
Genome–Environment Associations,
an Innovative Tool for Studying
Heritable Evolutionary Adaptation in
Orphan Crops and Wild Relatives
Andrés J. Cortés1*†, Felipe López-Hernández1 and Matthew W. Blair 2*

1Corporacion Colombiana de Investigacion Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia, 2Department of
Agricultural & Environmental Sciences, Tennessee State University, Nashville, TN, United States

Leveraging innovative tools to speed up prebreeding and discovery of genotypic sources
of adaptation from landraces, crop wild relatives, and orphan crops is a key prerequisite to
accelerate genetic gain of abiotic stress tolerance in annual crops such as legumes and
cereals, many of which are still orphan species despite advances in major row crops. Here,
we review a novel, interdisciplinary approach to combine ecological climate data with
evolutionary genomics under the paradigm of a new field of study: genome–environment
associations (GEAs). We first exemplify how GEA utilizes in situ georeferencing from
genotypically characterized, gene bank accessions to pinpoint genomic signatures of
natural selection. We later discuss the necessity to update the current GEA models to
predict both regional- and local- or micro-habitat–based adaptation with mechanistic
ecophysiological climate indices and cutting-edge GWAS-type genetic association
models. Furthermore, to account for polygenic evolutionary adaptation, we encourage
the community to start gathering genomic estimated adaptive values (GEAVs) for genomic
prediction (GP) and multi-dimensional machine learning (ML) models. The latter two should
ideally be weighted by de novo GWAS-based GEA estimates and optimized for a scalable
marker subset. We end the review by envisioning avenues to make adaptation inferences
more robust through the merging of high-resolution data sources, such as environmental
remote sensing and summary statistics of the genomic site frequency spectrum, with the
epigenetic molecular functionality responsible for plastic inheritance in the wild. Ultimately,
we believe that coupling evolutionary adaptive predictions with innovations in ecological
genomics such as GEA will help capture hidden genetic adaptations to abiotic stresses
based on crop germplasm resources to assist responses to climate change.

“I shall endeavor to find out how nature’s forces act upon one another, and in what manner
the geographic environment exerts its influence on animals and plants. In short, I must find
out about the harmony in nature” Alexander von Humboldt—Letter to Karl Freiesleben,
June 1799.
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INTRODUCTION—LACK OF CROP
GENOTYPES ADAPTED TO SEVERE
CLIMATES
Crop wild relatives (CWR) and landraces are well known for
providing new alleles for plant breeding (Tanksley andMcCouch,
1997). They also can improve dietary proteins and essential
micronutrients for undernourished communities (Blair, 2013).
However, their diversity is often unexplored and underutilized
(Bronnvik and vonWettberg, 2019; Ramirez-Villegas et al., 2022).
Major cultivars typically lack adaptation to abiotic stresses
(i.e., heat and drought), jeopardizing worldwide yield stability,
given increasing effects of climate change (Cortés et al., 2020a).
Luckily, landraces and CWR, as well as orphan crop species, offer
novel adaptive alleles (Herron et al., 2020).

For instance, among legumes, bambara groundnut (Vigna
subterranea), chickpea (Cicer arietinum), cowpea (V.
unguiculata), grass pea (Lathyrus sativus), groundnut (Arachis
hypogaea), marama bean (Tylosema esculentum) (Cullis et al.,
2018), tarwi (Lupinus mutabilis) (Atchison et al., 2016; Gulisano
et al., 2019), and tepary bean—(Phaseolus acutifolius) (Buitrago-
Bitar et al., 2021; Burbano-Erazo et al., 2021) constitute genepools
of unexplored adaptive diversity for abiotic stresses. Among
cereals, orphan crops include teff (Eragrostis tef), sorghum
(Sorghum bicolor), and finger millet (Eleusine coracana) or
pearl and proso millets (Panicum spp, Pennisetum glaucum).
Many of these crops have interesting drought-tolerance traits and
some capacity to grow in compacted soils. Cowpeas, groundnuts,
and lesser known cereals are already traditional food sources and
biocultural components for vulnerable areas, especially in Sub-
Saharan Africa and parts of Asia and Latin America (Xiong et al.,
2016).

Yet, despite their tolerance to drought and heat plus their high
nutritional quality, the utilization of these orphan crops is limited
partly because of the poor characterization of their genetic
background (Wu et al., 2022). Therefore, a key research area
in orphan crop improvement is to expand the use of modern
molecular prebreeding tools for them (Ahmad et al., 2020), that
is, genome resequencing (Fuentes-Pardo and Ruzzante, 2017;Wu
et al., 2020) and genomic prediction (Desta and Ortiz, 2014), to
select genotypes for production in dry climates.

Still, a major question to harness crop prebreeding for climate
change pressures is whether there is enough heritable variation in
traits associated with tolerance to abiotic stress. In this context,
genomic characterizations of reference collections comprising
CWR, landraces, and orphan crops that span contrasting
habitats offer a straightforward scenario to identify natural
standing adaptation to abiotic pressures (Ramirez-Villegas
et al., 2022).

The spirit behind this novel approach is to detect genomic
regions that correlate with habitat heterogeneity as an indication
of the natural selection imprint to environmental gradients
(Forester et al., 2016). Since these signatures rely on a natural
equilibrium between genotypes and their environment (Hancock
et al., 2011), the ideal base population must prioritize natural
genotypes and landraces and avoid improved cultivars, for which
it is not realistic to assume that enough generations have passed as

to display divergent selection to environmental heterogeneity.
Hence, the goal of the present work is to review key developments
to explore and utilize natural adaptation in wild genepools for
climate change adaptation.

MODUS OPERANDI TO GENOMICALLY
ASSESS NATURAL EVOLUTIONARY
ADAPTATION
Coupling ecological genomics innovations (Cortinovis et al.,
2020b) with evolutionary adaptive trajectories (Ramírez et al.,
2010; López-Hernández and Cortés, 2019; Cortinovis et al.,
2020a; Ramirez-Villegas et al., 2020) helps capturing
adaptations in CWR and landraces, as shown for teosinte
(Pyhäjärvi et al., 2013), rice (Meyer et al., 2016), Glycine
(Anderson et al., 2016), and barley (Russell et al., 2016).

The current assortment of genomic pipelines that analyze
environmental variation in order to infer the genetic basis of
adaptation to natural selection include genome-wide selection
scans—GWSS (Zahn and Purnell, 2016), and genome-wide
environmental scans—GWES (Rellstab et al., 2015) also
known as genome–environment associations—GEAs, a term
we prefer based on its simplicity. While GWSS relies on the
outlier Bayesian tests contrasted against a genomic background
distribution (Antao et al., 2008), GEA uses mixed linear models
(MLMs) that incorporate random effects, such as kinship and
population stratification (Kruglyak, 2008). GEA behaves like
traditional genome-wide association study (GWAS), but
instead of modeling a set of phenotypic traits, it considers an
environmentally derived variable into its additive genetic factors.
These inferences could be misleading (Maher, 2008; Pennisi,
2014) if they overlook the confounding factors (Lambert and
Black, 2012; Wolf and Ellegren, 2017) such as demographic
(Barton et al., 2019) and genomic (Wray et al., 2013; Huber
et al., 2016; Ellegren andWolf, 2017) constraints also prevalent in
GWAS studies. Hence, MLM-based models, which are capable of
handling these spurious sources of error, are currently the
optimum approach for the use of GEA and environmental
variables to unveil the extent and genetic bases of local
adaptation in diverse natural populations (Abebe et al., 2015).

In the last decade, the GEA pipeline has been utilized to
characterize signatures of environmental adaptation in a rich
spectrum of plant species (Table 1). For instance, Eckert et al.
(2010) studied environmental associations with aridity across the
range of the pine tree Pinus taeda, showing utility of the GEA
approach for long-lifecycle, forestry species. This approach
proved useful for additional tree species in studies by Holliday
et al. (2016) and Pluess et al. (2016), respectively, who
demonstrated local adaptation to climate gradients in Populus
trichocarpa and Fagus sylvatica. More recently Ingvarsson and
Bernhardsson (2020) address climate adaptation in P. tremula
under present and future scenarios. With the increasing need for
biomass as a fuel source, GEA is likely to continue its important
role in the genetic analysis of other trees and woody species.

Meanwhile, for model plants, GEA has also gained in
popularity and has a somewhat longer history: Hancock
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TABLE 1 | Examples of GEA studies carried out in plant species. This compilation of previous studies explicitly refers to genome–environment association studies (GEA)
using the Scopus database https://www.scopus.com/ with the following search parameters: TITLE-ABS-KEY (“Genome – Environment Associations”) AND (LIMIT-TO
(DOCTYPE, “ar”)). The table is sorted chronologically. Method abbreviations are shown at the bottom of the table.

Species
approach

Sampling
data

Genotypic
data

Targeted
stress

Environmental data Analytical Main finding References

GLM Tolerance to
aridity

Pinus taeda 3,059 SNPs
and 23 SSRs

Aridity index and
Thornthwaite index using
biovariables http://
worldclim.org/version2

622 trees Environmental and
genetic data for the
identification of
functionally important
genetic variation within
natural populations

Eckert et al. (2010)

Genome-wide
scans

Local
adaptation to
climate
gradients

Arabidopsis ~215,000
SNPs

Aridity, temperature,
precipitation, radiation, and
day length http://www.
sciencemag.org/content/
suppl/2011/10/05/334.
6052.83.DC1.html

948 accessions Natural adaptive genetic
variation in Arabidopsis
at a continental scale

Hancock et al.
(2011)

Redundancy
analysis (RDA)

Local
adaptation to
climate
gradients

Arabidopsis 214,051 SNPs Potential
evapotranspiration using
annual precipitation and a
measure of aridity http://
worldclim.org/version2,
variability in precipitation
http://esrl.noaa.gov/psd/,
and photosynthetically
active radiation http://
eosweb.larc.nasa.gov/
PRODOCS/srb/table_srb.
html

1,003 accessions The climatic structure of
SNP correlations is due
to changes in coding
sequence that may
underlie local adaptation

Lasky et al. (2012)

MLM Drought and
heat stress

Medicago
truncatula †

1,918,637
SNPs

Biovariables http://
worldclim.org/current

202 accessions Genetic basis of
adaptation to drought
and heat stress
disclosed in M.
truncatula

Yoder et al. (2014)

EMMA Tolerance to
aluminum
toxicity and
drought
stress

Sorghum
bicolor

404,627 SNPs Potential
evapotranspiration using
annual precipitation and a
measure of aridity http://
worldclim.org/version2,
variability in precipitation
http://esrl.noaa.gov/psd/,
photosynthetically active
radiation https://eosweb.
larc.nasa.gov/project/srb/
srb_table, and edaphic
data http://daac.ornl.gov/
SOILS/guides/DunneSoil.
html, http://www.fao.org/
nr/water/docs/harm-
world-soil-dbv7cv.Pdf

1,943 accessions Genomic signatures of
environmental
adaptation may be
useful for crop
improvement, enhancing
germplasm
identification, and
marker-assisted
selection

Lasky et al. (2015)

BayeScan Local
adaptation to
climate
gradients

Populus
trichocarpa

~170,000
SNPs

Variables from Holliday
et al. (2016)

391 trees Physical proximity of
genes in coadapted
complexes may buffer
against the movement of
maladapted alleles from
geographically proximal
but climatically distinct
populations

Holliday et al. (2016)

LFMMs, GLM Local
adaptation to
climate
gradients

Fagus sylvatica 144
SNPs—12
SSRs

Environmental index from
raw variables in Pluess et al.
(2016) and references
herein

79 natural
populations

Local adaptation to
climate gradients

Pluess et al. (2016)

(Continued on following page)
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TABLE 1 | (Continued) Examples of GEA studies carried out in plant species. This compilation of previous studies explicitly refers to genome–environment association
studies (GEA) using the Scopus database https://www.scopus.com/ with the following search parameters: TITLE-ABS-KEY (“Genome – Environment Associations”)
AND (LIMIT-TO (DOCTYPE, “ar”)). The table is sorted chronologically. Method abbreviations are shown at the bottom of the table.

Species
approach

Sampling
data

Genotypic
data

Targeted
stress

Environmental data Analytical Main finding References

Bayenv,
Bayescan

Local
adaptation to
climate
gradients

Cenchrus
americanus

87,218 SNPs Variables from
Berthouly-Salazar et al.
(2016)

762 trees Outlier loci putatively
under selection detected
in populations at the
extremity of climatic
gradients, and tested ad
hoc in populations along
the gradients

Berthouly-Salazar
et al. (2016)

MLM, GLM Drought
stress

Phaseolus
vulgaris †

22,845 SNPs Drought index using
Thornthwaite model and
annual precipitation http://
worldclim.org/version2

86 accessions Genomic signatures of
adaptation are useful for
germplasm
characterization,
potentially enhancing
future marker-assisted
selection, and crop
improvement

Cortés and Blair
(2018a)

BayPass Abiotic
stresses

Arabidopsis 1,638,649
SNPs

Mean annual temperature;
mean coldest month
temperature; and
precipitations in winter,
spring, summer, and
autumn https://sites.
ualberta.ca/~ahamann/
data/climateeu.html

168 natural
populations

The identification of
climate-adaptive genetic
loci at a micro-
geographic scale also
highlights the
importance to include
within-species genetic
diversity in ecological
niche models for
projecting potential
species distributional
shifts

Frachon et al. (2018)

LFMMs
and GLM

Drought
stress

Beta vulgaris
subsp. vulgaris

14,409 SNPs Aridity index using
biovariables http://
worldclim.org/version2

1,249 accessions Wild individuals have
higher ability to resist
stress-aridity conditions
and could be used to
improve the resistance of
cultivated varieties

Manel et al. (2018)

LFMMs and
MSOD-MSR

Drought
stress

Medicago
truncatula †

43,515 SNPs Biovariables http://
worldclim.org/version2,
atmospheric nitrogen
deposition https://daac.
ornl.gov/, and soil variables
https://library.wur.nl/
WebQuery/wurpubs/
510208

202 accessions The importance of soil in
driving adaptation in the
system and elucidate the
basis of evolutionary
potential ofM. truncatula
to respond to global
climate change and
anthropogenic
disruption of the nitrogen
cycle

Guerrero et al.
(2018)

GLM Abiotic stress Zea mays 355,442 SNPs tmax, tmin, tavg, srad,
vapr, ph5, and prec https://
soilgrids.org http://
worldclim.org/version2

1,143 accessions Combining large-scale
genomic and ecological
data in this diverse maize
panel, this study
supports a polygenic
adaptation model of
maize and offers a
framework to enhance
the understanding of
maize adaptation

Li et al. (2019)

(Continued on following page)
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TABLE 1 | (Continued) Examples of GEA studies carried out in plant species. This compilation of previous studies explicitly refers to genome–environment association
studies (GEA) using the Scopus database https://www.scopus.com/ with the following search parameters: TITLE-ABS-KEY (“Genome – Environment Associations”)
AND (LIMIT-TO (DOCTYPE, “ar”)). The table is sorted chronologically. Method abbreviations are shown at the bottom of the table.

Species
approach

Sampling
data

Genotypic
data

Targeted
stress

Environmental data Analytical Main finding References

SUPER
FarmCPU,
BLINK, GLM,
and MLM

Heat stress Phaseolus
vulgaris †

23,373 SNPs PCA from temperature
biovariables, modified heat
Thornthwaite index, and
heat index http://worldclim.
org/version2

78 accessions It is feasible to identify
genome-wide
environmental
associations with
modest sample sizes by
using a combination of
various carefully chosen
environmental indices
and last-generation
GWAS algorithms

López-Hernández
and Cortés (2019)

Bayenv2 Drought and
heat stress

Betula nana 14,889 SNPs Biovariables http://
worldclim.org/version2

130 accessions Significant correlation
between the number of
loci associated with each
environmental variable in
the GEA, and the
importance of each
variable in environmental
niche modeling

Borrell et al. (2019)

LFMMs Drought and
heat stress

Quercus
aquifolioides

381 SNPs Isothermality, mean
temperature of the driest
quarter, precipitation
during the dry season, and
precipitation during the wet
season http://worldclim.
org/version2

60 accessions Genetic variation in Q.
aquifolioides showed
contrasted patterns of
local adaptation in the
two lineages

Du et al. (2020)

CANCOR Drought
stress

Lolium
perenne

189,968 SNPs Environment index http://
etccdi.pacificclimate.org/
index.shtml, soil data
https://esdac.jrc.ec.
europa.eu/, and
biovariables http://
worldclim.org/version2

469 natural
populations

CANCOR retrieved 633
outlier loci associated
with two climatic
gradients, characterized
by cold–dry vs. mild–wet
winter, and long rainy
season vs. long summer,
pointing out traits
putatively conferring
adaptation at the
extremes of these
gradients

Blanco-Pastor et al.
(2020)

BLINK Drought and
heat stress

Sorghum
bicolor L.

72,190 SNPs Altitude, annual
temperature, and
precipitation of accessions’
passport data from Girma
et al. (2020)

1,425 accessions Candidate loci identified
with the GEA will have
potential utilization for
germplasm identification
and sorghum breeding
for stress

Girma et al. (2020)

BAYESCENV Drought and
heat stress

Circaeaster
agrestis

6,120 SNPs Isothermality,
evapotranspiration,
temperature seasonality,
temperature annual range,
annual precipitation, and
seasonality precipitation
www.chelsa-climate.org

139 accessions Genome-wide data
provide new insights into
the important role of
environmental
heterogeneity in
accessing the footprints
of local adaptation in an
ancient relictual species

Zhang et al. (2020)

LFMMs Abiotic stress Populus
tremula

8,007,303
SNPs

Abiotic index ENVIREM
http://envirem.github.io,
climatic variables based on
the CCSM4.0 model http://
www.cesm.ucar.edu/
models/ccsm4.0/ccsm/,
and biovariables http://
worldclim.org/current

94 trees Climate adaptation in P.
tremula under present
and future scenarios

Ingvarsson and
Bernhardsson
(2020)

(Continued on following page)
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et al. (2011) and Lasky et al. (2012) have explored natural
adaptive genetic variation in Arabidopsis at a continental scale
and for water use efficiency, Yoder et al. (2014) disclosed the
genetic basis of adaptation to drought and heat stress in
Medicago truncatula.

For orphan crops, rather than nondomesticated natural plant
species, fewer GEA studies have been undertaken. Although still
limited to the easier-to-grow annual grain species compared to
perennial and root/tuber crops, GEA is starting to make
important contributions to genetic analysis of landraces and

WCR germplasm, often richly represented in the world’s
major gene banks for crop species. The analytical pipeline for
GEA studies is shown in Figure 1, with the input data, analytical
models, and outputs found when inferring genome-wide
signatures of environmental adaptation in crop wild relatives
(CWR) and landraces that span heterogeneous environments.
The reader is referred to pertinent examples of GEA in crop
species or their CWR which include Lasky et al. (2015), who
prospected natural tolerance to aluminum toxicity and drought in
cultivated sorghum; Berthouly-Salazar et al. (2016), who captured

TABLE 1 | (Continued) Examples of GEA studies carried out in plant species. This compilation of previous studies explicitly refers to genome–environment association
studies (GEA) using the Scopus database https://www.scopus.com/ with the following search parameters: TITLE-ABS-KEY (“Genome – Environment Associations”)
AND (LIMIT-TO (DOCTYPE, “ar”)). The table is sorted chronologically. Method abbreviations are shown at the bottom of the table.

Species
approach

Sampling
data

Genotypic
data

Targeted
stress

Environmental data Analytical Main finding References

BLINK Drought and
heat stress

Sorghum
bicolor L.

54,080 SNPs Altitude, annual
temperature, and
precipitation http://
worldclim.org/version2

940 accessions The current study aimed
to better understand the
GEA of a large collection
of Ethiopian sorghum
landraces, characterized
with genome-wide SNP
markers, to investigate
key traits related to
adaptation

Menamo et al.
(2021)

FarmCPU Cold stress Broussonetia
papyrifera

2,936,477
SNPs

Frost-free period and other
climatic information http://
data.cma.cn

134 accessions Significant selective
regions and candidate
genes were identified,
and the potential
molecular mechanism of
local adaptation to low
temperature in woody
plants was discussed

Hu et al. (2021)

MLM Drought
stress

Phaseolus
acutifolius A.
Gray †

Genes Asr2,
Dreb2B,
ERECTA

Drought index using
Thornthwaite model and
annual precipitation http://
worldclim.org/version2

52 accessions The results suggested
that tepary bean,
specially wild
accessions, could be
sources of novel alleles
for drought tolerance

Buitrago-Bitar et al.
(2021)

MLM Abiotic stress Phaseolus
vulgaris L. †

28,823 SNPs Biovariables from http://
worldclim.org/version2

110 accessions SNP markers and
candidate genes
associated with bio-
climatic variables should
be validated in
segregating populations
for water MAS

Elias et al. (2021)

LFMMs Abiotic stress Medicago
truncatula †

14,160 SNPs Worldclim.org (WC), The
Climatic Research Unit
(University of East Anglia)
(CRU), The Satellite
Application Facility on
Climate Monitoring, and
The NASA Distributed
Active Archive Centre for
Biogeochemical Dynamics
(DAAC)

675 accessions Authors identified a set
of candidate genes for
adaptation associated
with environmental
gradients along the
distribution range

Blanco-Pastor et al.
(2021)

LFMMs Abiotic stress Medicago
sativa †

10,478 SNPs 202 accessions

FarmCPU, fixed and random model circulating probability unification; BLINK, Bayesian-information and linkage-disequilibrium iteratively nested keyway; LFMMs, latent factor mixed
models; CANCOR, canonical correlation analysis; SUPER, settlement of MLM under progressively exclusive relationship; MSOD-MSR, Moran spectral outlier detection/randomization;
EMMA, mixed linear association model; MAS, marker-assisted selection.
Symbol † indicates studies in legume species.
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genomic regions involved in adaptation on two climate gradients
in pearl millet; Cortés and Blair (2018a), who evaluated drought-
tolerance sources of common bean (Phaseolus vulgaris) WCR; or
López-Hernández and Cortés (2019), who identified pervasive
divergent adaptation to continental-level heat gradients in wild
accessions of this same species.

Historically, based on the technological improvements in
sequencing and SNP detection and as a means to improve
GEA, the field has moved from the candidate gene approach
(Cortés et al., 2012a; Cortés et al., 2012b; Blair et al., 2016;
Buitrago-Bitar et al., 2021) into full genomic scans (Cortés and
Blair, 2018a; López-Hernández and Cortés, 2022), which better
account for linkage disequilibrium (LD) heterogeneity. In this
movement, the targeting of discrete responses to abiotic
pressures has aided GEA studies, by explicitly relying on
the mechanistic ecophysiological models and traits (Cortés
et al., 2013) for overall conditions such as drought (Cortés and
Blair, 2018a) and heat stress (López-Hernández and Cortés,
2022).

MORE POWERFUL NEXT-GENERATION
GEA MODELS MEET EVOLUTIONARY
ECOLOGY
As discussed previously, GEA is becoming a key tool to
prospect for new genes among crop wild accessions and
landraces as an alternative to traditional phenotyping and

GWAS analyses (Cortés et al., 2022). However, there is still
room for innovation. For example, we envision dual GEA
models that combine inferences at various spatial and
temporal scales, following Cortés et al. (2020a), by 1)
predicting regional- and microhabitat-wise evolutionary
adaptation with in situ ecological georeferencing of
accessions, and by 2) revealing the genomic architecture of
adaptation via cutting-edge predictive models (Rellstab et al.,
2015; Forester et al., 2016).

Concerning the first point, standardized climate data for GEA
studies are as important as high-quality genotyping to guarantee
analytical power (Waldvogel et al., 2020). Climate-based inferences
may target extreme regions, like those where drought is coupled
with extreme temperatures (Lei et al., 2019). The high-resolution
climate data can be gathered from worldwide repositories (such as
WorldClim, https://www.worldclim.org/) using georeferencing
and statistical downscaling (Zellweger et al., 2019) in order to
build explicit heat–stress physiological indices (Cortés et al., 2013;
López-Hernández and Cortés, 2019) at regional and local scales,
respectively. The use of explicit indices, instead of raw
environmental variables, helps describing physiological processes
more accurately, especially those that confer tolerance to abiotic
stress. For instance, the same environmental dataset can be
inputted into an evapotranspiration model to infer drought
stress (Cortés et al., 2013) and its genetic bases (Cortés et al.,
2012a; Cortés et al., 2012b; Blair et al., 2016; Cortés and Blair,
2018a), or to assess heat tolerance (López-Hernández and Cortés,
2019). It is equally paramount to collect the spatial high-resolution
climate data to improve predictions not only at regional scales
(Pluess et al., 2016), but also at microhabitat levels (Cortés et al.,
2015; Frachon et al., 2018), where adaptive variation to cope with
abiotic pressures is overlooked but is sufficient (Cortés and
Wheeler, 2018). Remote sensing (Zellweger et al., 2019) also
promises better capture of environmental heterogeneity
(Ratcliffe et al., 2019).

Concerning the second opportunity for improvement,
characterizing genome-wide signatures of environmental
adaptation to habitat-inferred stress in CWR and landraces that
span heterogeneous climates will benefit from inputting habitat-
based abiotic stress indices into the last-generation mixed linear
models (MLMs) and machine learning (ML) (Schrider and Kern,
2018; Cortés et al., 2020b), capable of handling spurious effects
(Barton et al., 2019) in multidimensional data, while detecting
predictive genomic regions that correlate with habitat/
environmental heterogeneity, as an indication of the genomic
imprint by climate gradients (Hancock et al., 2011).

OVERCOMING POLYGENIC ADAPTATION

Overall, CWRand landraces undeniably harbor unique adaptations to
abiotic stresses, rarely present in the cultivated and improved
genepools (Tester and Langridge, 2010). However, unlocking and
utilizing this potential (Tanksley and McCouch, 1997; Langridge and
Robbie, 2019) has remained challenging partly due to phenotyping
bottlenecks in the wild, and the complex inheritance (Morran et al.,
2011) of trait variation for abiotic stress tolerance, typically involving

FIGURE 1 | Analytical pipeline to infer genome-wide signatures of
environmental adaptation in crop wild relatives (CWR) and landraces that span
heterogeneous environments. The green shaded box refers to gene bank
collections, while white, red and blue shaded boxes represent input
data, analytical models and output inferences, respectively (Cortés et al.,
2020a; Cortés et al., 2020b; Cortés and López-Hernández, 2021). Genomic
prediction (GP) and genomic-estimated adaptation values (GEAVs) promise
speeding up plant breeding goals.
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many loci with low effects (López-Hernández and Cortés, 2019). To
bridge this gap, we propose extending genomic prediction (GP)
models and genomic estimated breeding values (GEBVs) to
account for the habitat-based dimensions by coining the analogous
parameter genomic estimated adaptation values—GEAVs (Capblancq
et al., 2020; Arenas et al., 2021), equivalent to the polygenic risk score
(PRS) within a preimplantation genetic diagnosis framework. To
compute GEAVs, the GP models used must be calibrated (trained
and tested) to predict the environmental indices and polygenic
adaptability (liability) thresholds.

GP works either on the basis of shared relatedness (typically
measured as relationships due to recent coancestry) or on the basis of
linkage disequilibrium (LD) between the SNP marker loci and the
genetic variants that underlie phenotypic variation (Thistlethwaite
et al., 2020). The relationships between the training and testing
datasets are critically important and therefore must be optimized
as part of any GP effort. As a general suggestion, the more diverse the
training dataset is, the more robust the prediction will be. Hence,
coupling cross-validation calibration curves under various training/
testing ratios with simple measures of diversity, such as
heterozygosity and runs of homozygosity (ROH), is appropriate.
However, in the absence of demonstrated relationships or LD, there is
no apparent basis for GP’s predictive accuracy, raising the possibility
of statistical artifacts. To overcome this issue, pairwise LD among
SNP markers helps to interpret GWAS-type GEA associations
(Morton, 2005), and this a prerequisite for any GP initiative.

The predictive ability of GP models may be further biased
depending on whether the entire SNP set is used, or the most
predictive SNP data are chosen after the GWAS-type analysis
(Wray et al., 2013), the latter being a common practice in modern
GP studies. The polygenic infinitesimal model that makes GP so
unique may be jeopardized by subsampling the SNP markers
because relying only on GEA-derived SNP markers would
disregard SNPs with low effects that are usually missed, but
that may still account for the overall missing heritability.

Better approaches to be implemented and reported include 1)
weighted GP models using de novo GWAS-based GEA estimates
gathered from other (or even the same) panels (Spindel et al., 2016)
and 2) optimization of the marker set by computing the saturating
curves of the predictive ability, given various sets ofmarkers ranked
by their beta effects from the exact same GP model and not from
any parallel GWAS-derived GEAmodels (Resende et al., 2012; Tan
et al., 2017). GP can also be improved in efficiency by validating the
GEAV scores across diverse populations, allowing better G × E
predictions within the nascent field of enviromics (Resende et al.,
2021; Cooper and Messina, 2021; Costa-Neto et al., 2021). GEAVs
can boost incorporation of landraces and CWR as parents in
marker-assisted backcrossing (MAB). Marker set optimization
for environmental GP (Jarquín et al., 2013; Lopez-Cruz et al.,
2015) would benefit crop prebreeding initiatives for abiotic
tolerance MAB, mergeable with the speed-breeding strategies
(Migicovsky and Myles, 2017; Watson et al., 2018), high-
throughput screening (Cuppen, 2007), and ML-updated best
linear unbiased prediction (BLUP) models (Wenlong et al.,
2018; Crossa et al., 2019; Abdollahi-Arpanahi et al., 2020;
Cortés et al., 2020b; Wang et al., 2020; Zingaretti et al., 2020;
Montesinos-López et al., 2021).

PERSPECTIVES TO BETTER HARNESS
GENOME FUNCTIONALITY IN THE WILD

Next-generation GEA models and GEAVs will allow the use of
“exotic” parents for targeted predictive prebreeding in crop species.
They offer feasible methodologies to trace the sources of abiotic
stress adaptation and tolerance targeting crop resources in low-
income countries, which are also the most vulnerable to climate
change. Here, we have discussed strategies to implement the latest-
generation predictive (e.g., Cortés et al., 2013) and genomic (Cortés
and Blair, 2018a; López-Hernández and Cortés, 2019) approaches to
study adaptation in CWR and landraces (Cortés and Blair, 2018b;
Cortés et al., 2020a), but similar work could be done for any
orphan crop.

Modern GEA approaches will allow further studies of
evolutionary conservatism, parallelism, and convergence in the
genetic architecture of adaptation to various types of abiotic
stresses across a wide range of environments, landraces, and wild
accessions (Cortés and López-Hernández, 2021). Approaches such
as these are needed to discern among drivers (Ellegren and Galtier,
2016) of the adaptive landscape of genomic divergence (Feder et al.,
2012; Gompert et al., 2014; Cortés et al., 2018b), such as ecological
diversity, population structure, ancestral polymorphisms, mutation/
recombination rates (Feder et al., 2012; Ellegren and Wolf, 2017;
Ravinet et al., 2017; Cortés and Blair, 2018b), and nested levels of
divergence (Nosil and Feder, 2011; Wolf and Ellegren, 2017; Cortés
et al., 2018a).

How genetic diversity and genomic divergence arise and are shaped
based on ecological pressures is one of themain questions inmolecular
evolution (Tiffin and Ross-Ibarra, 2014) and has been implicit even in
the pregenetics-era studies of ecological transects by famous botanists
such as von Humboldt. GEA studies can contribute valuable insights
into the field of molecular evolution due to their ability to detect
convergent or nonconvergent adaptations (Schmutz et al., 2014).
Ecologically associated SNPs are likely to exhibit hitchhiking effects
(Feder and Nosil, 2010) due to the low recombination rate and
extensive LD (Kelleher et al., 2012; Blair et al., 2018).

Therefore, GEA efforts can be enhanced by exploring SNP
density and statistics of site frequency spectra (e.g., nucleotide
diversity and Tajima’s D) in associated vs. nonassociated regions
(Cortés and Blair, 2018a). Figure 2 shows an example of these
principles used in common bean to identify and harness natural
signatures of environmental adaptation across diverse genepools,
with the genome-wide patterns of genetic divergence, as measured
by the FST statistic (A). Once the potential confounding
demographic patterns have been accounted for, it is then feasible
to disentangle genuine signatures of environmental adaptation (B)
from spurious concurring genetic drift due to genomic constraining
features. Finally, these combined summary statistics
(i.e., ecophysiological indices, population stratification, and LD)
can ultimately redound in prebreeding efforts aiming to
introgress exotic adaptive variation into elite lines (C), for
instance, via backcrossing (BC) schemes for abiotic and biotic
stresses.

All drivers must be considered as ad hoc multiple hypotheses
(Chamberlin, 1897) since extensive LD and hitchhiking may not
only be due to physical linkage and low recombination/effective
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population size (Slatkin, 2008), but also to population stratification,
sample’s co-ancestry (Price et al., 2010; Blair et al., 2012), within-
pathway gene-gene and G × E interactions (Ortiz et al., 2022), and
context-dependent effects of epistasis, even if assumed to beminimal
in diploid model crop species.

In-depth GEA studies on the molecular mechanisms of
evolutionary divergence involving the genomics and functional
genetic dissection of adaptive loci enable addressing long-term
transdisciplinary questions such as 1) how genomic features
(i.e., meiotic crossover hot- vs. cold-spots, as pericentromeric
regions and inversions) impact the rate of adaptation and
modulate adaptive evolution to new environments (Huang et al.,
2020; Huang and Rieseberg, 2020; Todesco et al., 2020), 2) how old
adaptive haplotypes (standing variation) and more recent

recruitment of novel mutations balance during the rapid events
of changing climate (Jones et al., 2012a; Jones et al., 2012b), 3) what
effects the noncoding cis-regulatory mutations contribute to the
genomic basis of adaptation, and 4) towhich scale epigenomicmarks
[i.e., chromatin accessibility, histone profiling, transposable
elements, and sRNA (Kaasik and Chi Lee, 2004; Slotkin and
Martienssen, 2007)] regulate plastic gene expression within the
same genotype (Bossdorf et al., 2008), and may be transferred via
transgenerational epigenetic inheritance (Heard and Martienssen,
2014; Boskovic and Rando, 2018; Hu et al., 2018; Lacal and Ventura,
2018), eventually impacting divergent adaptation in natural
populations (Chinnusamy and Zhu, 2009).

Ultimately, GEA is empowering the understanding on how plant
genomes interact with their environment while shaping adaptive

FIGURE 2 | An integrated case study inspired in common bean (Phaseolus vulgaris L.) accessions exemplifies how to identify and harness natural signatures of
environmental adaptation across diverse genepools. First, (A) genome-wide patterns of genetic divergence, as measured by the FST and delta divergence (Roesti et al.,
2014) statistics, inform underlying confounding demographic processes across wild accessions (Blair et al., 2012) and landraces (Blair et al., 2009). Even though highly
polymorphic markers have traditionally been preferred for demographic inferences (Blair et al., 2009; Kwak and Gepts, 2009), modern SNP genotyping
technologies also enable reconstructing the genomic landscape of divergence at a higher resolution (Cortés et al., 2011; Wu et al., 2020). Once potential confounding
demographic patterns have been accounted for, (B) it is then feasible to disentangle genuine (in red) signatures of environmental adaptation (Cortés et al., 2018b) from
spurious concurring genetic drift due to genomic constraining features such as low recombining regions, reduced effective population size, and translocations (Blair et al.,
2018). In order to improve genome–environment associations (GEA), the field has moved from the candidate gene approach (Cortés et al., 2012a; Cortés et al., 2012b;
Blair et al., 2016; Buitrago-Bitar et al., 2021) into full genomic scans (Cortés and Blair, 2018a; López-Hernández and Cortés, 2022), which better account for linkage
disequilibrium (LD) heterogeneity. It is also advisable to target discrete abiotic pressures by explicitly relying on the mechanistic ecophysiological models (Cortés et al.,
2013) such as drought (Cortés and Blair, 2018a) and heat stress (López-Hernández and Cortés, 2022). Finally, (C) these combined summary statistics
(i.e., ecophysiological indices, population stratification, and LD) can ultimately redound in prebreeding efforts aiming to introgress exotic adaptive variation into elite lines,
for instance, via backcrossing (BC) schemes for abiotic (Muñoz et al., 2003; Blair et al., 2006; Blair and Izquierdo, 2012; Burbano-Erazo et al., 2021) and biotic (Garzon
et al., 2008) stresses, all guided with indirect (Miklas et al., 2006) genomic selection tools such as marker-assisted selection (MAS) and genomic selection, GS (Cortés
et al., 2020a; Cortés et al., 2020b; Cortés and López-Hernández, 2021) within a moder enviromics approach (Cooper et al., 2021). Different line colors stand for
hypothetical distinct chromosomes. Dashed horizontal lines mark significance thresholds.
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phenotypes. Such mechanistic insights of the genome functionality
in the wild promise leveraging the characterization of landraces and
CWR to assist prebreeding efforts through multi-dimensional
adaptive scores (e.g. GEAVs), as well as the identification of
underlying factors that may facilitate or constrain future adaptive
responses to changing climate.

Lastly, GEA studies offer new possibilities to efficiently unlock
crop diversity for climate adaptation (Tanksley and McCouch,
1997). Unexplored variation already contained in genebanks
(Smale and Jamora, 2020) may speed up resilience to extreme
temperatures, and more frequent drought and flooding events
(Dwivedi et al., 2016). The modern genome–environment
framework, coupled with explicit ecophysiological indices and
last-generation association models, promises a scalable strategy to
assist with the identification and deployment of exotic variation
capable of maturing earlier and harvesting acceptably in erratic
climatic conditions. Levering reverse genomic and ecological
resources for CWR and landraces will improve available pipelines
such as focused identification of germplasm strategy, FIGS (Stenberg
and Ortiz, 2021). Such efforts to prebreed resilient crop genotypes
with greater accuracy may ultimately enable small-scale farmers’
adaptation to changing climate (Razzaq et al., 2021).
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