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Abstract 

Background:  Approval of novel vaccines for COVID-19 had brought hope and expectations, but not without addi-
tional challenges. One central challenge was understanding how to appropriately prioritize the use of limited supply 
of vaccines. This study examined the efficacy of the various vaccine prioritization strategies using the vaccination 
campaign underway in the U.S.

Methods:  The study developed a granular agent-based simulation model for mimicking community spread of 
COVID-19 under various social interventions including full and partial closures, isolation and quarantine, use of face 
mask and contact tracing, and vaccination. The model was populated with parameters of disease natural history, as 
well as demographic and societal data for an urban community in the U.S. with 2.8 million residents. The model tracks 
daily numbers of infected, hospitalized, and deaths for all census age-groups. The model was calibrated using param-
eters for viral transmission and level of community circulation of individuals. Published data from the Florida COVID-19 
dashboard was used to validate the model. Vaccination strategies were compared using a hypothesis test for pairwise 
comparisons.

Results:  Three prioritization strategies were examined: a minor variant of CDC’s recommendation, an age-stratified 
strategy, and a random strategy. The impact of vaccination was also contrasted with a no vaccination scenario. The 
study showed that the campaign against COVID-19 in the U.S. using vaccines developed by Pfizer/BioNTech and Mod-
erna 1) reduced the cumulative number of infections by 10% and 2) helped the pandemic to subside below a small 
threshold of 100 daily new reported cases sooner by approximately a month when compared to no vaccination. A 
comparison of the prioritization strategies showed no significant difference in their impacts on pandemic mitigation.

Conclusions:  The vaccines for COVID-19 were developed and approved much quicker than ever before. However, as 
per our model, the impact of vaccination on reducing cumulative infections was found to be limited (10%, as noted 
above). This limited impact is due to the explosive growth of infections that occurred prior to the start of vaccination, 
which significantly reduced the susceptible pool of the population for whom infection could be prevented. Hence, 
vaccination had a limited opportunity to reduce the cumulative number of infections. Another notable observation 
from our study is that instead of adhering strictly to a sequential prioritizing strategy, focus should perhaps be on 
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Introduction
SARS-CoV-2 and resulting COVID-19 disease has been 
raging world-wide since early 2020, killing over 2.0 mil-
lion globally and nearly 450,000 in the United States by 
the end of January 2021 [1]. A significant winter swell in 
cases was underway in the U.S. between November 2020 
and January 2021 despite protective measures in place 
such as face mask usage, limited contact tracing, travel 
restrictions, social distancing practices, and partial com-
munity closures. To combat this, many promising novel 
vaccines were developed, of which two (Pfizer/BioNTech 
and Moderna) were authorized for emergency use in 
mid-December 2020 by the U.S. Food and Drug Admin-
istration (USFDA) [2]. Data from initial trials of cohorts 
greater than 30,000 people showed that these vaccines, 
given in two doses, were safe and have ~ 95% effective-
ness in preventing COVID-19 [3]. Vaccine deployment in 
the U.S. began soon after USFDA approval.

Implementing an effective vaccination campaign was 
essential to dramatically reduce the infection, hospitaliza-
tion, and death rates, but posed many unique challenges. 
Vaccine prioritization and allocation strategy was at the 
forefront of the challenges to effectively vaccinate com-
munities. Strategy was influenced by a number of key 
factors: 1) limited initial vaccine supply in the months fol-
lowing release, 2) transmission and severity of COVID-19 
varying by segment of the population, 3) vaccine approv-
als only for adults, and 4) acceptability and compliance in 
the community for two dose vaccination [4].

U.S. Centers for Disease Control (CDC) released an 
outline prioritizing healthcare personnel, first respond-
ers, persons with high risk medical conditions for 
COVID-19, and older adults > 65 years. These groups 
were given priority for vaccination in phase 1, when sup-
ply was limited. In phase 2 (supply increased to begin 
to meet demand) and phase 3 (supply was greater than 
demand), other population groups were vaccinated based 
on age and availability [5]. Vaccine allocation structures 
with basic similarities and some key differences were 
used by countries around the world. For example, after 
healthcare workers, France’s vaccine allocation scheduled 
other general workers regardless of age who they had 
determined to be at high risk of contracting and spread-
ing the virus due to contact with the general public. This 
includes retail, school, transportation, and hospitality 

staff [6]. Such differences in vaccine prioritization strate-
gies were untested at the time of the study and warranted 
modeling and examination.

The goal of this paper was to investigate the impact 
of vaccination on the pandemic via outcome measures 
such as numbers of infected, hospitalized, and deaths in 
the months following December 15, 2020 when vaccina-
tion would begin in the U.S. Two specific objectives of 
our investigation were: 1) to assess the expected impact 
of the vaccination program on mitigating COVID-19, 
and 2) to inform public health officials on the compara-
tive benefits, if any, of the different vaccine prioritiza-
tion strategies. We conducted our investigation by using 
our agent-based (AB) simulation model for COVID-19 
that was presented during the early phase of the pan-
demic [7]. For this study, we first extended calibration 
of our model till December 30, 2020 to ensure that our 
model appropriately tracked the explosive increase in 
cases that started with the onset of winter and the year-
end holiday period in 2020. We then enhanced the AB 
simulation model by adding a framework for vaccina-
tion. This included: vaccination priorities for people 
based on attributes including profession and age, use 
of two different vaccines by Pfizer/BioNTech and Mod-
erna with their contracted quantities and approximate 
delivery timelines, vaccine acceptance, transition period 
between each priority group, vaccination rate, and 
immunity growth for vaccinated starting with the first 
dose.

As in [7], we implemented our calibrated AB model, 
augmented with vaccination, for Miami-Dade County 
of the U.S. with 2.8 million population, which had been 
an epicenter of COVID-19 in the U.S. We conducted our 
investigation by implementing a number of prioritization 
strategies and obtaining the corresponding numbers of 
total infections, reported infections, hospitalizations, and 
deaths. The strategies implemented were 1) minor vari-
ant of the CDC recommended strategy, 2) age stratified 
strategy, and 3) random strategy. We also implemented 
a no vaccination case. These strategies are explained in a 
later section. We compared and contrasted the results to 
assess vaccination efficacy and relative performances of 
the priority strategies. We made a number of key obser-
vations from the results, which we believe will help pub-
lic health officials around the world to choose effective 

distributing the vaccines among all eligible as quickly as possible, after providing for the most vulnerable. As much of 
the population worldwide is yet to be vaccinated, results from this study should aid public health decision makers in 
effectively allocating their limited vaccine supplies.

Keywords:  Vaccination strategies, COVID-19, Agent-based simulation model, Vaccination policies, Vaccination 
prioritization
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vaccine prioritization strategies to mitigate the negative 
impacts of COVID-19.

Literature review
On a global scale, equitable and ethical distribution of 
vaccines for all (low, medium, and high-income) coun-
tries is an important question. As the world leader in 
promoting global health, World Health Organization 
(WHO) released an evidence-based framework for vac-
cine-specific recommendations [8]. WHO proposed 
vaccine prioritization for three potential scenarios of 
transmission: community transmission, sporadic cases 
or cluster of cases, and no cases. Each scenario has three 
stages and focuses on different risk groups. COVID-19 
pandemic resembles “community transmission.” For this, 
the first stage focused on healthcare workers and older 
adults with highest risk; second stage continued the focus 
on older adults and people with comorbidities, sociode-
mographic groups, and educational staff; and the third 
stage focused on essential workers and social/employ-
ment groups unable to physically distance themselves.

National Academy of Sciences, Engineering, and Medi-
cine (NAESM) developed a more comprehensive phased 
framework for equitable allocation of COVID-19 vac-
cine [9]. The first phase prioritized healthcare workers 
and first responders, people with high risk comorbidities, 
and older adults in crowded living conditions; second 
phase focused on K-12 school staff and child care work-
ers, essential workers, people with moderate risk comor-
bidities, people living in shelters, physically and mentally 
disabled people and staff that provide care, employment 
settings where social distancing was not possible, and 
remaining older adults; third phase prioritized young 
adults, children, and workers; and fourth phase included 
everyone else. No specific studies had been presented to 
the literature at the time of this research that had evalu-
ated the efficacy of the proposed vaccination priorities 
for mitigating COVID-19.

A number of studies can be found in the literature on 
vaccination strategies for controlling outbreaks of other 
viruses. The work presented in [10] analyzes the effect of 
both CDC guided targeted vaccination strategy as well as 
a mass vaccination strategy for seasonal Influenza out-
breaks in the U.S. The study found that a mass vaccina-
tion policy reaped the most benefits both in terms of cost 
and quality-of-life years (QALYs) lost. Authors in [11] use 
a genetic algorithm to find optimal vaccine distribution 
strategies that minimize illness and death for Influenza 
pandemics with age specific attack rates similar to the 
1957–1958 A(H2N2) Asian Influenza pandemic and the 
1968–1969 A(H3N2) Hong Kong Influenza pandemic. 
They consider coverage percentage under varying vac-
cine availability and developed an optimal vaccination 

approach that was 84% more effective than random vac-
cination. A study reported in [12] examined vaccina-
tion to prevent interpandemic Influenza for high-risk 
groups and children, and recommended concentrat-
ing on schoolchildren, who were most responsible for 
transmission, and then extended to high-risk groups. A 
compartmental model in [13] was used to develop opti-
mal strategies to reduce the morbidity and mortality of 
the H1N1 pandemic. The study found that age specific 
vaccination schedules had the most beneficial impact on 
mortality.

It can be concluded from the above review of relevant 
literature that there is no ‘one size fits all’ strategy for vac-
cination to either prevent a pandemic outbreak or miti-
gate one. Virus epidemiology and corresponding disease 
characteristics, as well as the efficacy and supply of the 
vaccine must be considered in developing an effective 
vaccination prioritization strategy. Our paper aims to 
address this need by presenting a detailed AB simulation 
modeling approach and using it to assess efficacy of vac-
cine prioritization strategies for COVID-19.

Methodology
Published COVID-19 modeling approaches were either 
data-driven models, as in [14–18], or variants of SEIR 
type compartmental models as in [19–23]. Data driven 
models are very well suited for understanding the past 
progression of a pandemic and also for estimating param-
eters characterizing virus epidemiology. However, these 
models offer limited ability to predict the future progres-
sion of a pandemic that could be dynamically evolving 
with regards to virus epidemiology, disease manifesta-
tions, and sociological conditions. Compartmental mod-
els, on the other hand, are aggregate in nature and do not 
adapt well to changing dynamics of disease transmission. 
An AB modeling approach is considered to be more suit-
able for a detailed accounting of individual attributes, 
specific disease natural history, and complex social inter-
ventions [24]. Hence we adopted the AB model approach 
to conduct our study.

The AB simulation-based methodology was particular-
ized using data for Miami Dade County of Florida, with 2.8 
million population, an epicenter for COVID-19 spread in 
the South-Eastern United States. A step by step approach 
for building such a model for another region can be found 
in [7]. The methodology began by generating the individual 
people according to the U.S. census data that gives popu-
lation attributes including age (see Table  A1 in [7]) and 
occupational distribution (see Table A4 in [7]). Thereafter, 
it generated the households based on their composition 
characterized by the number of adults and children (see 
Table A2 in [7]). The model also generated, per census data, 
schools (see Table A3 in [7]) and the workplaces and other 
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community locations (see Table A4 in [7]). Each person was 
assigned a workplace and household based on the num-
bers, sizes, and compositions of households, schools and 
workplaces derived from census data (see Tables A2, A3, 
and A4 in [7] for distribution of household, schools, and 
workplaces, respectively). A daily (hour by hour) schedule 
was assigned to every individual, chosen from a set of alter-
native schedules based on their attributes. The schedules 
vary between weekdays and weekends and also depend on 
the prevailing social intervention orders (see Table  A1 in 
Additional file 1). The methodology incorporated means to 
implement a number of intervention orders including full 
and partial closures/reopening of schools and workplaces 
[7, 25], isolation and quarantine of infected individuals and 
household members, use of face mask, contact tracing of 
asymptomatic and pre-symptomatic individuals, and vac-
cination priorities. The timeline for interventions imple-
mented in the model are summarized in Table 1.

The AB model also included a number of uncertain-
ties such as 1) time varying values of testing rates for 
symptomatic and asymptomatic, test sensitivity, and 
test result reporting delay (see Table  A9 in [7]), 2) self-
isolation compliance for symptomatic cases and quar-
antine compliance for susceptible household members 
(see Table  A10 in [7]), 3) time varying and age specific 
probabilities of ‘hospitalization among reported cases’ 
and ‘death among hospitalized’ (see Tables A2 and A3 in 
Additional file 1), 4) mask usage compliance (100% com-
pliance was assumed to reduce transmission coefficient 
by 33% [26]), 5) contact tracing level (assumed to be at 
15% based on [27, 28]), 6) percentage return to school 
(considred to be 50% based on [29]), 7) willingness to 
vaccinate (considered to be 60% based on survey results 
in [30, 31]), 8) variations in daily schedules during vari-
ous phases of social interventions (see Table A5 in [7]), 9) 
percentage of asymptomatic among infected (assumed to 
be 35% [32]), and 10) vaccine efficacy (95% [3]).

On the first day of the simulation, the model introduced 
a few initial infected cases in the community and began 
the social mixing process. Each day the model tracked the 
following for each person: 1) hourly movements and loca-
tions based on their daily schedules that depend on age, 
employment status, prevailing social intervention orders, 
and quarantine/isolation status; 2) hourly contacts with 
other susceptible and infected; 3) vaccination status and 
immunity, 4) force of infection accumulation; 5) start of 
infection; 6) visits/consultation with a doctor (if symp-
tomatic and insured); 7) testing (if infected and visited/
consulted a doctor or asymptomatic chosen for testing 
either randomly or via contact tracing); 8) test reporting 
delay; 9) disease progression (if infected); 10) hospitaliza-
tion (if infected and acutely ill); and 11) recovery or death 
(if infected). The AB model reports daily and cumulative 
values of actual infected, reported infections, hospitalized, 
and deaths, for each age category. A schematic diagram 
depicting the algorithmic sequence and parameter inputs 
for the AB simulation model is presented in Fig. 1.

For the susceptible, if vaccinated, since the exact 
immune response from vaccine was not known at the 
time of the study, we assumed a linearly increasing partial 
immunity for susceptible after they received the first dose, 
attaining full immunity after 7 days after the second dose; 
we only considered vaccines made by Pfizer/BioNTech 
and Moderna, for which the second dose was adminis-
tered 21 and 28 days after the first dose, respectively. The 
model updated the infection status of all individuals to 
account for new infections as well as disease progressions 
of infected individuals. A pseudo-code in Fig. A1 in Addi-
tional file 1 depicts the major elements and structure of the 
AB simulation program.

For the infected, we considered the following epidemi-
ological parameters: disease natural history with average 
lengths of latent, incubation, symptomatic, and recovery 
periods; distribution of infectiousness; percent asymp-
tomatic; and fatality rate. The infected people were con-
sidered to follow a disease natural history as shown in 
Fig. 2, parameters of which can be found in Table A6 of 
[7]. The model assumed that the recovered cases became 
fully immune to further COVID-19 infections. However, 
since this assumption was not fully supported by data at 
the time of the study, people recovered from COVID-
19 were also considered candidates for vaccination. The 
duration and intensity of infectiousness was guided by 
a lognormal density function (see Fig.  3). The function 
was truncated at the average length of the infectiousness 
period (which was considered to be 9.5 days). Asympto-
matic cases were assumed to follow a similar infectious-
ness intensity profile but scaled by a factor Ck, as used 
in the force of infection calculation (1) (see Table A4 in 
Additional file 1).

Table 1  Social intervention order timeline for Miami-Dade 
County

Intervention policy 
implemented at Miami-Dade 
County, Florida, U.S.

Date of implementation Day of 
Simulation

Stay at home policy March 172,020 35

Phase I reopening May 182,020 97

Phase II reopening June 52,020 115

Mandatory usage of face mask June 252,020 135

Contact tracing (assumed to 
begin)

June 302,020 140

Phase III reopening September 252,020 227

School reopening September 302,020 232

Vaccination begin day December 152,020 308
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In what follows we describe how we compute the force 
of infection and used in determining the probability of 
infection of individuals. Each susceptible was assumed 

to ingest viral particles from each infected they come in 
contact with during the day. The total amount of inges-
tion of viral particles for a susceptible i was measured 

Fig. 1  Schematic of the AB model for mimicking COVID-19 spread under social interventions and vaccination in the U.S
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as the force of infection (λi) using a modified version of 
the equation presented in [33]. The equation for force of 
infection (as presented in [33]) has three components to 
account for ingestions experienced from infected con-
tacts at home, workplace/school/indoor community 
locations, and outdoor locations. As we had not found 
evidence in the literature of any significant COVID-19 
transmissions at outdoor locations, we eliminated the 
third component and used only the first two elements of 
the equation as shown in (1). The first component of (1) 

accounts for the daily force of infection experienced by a 
susceptible i from those infected at home, and the second 
component accounts for workplace/school/indoor com-
munity locations.
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Fig. 2  Disease natural history of COVID-19 [7]

Fig. 3  Lognormal distribution function for infectiousness profile of a COVID-19 case [7]
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The definitions and values of parameters of (1) can be 
found in Table A4 in Additional file 1. The daily force of 
infection was considered to accumulate. However, it was 
assumed that if a susceptible does not gather any addi-
tional force of infection (i.e., does not come in contact 
with any infected) for two consecutive days, the cumu-
lative force of infection for the susceptible reduces to 
zero. At the end of each day, the cumulative value of λi 
was used to calculate the probability of infection for sus-
ceptible i as  1− exp−�i . This probability was used to clas-
sify a susceptible individual as infected in the simulation 
model.

As observed in [7], though it was implemented for a 
specific region, our model is quite general in its usability 
for other urban regions with similar demography, societal 
characteristics, and intervention measures. In our model, 
demographic inputs (age and household distribution, 
number of schools for various age groups, and number of 
workplaces of various types and sizes) were curated from 
both national and local census records. Social interven-
tions vary from region to region and the related param-
eters can be easily updated. Similarly, the data related to 
epidemiology of COVID-19 were unlikely to significantly 
vary from one region to another, though some adjust-
ments of these based on population demographics may 
be needed.

Model calibration
The AB model utilized a large number of parameters, 
which were demographic, epidemiological, and social 
intervention parameters. We kept almost all of the above 
parameters fixed at their respective chosen values and 
calibrated the model by changing values for only a few. 
The calibrated parameters include the transmission coef-
ficients used in calculating force of infection at home, 
work, school, and community places (βh and β j

p ) (see 
Table A4 in Additional file 1). The choice of the values of 
transmission coefficients was initially guided by [34] and 
thereafter adjusted at different points in time during the 
calibration period (until December 30, 2020). The only 
other parameters that were calibrated are the number of 
errands in the daily schedules under various interven-
tion conditions and the percentage of workers in essen-
tial (e.g., healthcare, utility services, and grocery stores) 
and non-essential (e.g., offices and restaurants) work-
places who physically reported to work during different 
intervention periods (see Table  A1 in Additional  file  1). 
Calibration of the above parameters was done so that 
the daily cumulative numbers of reported infected cases 
from the AB simulation model closely matched the val-
ues published in the Florida COVID-19 dashboard until 
December 30, 2020. Figure  4 shows the cumulative val-
ues (with 95% confidence intervals) as well as the daily 

numbers of the reported infected cases, hospitalizations, 
and deaths as obtained from the simulation model. The 
dotted lines represent the actual numbers reported in the 
Florida COVID-19 dashboard for Miami-Dade County 
[35], the trend of which was closely followed by the num-
bers obtained from our AB simulation model. The actual 
numbers reported by the Florida COVID-19 dashboard 
showed large variations, which was due to reporting 
delays.

Vaccine prioritization strategies
We used our AB model to examine the expected bene-
fits of the ongoing vaccination in the U.S. using the lim-
ited supply of two types of vaccines developed by Pfizer/
BioNTech and Moderna, which had the emergency 
approvals for distribution from the USFDA. We consid-
ered the number of vaccine doses that the two compa-
nies were contracted by the U.S. government to supply, 
which include the initial contracts for 100 million doses 
from each company and the more recent contract for an 
additional 100 million doses from Pfizer/BioNTech. This 
amounted to a total of 300 million doses, which could 
inoculate 150 million people with two required doses. 
To our knowledge, the total supply was being appor-
tioned among the states and the counties depending on 
the population. Florida had approximately 6.5% of the 
U.S. population and the Miami Dade County had 13% 
of Florida’s population. Hence, we assumed that Miami 
Dade County would receive approximately 2.54 million 
doses and would be able to vaccinate 1.27 million people 
out of the total 2.8 million population. We also assumed 
that the vaccine deliveries will occur in batches start-
ing in late December 2020 till late June 2021. Our study 
goal was to first determine the extent of reduction in the 
number of infections, hospitalizations, and deaths that 
we can expect to realize from the vaccination process in 
comparison with if no vaccines were available. Thereaf-
ter, we conducted a comparative study between three dif-
ferent vaccination priority schemes to determine if the 
outcomes (number of reported cases, hospitalized, and 
deaths) from those were statistically significant.

The priority strategies that were examined are 
broadly described here; a more complete description is 
presented in Fig. 5. In the absence of a declared time-
line for transition of eligibility from one priority group 
to the next, we assumed 30 days between transition. 
This period was extended to allow all eligible and will-
ing to be vaccinated when the phased vaccine supply 
fell short of the number of people in the eligible pri-
ority group. The first strategy that we implemented 
was a minor variant of the CDC recommended strat-
egy: Priority 1: healthcare providers and nursing home 
residents; Priority 2: first responders, educators, and 
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people of ages 75 and over; Priority 3: people of ages 65 
to 74; Priority 4: people of ages 16 to 64. The CDC rec-
ommended strategy also included in priority 3 people 
of ages 16 to 64 with specific health conditions. Since 
we did not track health conditions in our AB model, we 
limited our priority 3 to people of ages 65 and above 

only. The second strategy that we implemented was an 
age-stratified strategy: Priority 1: healthcare providers 
and nursing home residents; Priority 2: people of ages 
65 and over; Priority 3: people of ages 55 to 64; Prior-
ity 4: people of ages 45 to 54; Priority 5: people of ages 
16 to 44. The third strategy that we implemented was 

Fig. 4  Validation graphs with cumulative and daily values of infected, reported, and deaths calibrated until Dec 30, 2020
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Fig. 5  Vaccine prioritization strategies examined using AB simulation model for COVID-19 in the U.S

Fig. 6  Cumulative values of actual reported and simulated vaccinations until July 31, 2021
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a random strategy: Priority 1: healthcare providers and 
nursing home residents; Priority 2: all people of ages 16 
and over. People with prior COVID-19 history were not 
excluded and 60% of the people were considered will-
ing to vaccinate [30, 31].

Results
Figure 6 shows the plots indicating the growth over time 
in the number of actual reported vaccinations together 
with those from the three vaccination prioritization strat-
egies that we had implemented. The vaccination began 
on December 15, 2020. As evident from the figure, the 
vaccination growth of the CDC variant strategy aligned 
closely with the acutal reported numbers. In the random 
strategy, the growth in vaccination occured faster as this 
strategy opened eligibility to all ages 16 and above sooner 
than other strategies. The age dependent strategy further 

staggers the eligibility and hence the vaccination grew 
slower than the CDC variant strategy. The flattening of 
the vaccination growth curves was representative of the 
limited vaccine supply that was considered in our simula-
tion. The continued growth of the acutal reported vacci-
nations (red dotted line) was indicative of the increase in 
vaccine supplies since the time of our model implemen-
tation in December 2020.

Figure  7 shows the trends of the cumulative num-
bers of infected cases, reported cases, hospitalized, and 
deaths from the three vaccine prioritization strategies 
together with the no vaccination scenario until July 31, 
2021 (last day of simulation). Since the confidence inter-
vals for the cumulative values of the strategies overlap 
significantly, for the purpose of comparison, we chose to 
focus on the cumulative values on the last day of simula-
tion. These are presented in Table 2, which summarizes 

Fig. 7  Impact of vaccination strategies on cumulative numbers of infected, reported, hospitalized, and deaths from COVID-19 until July 31, 2021
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the values and their 95% confidence intervals. The 
table also provides the time frame when the pandemic, 
according to the model, subsides with the new reported 
cases falling below the threshold of 100. We note that, 
the reported cases presented in Fig. 7 and Table 2 were 
obtained directly from the simulation model. However, 
the hospitalization and death numbers were calculated 
by applying the time-varying and age-specific prob-
abilities (as presented in Tables A2 and A3 in Addi-
tional file 1) on the reported cases.

Since the performance of the three vaccine prior-
itization strategies, as shown in Fig.  7, appeared to 
be similar, we conducted simple pairwise statistical 
comparisons of the numbers of reported cases (from 
column 3 of Table 2) using a test of hypothesis. Accord-
ing to the test results, the variant of the CDC strategy 
produced a statistically significantly lower number of 
reported cases than no vaccination (p-value 0.0204). 
Similar results were found for age-stratified and random 
strategies when compared to no vaccination. However, 
a comparison of the reported cases among the three 
vaccine prioritization strategies showed no significant 
statistical difference (p-values near 0.4). Pairwise com-
parison of the hospitalized and deaths (in columns 4 
and 5 of Table 2) showed that the CDC variant strategy 
produced statistically significantly lower numbers com-
pared to no vaccination (p-values 0.0014 and 0.0015, 
respectively). However, similar to the reported cases, 
the three vaccination strategies did not statistically dif-
fer among themselves in terms of hospitalizations and 
deaths.

The numbers from Table 2 also indicate that the CDC 
variant strategy achieved a reduction of 9, 10, 9, and 
11% for total infected, reported cases, hospitalized, and 
deaths, respectively, compared to the outcomes with no 
vaccination. Moreover, the CDC variant resulted in the 
pandemic subsiding below a small threshold of 100 new 
reported cases about a month sooner when compared 
with no vaccination. The CDC variant strategy also 
spared 5.6% of the population form being infected. The 
above seemingly low impact of vaccination may be attrib-
uted to the explosive growth of new reported cases that 

occurred in the winter months (Nov. 2020-Mar. 2021), 
which likely had significantly reduced the pool of suscep-
tible people.

Figure  8 offers a further visual comparison of the 
impact of vaccination strategies on the percentage of 
population infected and the total number of deaths. A 
few interesting observations can be made from the fig-
ure as follows. The random strategy yielded the lowest 
percentage of population infected (even lower than CDC 
variant) as it made the age groups most active in social 
mixing eligible for vaccination sooner than all other strat-
egies. For the same reason however, the random strat-
egy yielded more deaths than CDC variant as it caused 
a delay in vaccination of the most vulernable elderly 
population who were not exclusively prioritized. Interst-
ingly, the random strategy also performed better than the 
age stratified strategy in both measures of infected and 
deaths.

Concluding remarks
We have developed a detailed agent-based simulation 
model for mimicking the spread of COVID-19 in an 
urban region (Miami-Dade County, Florida) of the U.S. 
The model was calibrated using transmission coefficients 
and parameters guiding the daily schedules of people, 
and was validated using the actual reported cases from 
the Florida COVID-19 dashboard till December 30, 2020 
(see Fig. 4). On this validated model, we incorporated the 
vaccination process that started in the U.S. on December 
15, 2020 using two different vaccines developed by Pfizer/
BioNTech and Moderna. Based on the government con-
tracts at the time of our study, we assumed availability of 
an estimated 2.54 million doses for Miami-Dade County 
to inoculate 1.27 million people (among the total popula-
tion of 2.8 million) on a 2 dose regimen.

Model results indicated that the use of the available 
vaccines reduced the spread of the virus and helped the 
pandemic to subside below a small threshold of 100 daily 
new cases by mid-May 2021, approximately a month 
sooner than if no vaccines were available. Also, the vac-
cination was shown to reduce the number of infections 
by approximately 10% compared to no vaccination, which 

Table 2  Summary of expected cumulative values (with 95% confidence intervals) on July 31, 2021 obtained by the AB model for the 
vaccine prioritization strategies

Outcome/Prioritization 
Strategy

Infected Cases Reported Cases Hospitalized Deaths Date when new 
reported cases fell 
below 100

No vaccination 1.71 M (1.66 M – 1.76 M) 732 K (695 K – 770 K) 18.7 K (18.3 K – 19.1 K) 9 K (8.8 K – 9.3 K) June 12, 2021

Minor variant of CDC 1.55 M (1.38 M – 1.73 M) 659 K (567 K – 752 K) 17 K (15.7 k – 18.3 k) 8 K (7.2 K – 8.8 K) May 17, 2021

Age stratified 1.58 M (1.43 M – 1.73 M) 672 K (589 K – 754 K) 17.6 K (16.6 k – 18.5 k) 8.5 K (7.9 k – 8.9 k) May 22, 2021

Random 1.54 M (1.32 M – 1.75 M) 649 K (538 K – 761 K) 17.3 K (15.9 K – 18.7 K) 8.4 K (7.6 K – 9.1 K) May 7, 2021
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translates to sparing 5.6% of the total population from 
being infected. We note that, even though the vaccines 
were developed and approved for human use at a much 
faster rate than ever accomplished before, the accelerated 
growth of the infections, especially with the onset of the 
winter in the northern hemisphere, reduced the expected 
benefits of vaccination.

Another noteworthy finding of this study was that 
there were no statistical differences between the numbers 
of reported cases resulting from different vaccination pri-
oritization strategies that were tested. This information 
should give more latitude to decision makers in urban 
regions across the world for distribution of the limited 
supply of COVID-19 vaccine. Our results suggested that 
instead of adhering strictly to a sequential prioritizing 
strategy, focus should be on distributing the vaccines 
among all eligible as quickly as possible.

Though our AB model is well suited to study future 
progression of COVID-19 and other similar respira-
tory type viruses, it has some limitations. The simu-
lation model is highly granular, which while being a 
strength presents a challenge of appropriately estimat-
ing the wide array of its input parameters. Though we 
have attempted to address this challenge by conduct-
ing a sensitivity analysis on some of the critical param-
eters, such as levels of face mask usage, contact tracing, 

societal closure, and school reopening, this analysis 
could be extended to many other parameters. As men-
tioned under vaccination strategies, our model did not 
include health conditions that were relevant to COVID-
19 (like pulmonary disease, obesity, heart problems) as 
attributes for people. Hence, we were not able to imple-
ment one element of the CDC recommended prioritiza-
tion strategy that recommends people aged 16–64 years 
with underlying medical conditions to be considered 
in priority 3 (see Fig. 5). Also, we did not consider any 
vaccine wastage due to complexities associated with 
refrigeration, distribution, and human error. We also 
assumed that vaccination of all priority groups occured 
uniformly over the eligibility periods considered, which 
may not reflect the reality. Also, at the time of the 
study, there was little available literature on the rate of 
immunity growth each day from the two dose vaccines, 
therefore, we assumed a linear growth starting with the 
first dose and culminating (full immunity) 7 days after 
the second dose. Moreover, the model did not consider, 
the emergence of new strains of virus as the pandemic 
progresses, and the lower level of immunity offered by 
the vaccine for breakthrough infection. Finally, changes 
in the virus behavior might impact the comparative 
outcomes of different vaccine prioritization strategies, 
as presented in this paper.

Fig. 8  Visualization of the impacts of vaccination strategies on the percentage of total population infected and the total numbers of deaths on July 
31, 2021
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At the time of the publication of our study, vaccine 
availability is still limited in many parts of the world. 
Our results will provide useful information for health-
care policy makers in judiciously allocating their 
COVID-19 vaccine supply among their population. We 
also believe that our findings on vaccine prioritization 
strategies will serve as a resource for the decision mak-
ers for future outbreaks of similar respiratory viruses. 
Finally, as only a limited number of studies examining 
vaccine prioritization strategies have been presented 
to the open literature, our research makes a significant 
addition.
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