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Stress exposure is a potential threat to humans who live or work in extreme
environments, often leading to oxidative stress, inflammatory response, intestinal
dysbiosis, and metabolic disorders. Gallnut tannic acid (TA), a naturally occurring
polyphenolic compound, has become a compelling source due to its favorable anti-
diarrheal, anti-oxidative, anti-inflammatory, and anti-microbial activities. Thus, this study
aimed to evaluate the anti-stress effects of gallnut TA on the stress-induced inflammatory
response, dysbiotic gut microbiota, and alterations of serum metabolic profile using
beagle models. A total of 13 beagle dogs were randomly divided into the stress (ST) and
ST + TA groups. Dietary supplementation with TA at 2.5 g/kg was individually fed to each
dog in the ST + TA group for 14 consecutive days. On day 7, all dogs were transported
for 3 h from a stressful environment (days 1–7) to a livable site (days 8–14). In our results,
TA relieved environmental stress-induced diarrheal symptoms in dogs and were shown
to protect from myocardial injury and help improve immunity by serum biochemistry and
hematology analysis. Also, TA inhibited the secretion of serum hormones [cortisol (COR),
glucocorticoid (GC), and adrenocorticotropic hormone (ACTH)] and the expression
of heat shock protein (HSP) 70 to protect dogs from stress-induced injury, thereby
relieving oxidative stress and inflammatory response. Fecal 16S rRNA gene sequencing
revealed that TA stimulated the growth of beneficial bacteria (Allobaculum, Dubosiella,
Coriobacteriaceae_UCG-002, and Faecalibaculum) and suppressed the growth of
pathogenic bacteria (Escherichia-Shigella and Streptococcus), thereby increasing
fecal butyrate levels. Serum metabolomics further showed that phytosphingosine,
indoleacetic acid, arachidonic acid, and biotin, related to the metabolism of sphingolipid,
tryptophan, arachidonic acid, and biotin, respectively, could serve as potential
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biomarkers of stress exposure. Furthermore, Spearman’s correlation analysis showed
strong relationships between the four potential serum biomarkers and differential
bacteria. Overall, gallnut TA may be a potential prebiotic for the prevention and treatment
of stress-induced metabolic disorders by targeting intestinal microbiota.

Keywords: gallnut tannic acid, stress exposure, inflammatory response, gut microbiota, serum metabolomics,
beagle dog

INTRODUCTION

Stress is the normal physiological response of the body to
environmental or psychological changes (1). Substances that
induce stresses, such as heat, chemical, and physiological stress,
are called stressors (2, 3). Stress exposure is a potential threat
to humans who are living or working in extreme environments,
and numerous studies have reported that lots of stresses have
negative influences on the organisms and induce physiological
and pathophysiological damages, including oxidative stress,
inflammation, and neuronal apoptosis (4–6). During stressful
events, the secretion of stress hormones was elevated (7,
8). Numerous studies have confirmed that the hypothalamic-
pituitary-adrenal (HPA) axis response is activated by stress,
thereby releasing stress hormones, such as cortisol (COR) (9–
11). Additionally, heat shock proteins (HSPs), well-conserved
molecules of transcriptional regulators, could respond to various
stressors to prevent apoptotic processes in different cell types
(12, 13). As the relationship among the gut, the brain, and
gut microbiota is interconnected, stress-triggered activation of
the sympathetic nervous system and the HPA axis affects the
microbiota that inhabits the gastrointestinal tract (14).

Gut dysbiosis, caused by stress, leads to impaired health,
including disruption of the intestinal barrier and enhanced
pro-inflammatory response (15). Stress-induced overgrowth of
pathogenic bacteria results in the disturbance of intestinal
microbiota and the disruption of immune system, causing
intestinal inflammation, depression, and cognitive impairment
through the induction of IL-1β and corticosterone secretion
(16, 17). Indeed, recent studies have revealed that the shifts
in intestinal microbiota composition might be the reason for
stress-induced gastrointestinal symptoms (18, 19). In addition,
intestinal microecology not only contains gut microbiota but also
a large number of gut microbiota metabolites, such as short-chain
fatty acids (SCFAs). The reduction of colonic pH by SCFAs was
found to promote colonic health (20, 21). One study in mice
showed that stress exposure reduced colonic SCFAs levels and
changed the relative abundances of SCFAs-producing bacteria
(22). Therefore, increasing SCFAs levels could alleviate stress-
induced brain-gut axis alterations (23). In brief, gut microbiota
and its metabolites influence host immune function, and normal
gut microbiota is important for the maintenance of intestinal
homeostasis (24).

Recent studies suggest that polyphenols may be promising
candidates for prebiotics (25, 26). There is strong evidence
that dietary polyphenol compounds can stimulate the
growth of beneficial intestinal bacteria, such as Lactobacillus,
Bifidobacterium, Akkermansia, Roseburia, and Faecalibacterium

spp. (27), and the production of SCFAs. Thus, polyphenols
exert prebiotic actions and inhibit the growth of pathogenic
bacteria (26, 28, 29). As a widely used traditional medicine in
China, gallnut (Galla chinensis) is rich in tannic acid (TA), even
accounting for 50–70% of its weight (30). Gallnut TA belongs
to the family of hydrolyzable tannins (31) and is a naturally
occurring polyphenol compound of high molecular weight (500–
3,000 Da). The structures of gallnut TA are made up of a polyol
core (typically D-glucose), which is esterified with phenolic acids
(mainly gallic acid or hexahydroxy diphenic acid) (32). The
TA is generally considered an anti-nutritional factor (33, 34).
Interestingly, because of its polyphenolic hydroxyl structure,
TA has various biological activities, including anti-diarrheal,
anti-oxidative, anti-microbial, anti-parasitic, and anti-cancer
(35, 36). Some studies reported that supplementing TA with
appropriate amounts had a beneficial effect on relieving diarrhea
without negative impacts on the growth performance (37, 38).
Thus, TA has great potential to balance and normalize gut
microbiota to keep the host healthy. However, knowledge of the
influence of diet supplemented with TA on stress is still limited.

In this study, beagle dogs were selected because of the high
similarity of the gut microbiome of dogs and humans in terms
of genetic content and response to diet (39). Our previous
study explored the effect of changing environment and addition
of gallic acid on stressful puppies (40). Next, this study aims
to compare the effect of TA on stressful puppies to confirm
whether TA works by hydrolysis to gallic acid. In addition,
considering the correlation between stress and gut microbiota
alterations, we hypothesized that TA could relieve stress by
modulating intestinal microbiota disorder and host metabolism.
Therefore, microbiome and metabolomics were adopted to reveal
a relationship between gut microbiota and its metabolites in
dogs supplemented with TA. Overall, the present study was
conducted to investigate whether TA influences the diarrhea rate,
inflammatory response, fecal microbiota, and serum metabolic
profiles in dogs.

MATERIALS AND METHODS

Materials
Tannic acid (purity > 93%) extracted from gallnut was
purchased from Wufeng Chicheng Biotech Co., Ltd. (Yichang,
China). The gallnut samples identified by UPLC-Orbitrap-
MS/MS confirmed that the chemical formulas of TA are
C41H32O26 and C34H28O22, and its structural formulas are
shown in Figure 1. Beagle dogs with average weight of
5.23 ± 0.62 kg and average age of 3.56 ± 0.24 months
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FIGURE 1 | The structural formula of tannic acid (TA). Penta-O-galloyl-β-D-glucose (C41H32O26) (A) and 1,2,3,6-tetrakis-O-galloyl-β-D-glucose (C34H28O22) (B).

were bought from the National Canine Laboratory Animal
Resource Bank, Guangzhou General Pharmaceutical Research
Institute Co., Ltd. (Guangzhou, China), license number: SCXK
(Guangdong) 2018-0007. Basal diet (commercially extruded feed,
dry matter: 90.5%, organic matter: 92.8%, protein: 23.9%, fat:
4.6%, fiber: 3.9%, and gross energy: 17.0 kJ/g) was manufactured
at the Dongguan Yinhua Bio-Tech Co., Ltd. (Dongguan, China),
license number: SCXK (Guangdong) 2019-11016. Commercial
kits for measuring the levels of glutathione (GSH), peroxidase
(GSH-Px), malondialdehyde (MDA), total anti-oxidant capacity
(T-AOC), and superoxide dismutase (SOD) were obtained
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
China). Serum COR (product no. MM-32604O1), glucocorticoid
(GC, MM-2277O1), adrenocorticotropic hormone (ACTH, MM-
1739O1), HSP-70 (MM-85074O1), immunoglobulin G (IgG,
MM-2086O1), tumor necrosis factor-α (TNF-α, MM-36988O1),
interferon-γ (IFN-γ, MM-35063O1), and interleukin-4 (IL-
4, MM-35084O1) were measured using commercial canine
enzyme-linked immunosorbent assay (ELISA) kits (MEIMIAN,
Jiangsu Meimian Industrial Co., Ltd., Jiangsu, China).

Animals and Experimental Design
The study was approved by the Experimental Animal Ethics
Committee of South China Agricultural University (protocol
code 2021E028). A total of 13 beagle dogs were selected in
this study and were caged individually in a room maintained
at 29◦C ± 1◦C with a relative humidity of 96% ± 3%, and
a 12-h light/dark cycle at Guangzhou General Pharmaceutical
Research Institute Co., Ltd. (Guangzhou, China). Water was
freely available. Taking into account the dog’s habit of overeating,
the puppies were fed a restricted amount of commercial extruded
feed (basal diet), in equal amounts (100 g), at 08:00 and 17:00. The
basal diet meets or exceeds the nutrient recommendations by the
Association of American Feed Control Officials (AAFCO, 2017)
for puppies (41). After a month of adaptation, the dogs were
randomly divided into two groups: stress group (ST, n = 6) and

ST + TA group (n = 7). The experiment period lasted for 2 weeks.
Gallnut TA was mixed with the basal diet and individually fed
to each dog in the ST + TA group at 2.5 g/kg (equivalent to
0.5 g per 200 g) for 14 consecutive days. The dosage of TA
supplements was slightly modified based on previous studies (42,
43). Feed consumption per dog was consistently monitored to
ensure the feed intake. On day 7, all dogs were transported for
3 h to the Laboratory Animal Center Building at the South China
Agricultural University and were housed individually in pens
(1.2 m × 1.0 m × 1.1 m kennels) under constant temperature
and humidity (23◦C, 70%) with a 12-h light/dark cycle. Both
groups continued on their diets for another week. Fecal score
(FS) (44) were adopted to assess daily fecal form and consistency.
The weight and body condition score (BCS) assessed using a
nine-point scale (45) were recorded separately on days 1, 4,
and 7 (before transportation) and days 8, 11, and 14 (after
transportation) in the morning before feeding.

Blood Routine Examination and Serum
Biochemical Analyses
On days 1, 7, 8, and 14 after overnight fasting, blood samples
were harvested and blood routine examination was performed
using a Mindray R© automatic hematology analyzer (BC-2800vet,
Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen,
China). The serum biochemical parameters were detected by an
automatic blood biochemical analyzer (Chemray 800, Shenzhen
Redu Life Technology, Shenzhen, China). Serum GSH, GSH-
Px, MDA, T-AOC, and SOD were detected using commercial
kits according to the manufacturer’s protocol. Serum COR, GC,
ACTH, HSP-70, IgG, TNF-α, IFN-γ, and IL-4 were measured
using commercial canine ELISA kits.

Fecal Microbiota Analysis
On days 7, 8, and 14, fresh fecal samples were collected from
the metabolic cages of each dog within 15 min of defecation
and transferred to a 5-ml sterile fecal collection tube, then
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snap-frozen on liquid N2 and stored at -80◦C until DNA
extraction. Microbial genomic DNA from fecal samples was
extracted using the CTAB/SDS method. After monitoring the
DNA concentration and purity on 1% agarose gels, DNA was
diluted to 1 ng/µl with sterile water. The V3-V4 region of
the bacterial 16S rRNA gene was amplified using the specific
primers 341F (5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-
GGACTACNNGGGTATCTAAT-3′) with the barcode. All PCR
reactions were carried out with 15 µl of Phusion R© High-Fidelity
PCR Master Mix (New England Biolabs) with 0.2 µM of forward
and reverse primers and 10-ng template DNA, and cycling
conditions consisted of a first denaturation step at 98◦C for
1 min, followed by 30 cycles at 98◦C (10 s), 50◦C (30 s), and
72◦C (30 s) and a final 5-min extension at 72◦C. An equal
volume of 1X loading buffer (contained SYB green) was mixed
with PCR products, and electrophoresis was performed on 2%
agarose gel for DNA detection. The PCR products were mixed
in equal proportions, and then the mixed PCR products were
purified using the Qiagen Gel Extraction kit (Qiagen, Germany).
Sequencing libraries were generated using the TruSeq R© DNA
PCR-Free Sample Preparation kit (Illumina, United States). The
library quality was assessed on the Qubit@ 2.0 Fluorometer
(Thermo Scientific) and Agilent Bioanalyzer 2100 system. Finally,
the library was sequenced on an Illumina NovaSeq platform and
250-bp paired-end reads were generated. Paired-end reads were
assigned to samples based on their unique barcode and truncated
by cutting off the barcode and primer sequence, and paired-
end reads were merged using FLASH (version 1.2.11) (46). Next,
quality filtering on the raw tags was performed to obtain the high-
quality clean tags according to the fastp (version 0.20.0) software.
Then, the clean tags were compared with the Silva database for
16S using Vsearch (version 2.15.0), and the chimera sequences
were removed to obtain the effective tags (47).

For the effective tags, denoise was performed with DADA2
in the QIIME2 software (version QIIME2-202006) to obtain
initial amplicon sequence variants (ASVs), and then ASVs
with abundance less than 5 were filtered out (48). Species
annotation was performed using the QIIME2 software. To study
the phylogenetic relationship of each ASV and the differences
of the dominant species among different samples (groups), a
multi-sequence alignment was performed using the QIIME2
software. The absolute abundance of ASVs was normalized
using a standard sequence number corresponding to the sample
with the least sequences. The Venn analysis was performed by
the Venn diagram website.1 All subsequent analyses of α- and
β-diversity were performed based on the output normalized
data. α-diversity (Observed_species, Chao1, Shannon, Simpson,
Pielou_e, Dominance, and Good’s coverage) and β-diversity were
calculated in QIIME2. The two-dimensional principal coordinate
analysis (PCoA) based on the weighted unifrac distances results
were displayed using the ade4 package and ggplot2 package in R
software (version 2.15.3).

The linear discriminant analysis effect size (LEfSe) software
(version 1.0) was used to perform an LEfSe analysis [linear
discriminant analysis (LDA) score > 3] to find out the

1http://bioinformatics.psb.ugent.be/webtools/Venn/

biomarkers. A clustered heatmap with the rank abundance
plot of bacterial genera was plotted using the R software
(version 3.1.0). The relationship between microbial community
composition and environmental factors was explained through
the redundancy analysis (RDA) of the vegan package (2.5–7)
using R software (version 3.6.3), and visualization was performed
by the OmicStudio tools at https://www.omicstudio.cn/tool.

Fecal Short-Chain Fatty Acids and
Branched-Chain Fatty Acids Analyses
Short-chain fatty acids and branched-chain fatty acids (BCFAs)
concentrations in fecal samples on days 7, 8, and 14 were
determined using the GCMS-QP2020 system (Shimadzu,
Tokyo, Japan) with a DB-FFAP capillary column (30
m × 0.25 mm × 0.25 µm, Onlysci, China). Instrument
parameters and fecal sample pre-processing methods referred to
our previous study (40). Briefly, the program was run as follows:
the initial temperature of the column was 80◦C for 2 min,
increased to 150◦C at a rate of 10◦C/min for 2 min, and increased
to 180◦C at a rate of 15◦C/min for 5 min. The total run time was
18 min. The injection port temperature was set at 250◦C. The
sample injection volume was 0.6 µl with a 30:1 split ratio. Helium
(He, 99.999%) was the carrier gas with a flow rate of 3 ml/min.
The MS parameters were electron impact modes with ionization
energy of 70 eV. Ion source and interface temperatures were 230
and 250◦C, respectively. Sample preparation was done as follows:
the frozen stool samples were placed on ice to thaw, and 0.2 g of
feces was added with 1 ml of ultrapure water. After vortex for 2
min, the samples were sonicated in an ice bath for 10 min, then
centrifuged at 14,000 rpm for 10 min at 4◦C. The supernatant
was immediately transferred to a 2-ml centrifuge tube, and then
a total of 20-µl 25% metaphosphoric acid solution and 0.25 g
of anhydrous sodium sulfate were added for acidification and
salting out, respectively. After vortex for 2 min, 1 ml of methyl
tert-butyl ether was added, then vortex was continued for 5 min,
and the supernatant was further centrifuged at 14,000 rpm for
another 10 min at 4◦C. Finally, the supernatant was harvested
and filtered through 0.22-µm Millipore membrane filters to a
2-ml sample bottle.

Serum Metabolomics Analysis
Frozen serum samples collected on days 7, 8, and 14 were thawed
at 4◦C, and vortex-mixed for 2 min. Then, 200 ml of the serum
sample and 800 ml of methanol were sequentially added to a 1.5-
ml sterile DNAase- and RNAase-free Eppendorf tube, and vortex-
mixed for 2 min. Then, the samples were centrifuged at 14,500
rpm, 4◦C for 15 min, and an 800-ml supernatant was blow-dried
with nitrogen. Around 100 ml of supernatant from each sample
was mixed to obtain a quality control sample. Next, the samples
were redissolved with 200 ml of methanol and vortex-mixed for
2 min. Ultrasonic crushing was performed at a low temperature
for 10 min, and then all samples were centrifuged at 14,500 rpm,
4◦C for 15 min. Finally, the samples were filtered through 0.22-
mm microporous membranes for the UPLC-Orbitrap-MS/MS
analysis.
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FIGURE 2 | Effect of TA on body condition (A,B), fecal score (FS) (C), serum biochemistry (D–M), and hematology (N–S) in dogs. Data are presented as
mean ± standard error (SE) (n = 6 or 7). *p < 0.05 and ∗∗p < 0.01 represent the difference calculated by Student’s t-test between the stress (ST) and ST + TA
groups; #p < 0.10 represents the difference in tendency calculated by Student’s t-test between the ST and ST + TA groups. The p-values in the figures indicate the
difference of each group at T1–T3 calculated by repeated-measure analysis of variance (RM-ANOVA). Numbers in the column chart indicate the diarrhea rate.
Numbers at the top of each figure refer to the normal reference ranges for serum biochemistry and hematology indices. BT, before transportation; AT, after
transportation; T0, day 1 before transportation; T1, day 7 before transportation; T2, day 8 after transportation; T3, day 14 after transportation. Cr, creatinine; BUN,
blood urea nitrogen; TP, total protein; ALB, albumin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; CK, creatine
kinase; LDH, lactate dehydrogenase; TC, total cholesterol; WBC, white blood cell count; NE, neutrophils; LY, lymphocyte; HGB, hemoglobin; MCH, mean
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration.
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FIGURE 3 | Effect of TA on HSP-70 (A), hormone (B–D), inflammation (E–H), and anti-oxidant (I–M) in dogs. Data are presented as mean ± SE (n = 6 or 7).
∗p < 0.05 and ∗∗p < 0.01 represent the difference calculated by Student’s t-test between the ST and ST + TA groups or the difference of each group at T0–T3
calculated by RM-ANOVA; #p < 0.10 represents the difference in tendency calculated by Student’s t-test between the ST and ST + TA groups or the difference in
tendency of each group at T0–T3 calculated by RM-ANOVA. T0, day 1 before transportation; T1, day 7 before transportation; T2, day 8 after transportation; T3, day
14 after transportation; HSP-70, heat stress protein 70; COR, cortisol; ACTH, adreno-cortico-tropic-hormone; GC, glucocorticoid; TNF-α, tumor necrosis factor-α;
IL-2, interleukin-2; IL-4, interleukin-4; IL-6, interleukin-6; T-AOC, total anti-oxidant capacity; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; GSH,
glutathione; MDA, malondialdehyde.

The UPLC-Orbitrap-MS/MS analysis method was conducted
as described previously (50) with slight modifications. The
Compound Discoverer 2.1 (Thermo Fisher Scientific) data
analysis tool was employed to automatically complete raw
data pre-processing and was applied to identify metabolites by
searching the mzCloud library and mzVault library. In this
study, MetaboAnalyst 5.02 was used to perform a multivariate
analysis. The principal component analysis (PCA) of metabolites
was performed. A pathway enrichment analysis was performed
by using the enrichment analysis module on MetaboAnalyst
5.0. The visualization results of the models were obtained with
MetaboAnalyst 5.0.

Statistical Analysis
SPSS 26.0 and GraphPad Prism 8.0 software were used
for statistical analysis and graphical display. A comparison
between the two groups was performed by Student’s t-test.

2https://www.metaboanalyst.ca

For repeated-measure testing, repeated-measure analysis of
variance (RM-ANOVA) with Bonferroni adjustment for multiple
comparisons was performed to analyze the differences within
each group at varying time points. All data were expressed as
the mean ± standard error (SE). Significant differences were
obtained at p < 0.05, and tendencies were obtained at p < 0.10.
To preliminarily screen differential metabolites, we selected the
metabolites that had a p < 0.05 and fold change (FC) values > 2
or < 0.5. The two-way orthogonal partial least squares (O2PLS)
method consists of the simultaneous projection of both X and
Y matrices on low-dimension hyper planes (51). To reveal the
association between microbiome and metabolomics, bacterial
genera with relative abundance > 0.1% (X matrix) and 147 serum
metabolites (Y matrix) were observed using the O2PLS analysis,
in which the X matrix was mapped to Y matrix. The correlation
matrix shows a pair-wise correlation among all variables (X and
Y), in which the value of correlation coefficient represents the
extent of the linear association between the two terms, ranging
from -1 to 1. The O2PLS analysis and graphics were performed
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using the OmicShare tools at https://www.omicshare.com/tools/
Home/Soft/o2pls. Spearman’s correlation values and significance
were computed with R version 3.6.1. Clustering correlation
heatmap with signs and advanced volcano plot were generated
using the OmicStudio tools at https://www.omicstudio.cn/tool.

RESULTS

Effect of Tannic Acid on Body Condition,
Fecal Score, Hematology, and Serum
Biochemistry
Body weight, BCS, and FS reflect the general health state of dogs.
No difference was observed in body weight (Figure 2A), but BCS
in the ST group showed an evident decrease (p < 0.05) than that
in the ST + TA group on day 8 (T2) (Figure 2B), indicating
that the supplementation of TA could maintain the dogs’ good
body condition. The result of FS was represented in Figure 2C,
showing that dogs fed TA markedly reduced (p < 0.05) the FS
on days 1–7 before transportation and had a decreasing trend
(p < 0.1) on days 8–14 after transportation. Furthermore, the
diarrhea rate in dogs dropped from 38.10 to 18.37% (days 1–
7) and 7.14 to 4.08% (days 8–14). This suggested that dogs
transferred to a livable environment had a normal fecal shape
and lower diarrhea rate compared with the original stressful
environment, and dogs fed TA at 2.5 g/kg further reduced
the diarrhea rate.

Serum biochemistry reflective of renal function [creatinine
(Cr) and blood urea nitrogen (BUN)], liver function [total protein
(TP) and albumin (ALB)], liver injury [aspartate transaminase
(AST), alanine transaminase (ALT), and alkaline phosphatase
(ALP)], myocardial injury [creatine kinase (CK) and lactate
dehydrogenase (LDH)], and lipid metabolism (TC) were assessed
in dogs (Figures 2D–M). Higher (p < 0.05) serum Cr, BUN, TP,
AST, ALT, ALP, CK, LDH, and TC levels of each group were
observed at T0 or T1 before transportation than those at T2 or
T3 after transportation. In addition, dietary supplementation of
TA had lower (p < 0.1) LDH levels compared with the ST group
at T1–T3. Collectively, a stressful environment would cause liver,
kidney, and myocardial injury in dogs. These symptoms could be
alleviated when transported to a new livable site, and TA had a
further protective effect on myocardial injury in dogs.

High white blood cells [WBC, including neutrophils (NE)
and lymphocytes (LY)] is a reflection of inflammation, and
hemoglobin [HGB, including mean corpuscular hemoglobin
(MCH) and mean corpuscular hemoglobin concentration
(MCHC)] content indirectly reflects the immunity level
(Figures 2N–S). In each group, the levels of WBC, NE, HGB,
MCH, and MCHC were higher (p < 0.05) at T1 than at T2 or T3.
The percentage of NE and LY in the ST group almost exceeded
its normal range after transportation; however, these values
returned to normal after supplementation with TA (p < 0.1).
It was obvious that HGB, MCH, and MCHC concentrations
were below the normal range after transportation, while they
significantly increased (p < 0.05) in dogs fed TA. Viewed as a
whole, stressful environment contributed to waning immunity

in dogs, whereas both changing living environment and TA
supplementation help to enhance immunity.

Effect of Tannic Acid on Heat Stress
Protein-70, Hormone, Inflammation, and
Anti-oxidant
Heat stress protein-70 (HSP-70), a kind of stress-induced protein,
protects cells against stresses, and serum COR, ACTH, and GC
were considered as the stress hormones in response to various
environmental stressors. In the ST group, dogs had an increasing
trend (p < 0.1) in HSP-70 at T3 compared with T0, while this
trend was not observed in the ST + TA group (Figure 3A). The
highest levels of serum COR (p < 0.01), ACTH (p < 0.05),
and GC (p < 0.05) were observed at T3 in the ST group, while
supplementation with TA showed an evident increase (p < 0.05)
of COR at T3 compared with T0, and had an increasing trend
(p < 0.1) toward ACTH at T2 compared with the ST group
(Figures 3B–D). The results indicated that TA might have the
potential to alleviate stress in dogs after transportation.

Inflammation and anti-oxidant indicators can reflect the
body’s inflammatory state and redox level. In the ST group, we
observed the elevated (p < 0.05) TNF-α at T3 compared with T2,
and an increasing trend (p < 0.1) in IL-2 level at T3 compared
with T0 (Figures 3E,F). Compared with pre-transportation, the
IL-4 content was significantly decreased (p < 0.05) in the ST
group, while dogs fed TA had an increasing (p < 0.1) trend
after transportation (Figure 3G). There was a decreasing trend
(p < 0.1) in IL-6 content at T3 in the ST + TA group relative to
the ST group (Figure 3H). Additionally, we also found T-AOC
levels at T2 and T3 were significantly higher (p < 0.05) than that
at T0 and T1 in the ST + TA group, and dogs fed TA had an
increasing trend (p < 0.1) of T-AOC at T3 compared with the ST
group (Figure 3I). The ST group had a higher (p < 0.05) SOD
level when dogs were transported to a livable site (Figure 3J).
Though lower (p < 0.05) GSH-Px activity of each group was
observed after transportation, the supplementation of TA had a
higher (p < 0.05) GSH-Px activity than that in the ST group at T3
(Figure 3K). Similarly, the GSH contents had an increasing trend
(p < 0.1) at T2 and were significantly higher (p < 0.05) at T3
in the ST + TA group compared with the ST group (Figure 3L).
While the elevation (p < 0.1) in MDA levels occurred at T2 in
both the groups (Figure 3M). The results indicated that TA may
relieve oxidative stress and inflammatory response by enhancing
enzymatic and non-enzymatic anti-oxidant systems as well as
regulating the secretion of anti- or pro-inflammatory cytokines.

Effect of Tannic Acid on Fecal Microbiota
The Venn diagram revealed that both groups had the fewest ASVs
at T2, whereas the livable environment and TA supplementation
had increased ASVs at T3 (Supplementary Figure 1). Relative
to the ST group, puppies fed TA had more specific ASVs.
Additionally, Good’s coverage in all samples was 100%. As shown
in Figure 4A, Shannon, Simpson, and Pielou_e indexes in the
ST group were higher (p < 0.01) at T3 compared with T1;
and puppies fed TA had an increasing trend (p < 0.1) of
Pielou_e index at T2 compared with T1; while lower (p < 0.001)
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FIGURE 4 | Effect of TA on gut microbiota composition and structure in dogs. α-diversity analysis (Shannon, Simpson, Pielou_e, and Dominance) (A), principal
coordinate analysis (PCoA) based on weighted UniFrac distances (B), histogram of abundance distribution at the phylum level (C) and genus level (D), the LEfSe
analysis among groups (E–G), and hierarchical clustering (H). Data are presented as mean ± SE (n = 6 or 7). ∗∗p < 0.01 and ∗∗∗p < 0.001 represent the difference of
each group at T1–T3 calculated by RM-ANOVA. #p < 0.10 represents the difference in tendency of each group at T1–T3 calculated by RM-ANOVA. The p-values of
β-diversity index in the PCoA calculated by the Wilcoxon rank sum test. T1, day 7 before transportation; T2, day 8 after transportation; T3, day 14 after
transportation.

Dominance index was found in the ST group at T3 compared
with T1. No significant difference was found in Observed_species
and Chao1 (Supplementary Figure 2). Overall, the livable
environment and TA supplementation had a positive impact
on the bacteria diversity in dogs. The PCoA was used to
examine the similarity of gut microbial structure. The PcoA
plots based on weighted UniFrac distances revealed distinct
separation between the groups (p < 0.01, Figure 4B), indicating

that environment and TA supplementation could influence gut
microbiota composition and diversity in dogs.

As shown in Figure 4C, the top five phyla were
Firmicutes, Actinobacteriota, Fusobacterota, Proteobacteria,
and Bacteroidota, accounting for about 90% of the total bacteria.
The ST + TA group had a higher level of Fusobacterota at
T1 and a lower level of Proteobacteria at T2 than those in
the ST group. At the genus level, the most abundant genera

Frontiers in Nutrition | www.frontiersin.org 8 April 2022 | Volume 9 | Article 847966

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-847966 April 20, 2022 Time: 14:30 # 9

Yang et al. Anti-stress Effect of Tannic Acid

FIGURE 5 | Redundancy analysis (RDA) of environmental factors and the microbial community at T1 and T3. RDA in the ST group at T1 and T3 (A), RDA in the
ST + TA group at T1 and T3 (B). T1, day 7 before transportation; T3, day 14 after transportation.

were Allobaculum, Bifidobacterium, Peptoclostridium, Blautia,
Lactobacillus, Turicibacter, Cetobacterium, and Escherichia-
Shigella (Figure 4D). Among them, the ST group had the highest
Escherichia-Shigella and the lowest Allobaculum at T2. The LefSe
(LDA > 3) analysis was further employed for the identification
of potential biomarkers. At T1, Succinivibrionaceae significantly
enriched in the ST group (Figure 4E). At T2, Escherichia-
Shigella, Dermatophilaceae, Nesterenkonia, Streptococcus,
Erysipelatoclostridium, Fournierella, and Anaerobiospirillum
were remarkably enriched in the ST group, and Allobaculum,
Sphingobium, Dubosiella, Coriobacteriaceae_UCG-002, and
Faecalibaculum were remarkably enriched in the ST + TA group
(Figure 4F). At T3, Faecalibacterium, Fournierella, Prevotella,
and Parasutterella showed significant enrichments in the ST
group, and Brevundimonas showed significant enrichment
in the ST + TA group (Figure 4G). Based on the results of
the 35 most-abundant bacteria genera, we also constructed
a clustered heatmap, which showed similar results with the
LefSe (Figure 4H). Collectively, these results indicated that
environmental stress caused the differences in microbial
composition, while intestinal microbiota developed in a more
favorable direction when dogs were transported to a livable
environment and added TA.

A detrended correspondence analysis (DCA) was performed
to select the appropriate ordination analysis method (gradient
lengths were less than 3). The RDA method was applied to analyze
the complex associations between microbiota composition
and environmental factors (temperature and humidity). We
selected the top 15 genera in the relative abundance and
environmental factors for the RDA analysis. RDA axes 1 and
2 accounted for 21.41 and 9.31% in the ST group at T1
and T3 (Figure 5A), and 19.06 and 9.04% in the ST + TA
group at T1 and T3 (Figure 5B), respectively, of the total
variation. The angle between temperature (TEM) and humidity

(HUM) was acute, thus, they had a positive correlation. The
differences in the dominant bacterial genera were associated
with the differences in TEM and HUM. TEM and HUM
had positive associations with Streptococcus, Peptoclostridium,
Turicibacter, Catenibacterium, and Collinsella at T1, and negative
associations with Bifidobacterium, Lactobacillus, Allobaculum,
and Muribaculaceae at T3.

Effect of Tannic Acid on Fecal
Short-Chain Fatty Acids and
Branched-Chain Fatty Acids
The SCFAs serve as the important energy source for the intestinal
epithelium, and BCFAs are metabolites that result from protein
fermentation. Fecal acetate and propionate content at T3 in the
ST + TA group were less (p < 0.05) than that in the ST group,
and the ST + TA group had lower (p < 0.01) fecal acetate at T3
than that at T1 (Figures 6A,B). As a result, higher (p < 0.05)
total SCFAs were observed at T3 in the ST group (Figure 6G).
However, dogs fed TA had a significant increase (p < 0.05) in
butyrate at T1 and had an increasing trend in butyrate (p < 0.1)
at T2 compared with the ST group (Figure 6C). Furthermore,
the ST group showed an evident increase (p < 0.01) of fecal
isobutyrate and isovalerate at T3 compared with T1 and T2, while
supplementation with TA significantly decreased (p < 0.05) fecal
isobutyrate and isovalerate at T3. Similar alterations (p < 0.05)
also occurred in the total BCFAs level (Figures 6D,E,H). No
significance was observed in fecal valerate (Figure 6F).

Effect of Tannic Acid on Serum
Metabolome
To investigate the metabolic regulation in TA-treated dogs, serum
metabolites were analyzed using UPLC-Orbitrap-MS/MS. A total
of 147 metabolites were detected in each group. The PCA analysis
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FIGURE 6 | Effect of TA on acetate (A), propionate (B), butyrate (C), isobutyrate (D), isovalerate (E), valerate (F), total SCFAs (G), and total BCFAs (H) in dogs. Data
are presented as mean ± SE (n = 6 or 7). ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 represent the difference calculated by Student’s t-test between the ST and
ST + TA groups or the difference of each group at T1–T3 calculated by RM-ANOVA; #p < 0.10 represents the difference in tendency calculated by Student’s t-test
between the ST and ST + TA groups or the difference in tendency of each group at T1–T3 calculated by RM-ANOVA. T1, day 7 before transportation; T2, day 8 after
transportation; T3, day 14 after transportation. Total SCFAs (short-chain fatty acids) = acetate + propionate + butyrate; Total BCFAs (branched-chain fatty
acids) = isobutyrate + isovalerate + valerate.

found that the ST and ST + TA groups had a partial separation
at T2, while there was no obvious separation between the two
groups at T1 and T3 (Supplementary Figures 3A–C). In the
clustering heat map, the accumulation of serum metabolites
displayed a clear variation in terms of the pattern of metabolite
abundance at different time points (Supplementary Figure 4),
indicating that environmental stress and adding TA can result in
changing serum metabolic profiles in dogs.

Next, differential metabolites were screened with FC > 2
(or < 0.5) and p < 0.05, and 15, 18, and 27 serum
metabolites at T1, T2, and T3 were significantly changed between
the two groups (Supplementary Table 1). The volcano plot
showed that the primary significant metabolites were 4-O-
Methylgallic acid, tetradecanedioic acid, and methacholine at T1,
4-O-Methylgallic acid, biotin, indoleacetic acid, dodecanedioic
acid, tetradecanedioic acid, and D-glutamine at T2, and 4-O-
Methylgallic acid, syringic acid, and thromboxane B2 at T3
(Figures 7A–C). As shown in Figures 7D–F and Table 1,

dogs fed TA mainly influenced sphingolipid metabolism at
T1, and TA changed sphingolipid metabolism, tryptophan
metabolism, arachidonic acid metabolism, biosynthesis of
unsaturated fatty acids, and biotin metabolism at T2. No
difference was observed at T3.

Correlation Analysis Between Fecal
Bacteria at the Genus Level and
Metabolites
The O2PLS method was performed to analyze the association
between microbiota and metabolites. It was shown that R2X
and R2Y of the model were 0.486 and 0.633 at T2, and
0.791 and 0.509 at T3, indicating that the O2PLS method
was well suited for analysis and prediction. As shown
in Figures 8A,B, the top-ranking 30 loading values, the
contribution degree of the variable (microbiota/metabolite) to the
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FIGURE 7 | Effect of TA on serum metabolome in dogs. Volcano plot (A–C) and enrichment analysis of metabolic pathways (D–F). The red font indicates
significantly different metabolic pathways (p < 0.05). T1, day 7 before transportation; T2, day 8 after transportation; T3, day 14 after transportation.

difference between groups, were displayed in the microbiome–
metabolomics correlation loading plots (all loading values are
listed in Supplementary Table 2). The O2PLS as an initial
screen for microbiome and metabolomic correlation analyses
to avoid false-positive associations as much as possible. From

these figures, we obtained microbiota and metabolites with a
high correlation, which can provide a reference for subsequent
correlation analysis.

Spearman correlation between differential serum metabolites
and bacteria genera with relative abundance greater than
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0.1% was displayed in a heatmap. At T2, Escherichia-Shigella
and Streptococcus had significant positive associations with
indole-3-methyl acetate and indoleacetic acid and negative
associations with biotin and D-glutamine (Figure 9A);
and Streptococcus had significant positive associations with
arachidonic acid and 4-methoxyphenylacetic acid and a negative
association with 4-O-methylgallic acid. Conversely, Allobaculum,
Coriobacteriaceae_UCG-002, and Faecalibaculum had opposite
associations with Escherichia-Shigella and Streptococcus, and
Allobaculum had a significant positive association with butyrate.
Also, Dubosiella was positively correlated with D-glutamine,
L-glutamine, 4-O-methylgallic acid, and tetradecanedioic acid
and negatively correlated with 4-methoxyphenylacetic acid. At
T3, a significant negative association between Parasutterella
and D-glutamine was found (Figure 9B). Prevotella and
Faecalibacterium had significant positive associations with
acetate and negative associations with dodecanedioic acid,
caproic acid, and syringic acid; Faecalibacterium had a
negative association with N-acetylarylamine; and Prevotella had
significant positive associations with propionate and arachidonic
acid and a negative association with 4-O-methylgallic acid.

DISCUSSION

In this study, we selected beagle dogs as the animal model
to explore the anti-stress effects of gallnut TA. Similar to our
previous study in puppies under environmental stress (40), the
body condition, diarrhea rate, serum biochemistry, hematology,
HSP-70, hormone, inflammatory response, oxidative stress, fecal
microbiota, and serum metabolic profiles were significantly
different among various environments, indicating that puppies
under high temperature and high humidity remained in a
state of stress. Our results suggest that dietary supplementation
of 2.5 g/kg TA improves the health of dogs under stress.
Recently, several studies have also reported the applications
and effects of TA in weaned piglets and mice (42, 43, 52, 53),
supporting the anti-diarrheal, anti-oxidative, anti-inflammatory,
and anti-microbial activities of TA without affecting production
performance. Consistent with previous studies, dogs showed
an evident decrease in BCS after transportation because of
vomiting and diarrhea. After the supplementation of TA, dogs
could maintain a good body condition, normal fecal shape, and
lower incidence of diarrhea via the regulation of gut microbiota.
A few previous studies found that the stressful environment had
significant effects on serum biochemistry and blood routine in
animals, including causing injury to the liver (TP, ALB, AST,
ALT, and ALP), kidney (Cr, BUN, and uric acid), myocardium
(CK and LDH), and dyslipidemia (TC, TG, LDL-C, and HDL-C)
(54–56), as well as the upregulation of peripheral innate immune
cells (granulocyte, lymphocyte, and monocytes) (57). Similarly,
the present study provided evidence that a stressful environment
caused abnormal liver function and myocardial injury in dogs,
while the injury was alleviated when transported to a new
livable site, and TA had a further protective effect on myocardial
injury (decreasing LDH) in dogs. In addition, decreased levels
of WBC, NE, HGB, MCH, and MCHC were observed in dogs

when transported to a livable environment, indicating that
both environmental change and TA supplementation help to
enhance immunity. In brief, TA can relieve organ damage and
inflammatory response through modulating serum metabolites
and immune cells.

Serum COR is considered as a biomarker for stress evaluation
in dogs (58, 59). The COR is the primary GC secreted by
the adrenal gland in response to ACTH stimulation. ACTH
stimulates the secretion of COR from the adrenal cortex
into the peripheral bloodstream (60, 61). This study found a
significant increase in serum COR concentration in dogs after
transportation, suggesting that environmental stresses activated
the HPA axis, and triggered stress responses in dogs. As expected,
ACTH and GC displayed a similar alteration trend with COR.
Though dogs fed TA had an increase in COR, GC, and ACTH
secretion, TA still had the potential to alleviate stress relative
to an extremely significant elevation in the ST group. The
HSP-70, a kind of stress-induced protein, protects cells against
stresses (62). In the present study, the upregulation of HSP-
70 in stressed dogs after transportation might be an adaptation
mechanism in response to environmental stress (63). Studies
in vivo and in vitro revealed dietary polyphenolic compounds
(e.g., curcumin, phloretin, and chlorogenic acid) could modulate
the HSP-70 expression (64–66). Thus, TA might inhibit the
expression of HSP-70 to protect dogs from stress-induced injury.

Oxidative stress may be caused by an imbalance between
reactive oxygen species and the anti-oxidant system, which
would result in generating inflammation (67). Therefore,
oxidative stress and inflammation are closely linked (68).
A recent study demonstrated that goats that were subject to
transportation stress had better stress-resistant, anti-oxidant,
and anti-inflammatory capacities when fed diets containing
condensed tannins (69). Both condensed and hydrolyzable
tannins belong to tannins with different molecular structures
(70). Overall, as a family of hydrolyzable tannins, gallnut TA
displayed strong anti-oxidative and anti-inflammatory capacities
in dogs after transportation. TA could normalize or enhance
anti-oxidant systems, including non-enzymatic systems (GSH)
and enzymatic systems (SOD and GSH-Px), after transportation.
Constantly elevated T-AOC level indicated the total anti-
oxidant level of enzymatic and non-enzymatic systems in
the ST + TA group. Therefore, an imbalance between the
formation of reactive oxygen species and the anti-oxidant
defense increased the secretion of pro-inflammatory cytokines
(TNF-α, IL-2, and IL-6) and decreased the secretion of
anti-inflammatory cytokine IL-4 due to transportation and a
varying environment. Likewise, TA exhibited a very good anti-
inflammatory property.

Environmental and physical stresses can regulate the gut
microbiota (71), which influences the host stress response. Gut
microbiota thereby serves as an important mediator for host
health (1, 72). Substantial studies toward polyphenols have
reported that polyphenols are capable of acting as prebiotics
to promote the growth of beneficial gut microbiota (73–75).
Five predominant bacterial phyla are identified in the canine
gastrointestinal tract: Firmicutes, Fusobacteria, Bacteroidetes,
Proteobacteria, and Actinobacteria (76, 77). The dominant phyla
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TABLE 1 | Significant metabolic pathways with its matched differential metabolites at varying time points.

Time point a Metabolite Metabolic pathway Metabolism Trend (ST + TA vs. ST)

T1 Phytosphingosine Sphingolipid metabolism Lipid metabolism Down

T2 Phytosphingosine Sphingolipid metabolism Lipid metabolism Down

T2 Indoleacetic acid Tryptophan metabolism Amino acid metabolism Down

T2 Arachidonic acid Arachidonic acid metabolism Lipid metabolism Down

T2 Arachidonic acid Biosynthesis of unsaturated fatty acids Lipid metabolism Down

T2 Biotin Biotin metabolism Metabolism of cofactors and vitamins Up

aT1, day 7 before transportation; T2, day 8 after transportation.

in the feces in this work were also consistent with prior studies.
Moreover, the gut microbial community was greatly changed
after transportation. We observed the differences in microbial
composition (Shannon, Simpson, Pielou_e, and Dominance
indexes) and microbial community structure (PCoA), indicating
that the stressful environment had a negative effect on the
composition and structural diversity of gut microbiota in dogs.
There were a few significant differences in gut microbiota
between the groups before transportation (T1). At T2, multiple
environmental stressors promoted the growth of pathogenic
bacteria (Escherichia-Shigella and Streptococcus) (78, 79), thereby
leading to diarrhea and inflammatory cytokine secretion.
Meanwhile, Allobaculum, Dubosiella, Coriobacteriaceae_UCG-
002, and Faecalibaculum highly enriched in dogs fed TA. Similar
to our association analysis results, Allobaculum, Dubosiella, and
Faecalibaculum had positive associations with the production
of butyrate in previous reports (80–85). Butyrate has been
shown to have critical roles in the maintenance of intestinal
homeostasis, consequently leading to the alleviation of diarrhea
(86). Moreover, Faecalibaculum and Coriobacteriaceae_UCG-
002 showed significantly negative correlations with ALT, AST,
AKP, and MDA levels (87). At T3, SCFAs-producing bacteria
Prevotella, Faecalibacterium, and Parasutterella (88–91) showed
significant enrichments in the ST group, revealing that a livable
environment in dogs caused the production of SCFAs (acetate,
propionate, and total SCFAs). Meanwhile, supplementation with
TA decreased fecal BCFAs (isobutyrate, isovalerate, and total
BCFAs), which are harmful putrefactive components produced
during the fermentation of branched-chain amino acids (92).
In addition, the microbial community structure in dogs can
rapidly change in response to altered environmental conditions
(40). Likewise, similar results were obtained in our study.
The RDA analysis revealed that the high TEM (29◦C) and
HUM (96%) promoted intestinal pathogen development, and the
suitable TEM (23◦C) and HUM (70%) stimulated the growth
of intestinal beneficial bacteria in dogs. Although puppies fed
gallic acid also reached similar inhibitory and promoting effects
on pathogenic bacteria (Proteobacteria, Escherichia–Shigella, and
Clostridium_sensu_stricto_1) and beneficial bacteria (Firmicutes,
Faecalibaculum, and Lactobacillus) (40), feeding TA or gallic
acid affect the different types of intestinal bacteria in puppies,
indicating that TA is not fully hydrolyzed to gallic acid to
influence gut microbiota.

Gut microbiota contributes to host metabolism, protects
against pathogens, and modulates the immune system,

thereby affecting host physiological functions (76). Thus,
the metabolomics analysis based on UPLC-Orbitrap-MS/MS was
adopted to explore the significant changes of serum metabolites
to identify the related metabolic pathways in beagle dogs. First,
a high level of serum 4-O-methylgallic acid resulting from
the hydrolyzed TA was observed in the ST + TA group at
varying time points (93), which was consistent with a single
addition of gallic acid on stressful puppies (40). According to
correlation analysis, we found that 4-O-methylgallic acid had
positive associations with Dubosiella. Hence, we speculated that
it was able to produce tannases to catabolize TA, generating
4-O-methylgallic acid in the serum. Further investigation is
needed to verify this hypothesis. Previous studies showed that
environmental changes resulted in psychological alterations,
and thereby may affect metabolism (40, 94). In this study,
we also observed that serum phytosphingosine (belonging to
the sphingolipid metabolism) content was downregulated at
T1 and T2 when supplementation with TA, indicating that
the stress stimulated sphingolipid synthesis and metabolism
during transportation. A study also found that chemical stress
(acrylamide contact) could stimulate serum phytosphingosine
production, which might be associated with the nervous system
symptoms and the abnormity of the biochemical indexes of
AST and ALT (95). Interestingly, in a model of aging induced
by D-galactose, an obvious decrease of phytosphingosine was
observed under the green tea polyphenol treatment (96). As
a typical accumulated uremic toxin, indoleacetic acid has
been associated with the oxidative stress and inflammation
response, which play a role in the progression of chronic
kidney disease and the development of complications (97, 98).
Arachidonic acid is a precursor to several pro-inflammatory/pro-
aggregatory mediators (prostaglandins, thromboxanes, and
leukotrienes) (99, 100). Current results showed that dogs fed
with TA downregulated indoleacetic acid (belonging to the
tryptophan metabolism) and arachidonic acid (belonging to the
arachidonic acid metabolism and biosynthesis of unsaturated
fatty acids) levels at T2. Instead, TA increased serum biotin
(belonging to the biotin metabolism) concentration at T2. Biotin,
a water-soluble vitamin, serves as a coenzyme for carboxylases
in humans, and biotin deficiency influences cell proliferation,
immune function, and fetal development (101–103). Thus, the
dietary supplementation of TA relieves oxidative stress and
inflammation induced by transportation and environmental
changes via the regulation of host metabolism. A study on
gallic acid alleviating stress in puppies found that gallic acid
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FIGURE 8 | Two-way orthogonal partial least squares (O2PLS) analysis of significant features identified from the microbiome and metabolomics analysis.
Microbiome-metabolomics correlation loading plots between the ST and ST + TA groups at T2 (A) and T3 (B). Red circle indicates bacteria at the genus level, and
blue triangle indicates metabolite. The greater the absolute value in the coordinate, the greater the degree of association of this microbiota/metabolite with another
omics. T2, day 8 after transportation; T3, day 14 after transportation.
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FIGURE 9 | Correlation heatmap between differential metabolites and fecal bacteria (at the genus level) at T2 (A) and T3 (B). The symbol (*) indicates a significant
correlation between serum metabolites and fecal bacteria (*p < 0.05, **p < 0.01, and ***p < 0.001). Red color indicates a positive correlation, and blue color
indicates a negative correlation. T2, day 8 after transportation; T3, day 14 after transportation.

reversed the abnormalities of host amino acid metabolism,
lipid metabolism, carbohydrate metabolism, and nucleotide
metabolism (40), but its specific metabolic pathways are different
from TA. One reason may be that TA was not fully hydrolyzed to
gallic acid, and uncertain time for hydrolysis of TA to gallic acid
may be also an important reason.

Additionally, the correlation analysis between serum
metabolites and fecal bacteria indicated that (1) both serum
indoleacetic acid and arachidonic acid were positively correlated
with Streptococcus; (2) serum indoleacetic acid was negatively
correlated with Allobaculum; and (3) serum biotin was
positively correlated with Allobaculum, Coriobacteriaceae_UCG-
002, and Faecalibaculum and negatively correlated with
Escherichia-Shigella and Streptococcus. Further analysis
can focus on the calculation of omics-explainability (104),
which was utilized to estimate the contribution rate of
omics to phenotype. We suggest that phytosphingosine,
indoleacetic acid, arachidonic acid, and biotin could
serve as potential biomarkers of the environmental stress
response. Nonetheless, the relationship between intestinal
microbiota and its metabolites needs further investigation.
In short, dietary TA may be a potential prebiotic for the
prevention and treatment of metabolic disorders by targeting
intestinal microbiota.

CONCLUSION

In conclusion, we found that dietary supplementation of TA
at 2.5 g/kg relieved environmental stress-induced diarrheal
symptoms, oxidative stress, and inflammation in dogs. Fecal
microbiota detected by high-throughput 16S rRNA gene
sequencing revealed that TA stimulated the growth of beneficial
bacteria Allobaculum, Dubosiella, Coriobacteriaceae_UCG-002,
and Faecalibaculum and suppressed the growth of pathogenic
bacteria Escherichia-Shigella and Streptococcus, thereby
promoting intestinal health by increasing butyrate levels in dogs
after transportation for 1 day. In addition, the relative abundance
of Faecalibacterium, Prevotella, and Parasutterella, as well as
the consequent SCFAs (acetate, propionate, and total SCFAs)
increased in dogs when transported from a stressful environment
to a livable environment for 7 days, which played a critical
role in the maintenance of intestinal homeostasis. However,
the relationship between SCFAs and intestinal microbiota in
dogs needs to be further explored. Serum metabolomics further
showed that phytosphingosine, indoleacetic acid, arachidonic
acid, and biotin, related to sphingolipid metabolism, tryptophan
metabolism, arachidonic acid metabolism and biosynthesis of
unsaturated fatty acids, and biotin metabolism, respectively,
could serve as potential biomarkers of the environmental
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stress response. Spearman’s correlation analysis further
showed the tight relationships between the four potential
serum biomarkers (phytosphingosine, indoleacetic acid,
arachidonic acid, and biotin) and differential bacteria
(Allobaculum, Coriobacteriaceae_UCG-002, Faecalibaculum,
Escherichia-Shigella, and Streptococcus). However, these
relationships require further verification. In all, gallnut
TA may be a potential prebiotic for the prevention
and treatment of metabolic disorders by targeting
intestinal microbiota.
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