cultures are insensitive (10, 203, 204). Therefore, serum and BAL
biomarkers such as galactomannan and β-D-glucan, or PCR to
detect fungi are being increasingly employed to establish the
diagnosis (205).

Current available treatments for pulmonary aspergillosis are
limited. They include the use of antifungal drugs—such as
azoles, echinocandins, polyenes, and flucytosine, as primary
treatment in the case of CPA or IPA, surgical resection
in the case of patients suffering from aspergilloma and
presenting associated complications such as severe hemoptysis,
and corticosteroids in the case of ABPA, with or without
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the administration of antifungal drugs (206). The standard of
care for fungal pulmonary infection is similar across different
underlying lung diseases. Treatment would rather depend on
the clinical manifestations: for example, no treatment in the
case of colonization, corticosteroids and/or antifungal and/or
newer biologics in case of allergic sensitisation/ABPA, and
antifungal agents for invasive infection. The frequency by which
these clinical manifestations are observed would depend on the
underlying lung disease. For example, invasive infection is seen
almost exclusively in immunocompromised patients, ABPA in
patients with asthma or CF, whereas colonization can be observed
in any lung disease associated with structural damage (COPD, CF,
and non-CF bronchiectasis).

Resistance to antifungal drugs has increased dramatically in
the last decades. While antibiotic resistance has been widely
recognized in bacteria, antifungal resistance in opportunistic
fungal pathogens has not yet received sufficient consideration.
The reasons for the rise in antifungal resistance are multiple.
Indeed, there is a limited arsenal of active antifungal compounds
available on the market that are being used in both agriculture
and human health, thus fostering the emergence and rapid spread
of cross-resistance in human opportunistic fungal pathogens (2).

This is particularly well highlighted in the case of A. fumigatus
resistance to azoles. Azoles are frontline antifungal compounds
used in crop protection and in human and animal health
(207, 208). They have a fungistatic effect on yeasts such as
Candida albicans, while acting as fungicides against filamentous
molds such as A. fumigatus. Their fungicidal effect against
A. fumigatus is linked to defects in cell wall remodeling, resulting
in loss of cell wall integrity and death (209). However, despite
the fungicidal effect of triazoles in filamentous fungi, their
application in agriculture at sub-inhibitory concentrations has
led to the emergence and rapid spread of resistance among
natural populations of A. fumigatus in soil (2, 210). This
resistance to azoles may compromise the success of treatment
in human patients suffering from A. fumigatus infections (211).
Azole fungicides such as propiconazole, difenoconazole, or
tebuconazole have a very similar structure when compared to
those used in clinical practice, and their use is correlated with
the increased emergence of clinical azole-resistant A. fumigatus
strains (208). The emergence of this resistance led to the
hypothesis that the extensive use of azole fungicides in agriculture
selected for azole resistant A. fumigatus in the environment
(212). This is supported by several studies reporting the presence
of azole-resistant A. fumigatus strains in patients never treated
with azoles (16, 213). This accounts for two thirds of patients
suffering from azole-resistant aspergillosis. Resistance has been
attributed to specific mutations in the tandem repeat (TR) of
the cyp51A gene promoter region, which is involved in the
biosynthesis of ergosterol in fungi (16, 214). Clinical azole-
resistant A. fumigatus strains have also shown cross-resistance
to azoles commonly used in agriculture (16). Thus, considering
an integrated disease management approach through the One
Health initiative that brings together scientists, medical doctors,
veterinarians, and plant pathologists, is needed to reduce our
reliance on chemical control alone and to stop the spread of
resistance among opportunistic pathogens (2).

In case of pulmonary aspergillosis refractory to azoles,
echinocandins, such as caspofungin or micafungin, or polyenes,
such as amphotericin B, are used as second-line antifungal
treatments (211, 215). Echinocandins inhibit the synthesis of
the fungal cell wall component β-(1,3)-D-glucan by targeting
the β-(1,3)-glucan synthase (216). Little is known on the
resistance mechanism to echinocandins in A. fumigatus, due to its
limited use in the treatment of Aspergillosis (216). Echinocandin
resistance in A. fumigatus has been attributed to mutations
in FKS genes encoding the β-(1,3)-glucan synthase (216). The
same has been reported for C. albicans (217). Amphotericin B
(AmB) has been shown to bind to ergosterol in the fungal cell
membrane and form pores, thus disrupting the cell membrane
integrity (218, 219). AmB has also been reported to induce
endogenous production of ROS leading to oxidative stress and
fungal death (219). Although resistance to AmB is rare, A. terreus
has been shown to be intrinsically resistant (218). Moreover,
AmB resistance has also been reported in A. fumigatus (220) and
A. flavus (221). AmB resistance in A. terreus may be due to high
endogenous production of catalase (218). Finally, flucytosine
(5-FC) is a synthetic antifungal compound which, when it is
taken up in fungal cells, is first converted into 5-fluorouracil
(5-FU). 5-FU is then converted into metabolites which inhibits
DNA and RNA synthesis (222). 5-FC is rarely administered as a
monotherapy to treat fungal infections such as aspergillosis, but
rather in combination with AmB (222, 223).

ADVANCES IN THERAPEUTIC
STRATEGIES AND FUTURE
PERSPECTIVES

Current approaches used for the treatment of pulmonary
aspergillosis focus on attacking the pathogen directly via the
use of antifungal compounds. New antifungal drugs have been
recently developed against Aspergillus spp. infection. Newly
developed drugs, as well as drugs currently in development,
are listed on the Aspergillosis website.1 Several of these have
shown promising results and are being tested in phase 3 clinical
trials (224). Olorofim (F901318, ClinicalTrials.gov Identifier:
NCT05101187), from a new class of antifungal drugs called
orotomides, is highly active against Aspergillus spp. It targets the
dihydroorotate dehydrogenase (DHODH) which is involved in
the pyrimidine biosynthesis pathway. Olorofim has been shown
to inhibit conidia germination, as well as polarized hyphal growth
(225). Biafungin, or Rezafungin (CD101, ClinicalTrials.gov
Identifier: NCT04368559), is a novel echinocandin targeting the
1,3-β-D-glucan synthase. It shows high in vitro and in vivo
activity against Aspergillus spp. (224, 226). Ibrexafungerp (SCY-
078, MK-3118, ClinicalTrials.gov Identifier: NCT03059992) is a
triterpenoid antifungal also inhibiting the biosynthesis of β-(1,3)-
D-glucan (227). Ibrexafungerp has been shown to be effective
against aspergillosis in an in vivo murine model (228). Finally,
another interesting compound is ASP2397 (VL-2397), which is a
novel natural antifungal compound currently in phase 2 clinical

1https://www.aspergillus.org.uk/
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trial (ClinicalTrials.gov Identifier: NCT03327727). ASP2397 is
a cyclic hexapeptide siderophore with a similar structure than
ferrichrome, which has a high affinity for iron (224, 229).
ASP2397 showed high antifungal activity against A. fumigatus,
A. terreus and A. flavus. It was shown to inhibit conidia
germination as well as hyphal growth. Moreover, ASP2397 has
been reported to have a higher efficacy than posaconazole
in vivo in an IPA mouse model (229). However, new therapeutic
approaches are needed in order to slow down the pace of
antifungal resistance emergence in fungal pathogens.

In order to cause disease, a pathogen needs a susceptible host,
as well as suitable environmental conditions for its growth. These
three factors, i.e., pathogen, host and environment, constitute
the so-called disease triangle, which dictates the occurrence of
a disease caused by a particular pathogen in a susceptible host
in a particular environmental setting (152). The disease triangle
concept has already been used in plant disease management for
decades (230). However, one aspect that has been completely
overlooked in this original disease triangle is the presence of the
host microbiota and its role in disease development. A recent
paper from Bernardo-Cravo et al. (231) highlighted the necessity
to include the host microbiome as a fourth factor influencing
the onset of a disease, as it plays a very important role in
host immunity. Therefore, the disease triangle should become
a disease pyramid (Figure 4) and one should consider all four
factors, i.e., the host, the host microbiome, the environment, and
the pathogen, when thinking about disease management.

We recently proposed to focus on the “environment” corner
of the disease pyramid to control the growth of fungal
pathogens such as Aspergillus spp. through a process we named
“environmental interference” (169, 170). We demonstrated that
the soil oxalotrophic bacterium Cupriavidus oxalaticus is able
to control the growth of the fungal pathogen A. niger. This is
achieved by degrading the oxalic acid produced by A. niger,
preventing acidification of the local environment favorable to
infection. Therefore, C. oxalaticus inhibits the growth of the
pathogenic fungus A. niger by manipulating the pH and restoring
it back to a more neutral, physiological value. This environmental
interference principle could be potentially extended to other
important environmental factors for fungal pathogenesis, such as
iron. Indeed, iron is an essential nutrient that is generally limiting,
and thus its acquisition is crucial for pathogen’s virulence (232).
Ghio et al. (157) reported ferric iron (Fe3+) complexation at
the surface of CaOx crystals associated with A. niger infection,
resulting in lung tissue injury via the generation of oxidants.
However, fungal, as well as bacterial pathogens, are well-known
to acquire iron through the secretion of siderophores (233,
234). A. fumigatus is genetically equipped for efficient iron
acquisition, encoding four different siderophores: fusarinine
C (FsC), triacetylfusarinine C (TAFC), ferricrocin (FC), and
hydroxyferricrocin (HFC) (235, 236). Experimental data showed
that the initial phase of lung infection with A. fumigatus is
accompanied by upregulation of iron acquisition genes (237).
Loss in the ability to produce siderophores, and thus to acquire
iron, has been shown to be detrimental for A. fumigatus in vivo
(238). Moreover, interfering with the acquisition of iron by
the use of chelators inhibited the growth of A. fumigatus in

a murine cornea infection model (239). Therefore, developing
a bacterial biocontrol strategy based on the interference of
iron acquisition by Aspergillus would provide a further option
to exploit the principle of interfering with the environment.
This could be achieved either by direct competition between
Aspergillus spp. and the biocontrol bacteria, where these latter
would produce a siderophore with a higher affinity for iron than
the fungal siderophore, allowing them to acquire iron better
than the fungus, or by bacterial “cheating” through stealing
the siderophores produced by Aspergillus spp. Indeed, non-
siderophore producing bacteria are known to steal other species’
siderophores through the use of a matching receptor (240). On
the other hand, host cells internalize iron through a global process
called nutritional immunity, aimed at controlling infection
(241, 242). However, unlike for the gut microbiota (243), the
interplay between the regular members of the airway microbiota
and nutritional immunity is still largely undetermined. Indeed,
while essential metals, such as iron or zinc, have been found
to be altered in several respiratory diseases, the exact causes
and mechanistic consequences of this metal dysregulation on
the immune system and respiratory microbiota still need to
be further explored (242). Interestingly, gallium, a group IIIA
metal, has been proposed as an antifungal agent. Gallium
is used in several medical applications ranging from cancer
to calcium disorders and bone metabolism (244). Moreover,
gallium nitrate III [Ga(NO3)3] has been widely used as an
antibacterial agent against bacterial pathogens such as Klebsiella
pneumoniae, Staphylococcus aureus or Pseudomonas aeruginosa
(244). Furthermore, gallium nitrate IV has been tested in a
phase 2 clinical trial for intravenous administration as an anti-
infective agent against P. aeruginosa infection in CF patients
(ClinicalTrials.gov Identifier: NCT02354859). Gallium is known
to disrupt the iron homeostasis in bacteria and cancer cells (244).
Its antifungal inhibitory effect has recently been demonstrated
by Bastos and colleagues against azole-resistant A. fumigatus
and multidrug-resistant Candida spp. (244). Finally, it is worth
investigating whether gallium could be used to treat bacterial-
fungal polymicrobial infections, which are frequent in CF
patients (245, 246).

The role of the microbiota as a keystone factor influencing the
onset and development of a disease provides a powerful incentive
for the use of microorganisms to prevent and treat illness. These
microorganisms, also referred to as live biotherapeutic products
(LBPs), are defined by the FDA as “a biological product that
contains live organisms, such as bacteria; is applicable to the
prevention, treatment, or cure of a disease or condition of human
beings; and is not a vaccine” (247). They are not intended to reach
the systemic circulation, but rather exert their action through
interaction with resident members of the microbiota and/or by
modulating complex host-microbiota interactions. This implies
a multifactorial mode of action, which is in strong contrast
to the reductionist approach traditionally used in medical
research (247).

The large majority of LBPs correspond to single species
products. There are examples in which single species LBPs
appear to confer protection against an invading pathogen, a
phenomenon known as colonization resistance [i.e., Lactobacillus
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murinus protection against Streptococcus pneumoniae lung
colonization (248); Clostridium scindens providing colonization
resistance against Clostridium difficile (249)]. However, the use
of single-species LBPs likely fails to capture the complexity of
the multifactorial and multi-species role of the microbiota in
health homeostasis. A similar concept to colonization resistance
is widely used in soil ecology, namely that of disease-suppressive
and conducive soils (250). This concept links the composition
of the soil microbiota with the natural protection against
plant fungal infections. Mendes et al. (251) showed that a
specific assemblage of rhizospheric bacteria lead to disease-
suppression and confer protection against the root fungal
pathogen Rhizoctonia solani in sugar beet seedlings. In the same
way, a specific microbiota composition could lead to more
pathogen-suppressive communities, or conversely, dysbiosis of
the microbiota could lead to pathogen-permissive communities.

Translating soil ecological concepts into human medicine could
be of great benefit, as it would provide key insights into the
complex interspecies interaction dynamics within the human
microbiome and between itself and the host (252, 253). Such lung
microbiota-based biocontrol strategy could be applied against
aspergillosis, as lung microbiota has been suggested to prevent
the establishment of Aspergillus spp. in the lungs (196).

Additionally, LBPs have been shown to restore the epithelial
barrier and modulate the immune response. These effects have
been mostly studied in the case of administration of probiotics
in the gastrointestinal tract (254). However, their potential
beneficial effect on the airway epithelial barrier restoration, as
well as in the immune homeostasis have been suggested by
Martens et al. (254). This is notably the case of the bacterial
strains Lactobacillus plantarum MB452, Lactobacillus rhamnosus
GG and Streptococcus thermophiles ATCC 19258, among others

FIGURE 4 | Disease pyramid. The onset of a disease depends on the interplay between the host, the pathogen, the environment, and the host microbiome. Host
susceptibility mainly depends on genetic factors and immune status. The main factor for the successful colonization of the host tissues by the pathogen is its
virulence. The environment corner refers to the host lung microenvironmental parameters and include among others pH, calcium (Ca2+) and iron (Fe2+)
concentrations. Host microbiota community structure can also influence the establishment of the pathogen. Icons have been created using Biorender.com. Modified
from Palmieri (170).

BOX 1 | Key unanswered questions.
◦ What comprises a healthy lung mycobiome?
◦ What is the role of the mycobiome component of the respiratory microbiota in the colonization resistance to fungal pathogens?
◦ What is the role of commensal fungi in microbiota community stability?
◦ What is the involvement of commensal fungi in the maintenance of lung barrier homeostasis/function?
◦ How do commensal fungi contribute to pulmonary immune maturation in early life and what are the consequences of early life fungal dysbiosis for respiratory

disease development?
◦ Which mechanisms underlie the bacterial -induced predisposition to invasive pulmonary aspergillosis and other respiratory fungal infections?
◦ How does nutrient availability contribute to lung microbial community composition and consequently influence fungal infection?
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(254). Recently, the use of nasal probiotic strains such as
Lacticaseibacillus casei AMBR2 and Lactococcus lactis W136
has shown promising results. Indeed, Lacticaseibacillus casei
AMBR2 showed a beneficial effect on the epithelial barrier
function and modulation of the immune response in in vitro
Calu-3 differentiated tissue co-cultured with donor-derived nasal
microbiota and macrophage-like cells (255, 256). Cho and
colleagues reported that Lactococcus lactis W136 suppressed
the growth of patient-derived strains of the bacterial pathogen
Pseudomonas aeruginosa in in vitro co-cultures (257).

Although large efforts have been made to enhance our
understanding of respiratory fungal infections, the treatment of
fungal pathogens poses a series of unique challenges. Fungal
infections are difficult to diagnose in a timely manner, antifungal
drugs and treatments are limited, and given the emergence of
resistance to antifungal drugs there is a reduced effectiveness
of these treatments. Moreover, severe infections often occur
in subjects with significant comorbidities, including chronic
respiratory diseases and a state of immunosuppression. It is
thus imperative to develop novel treatment strategies for fungal
infections. In order to do so, we have identified several key
unanswered questions (Box 1). In view of the variability of fungal
infection outcomes, and in particular those with Aspergillus
spp., there is an urgent need to understand the conditions that
make the respiratory tract permissive to conidial germination
in susceptible individuals, and in particular, to determine
whether the composition of the airway microbiota plays a
role in this regard.

Future research in this field should focus on moving toward
the complete characterization of the lung microbial ecosystem by
shotgun metagenomic sequencing and gene expression analysis
(258). Moreover, technical advances are required to enhance our
ability to culture fungi from respiratory tract samples in the
setting of prophylactic anti-fungal treatment, and in particular
move toward building a collection of lung commensal fungal
strains which can be implemented in mechanistic studies.
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