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A B S T R A C T   

The four rounds of National Family Health Survey (NFHS) conducted during 1992–93, 1998–99, 2005-06 and 
2015-16 is main source to track the health and development related indicators including nutritional status of 
children at national and state level in India. Except NFHS-4, first three rounds of NFHS were unable to provides 
district-level estimates of childhood stunting due to the insufficient sample sizes. The small area estimation (SAE) 
techniques offer a viable solution to overcome the problem of small sample size. Therefore, this study uses SAE 
techniques to derive district level prevalence of childhood stunting corresponding to NFHS-2 (1998–99). Study 
further estimated GIS maps, univariate Local indicator of spatial autocorrelation (LISA) and Moran’s I to un
derstand the trend in district level childhood stunting between NFHS-2 and NFHS-4. Estimates obtained by SAE 
techniques suggest that prevalence of childhood stunting ranges from 20.7% (95% CI: 18.8–22.7) in South Goa 
district of Goa to 64.4% (95%CI: 63.1–65.7) in Dhaulpur district of Rajasthan during 1998–99. The diagnostic 
measures used to validate the reliability of estimates obtained by SAE techniques indicate that the model-based 
estimates are reliable and representative at district level. Results of geospatial analysis indicates substantial 
reduction in childhood stunting between 1998 and 2016. Out of 640 district,about 81 district experience 
reduction of more than 50%. At the same time 60 district experience less than 10% of reduction between 1998 
and 2016. Spatial clustering of childhood stunting remains same over the study period except few additional 
cluster in Maharashtra, Andhra and Meghalaya in 2016. The district level estimates obtained from this study 
might be helpful in framing decentralized policies and implementation of vertical programs to enhance the ef
ficacy of various nutrition interventions in priority districts of the country.   

Introduction 

Childhood stunting is a major public health issue and have both short 
and long term consequences on health. Short term effect includes 
morbidity, mortality and poor cognitive development during early 
childhood (Rice et al., 2000; Ijarotimi, 2013; Singh et al., 2017; Myatt 
et al., 2018). Recent estimates from India State-level Disease Burden 
Initiative suggest that more than 20% deaths and disease burden among 
Indian children under age five-years can be attributed to childhood 
malnutrition (Dandona et al., 2020; Swaminathan et al., 2019). Long 
term consequences are poor cognitive development, poor school per
formance, low productive and short adult stature (Victora et al., 2008; 
Adair et al., 2013; Karra & Fink, 2019; Paul & Singh, 2020). Reducing 
childhood undernutrition by 50% till 2015 from its level in 1990 was 

one of the essential objectives of Millennium Development Goal (MDG 
2000). In post MDG plan, Sustainable Development Goal (SDG) was 
launched and aimed to eradicate childhood malnutrition by 2030. India 
has experienced a remarkable decline in prevalence of childhood 
stunting from 54% in 1992 to 38% in 2016 but fail to achieve the target 
set by MDG. However, improvements have been unevenly distributed 
across different states of India. At state level childhood stunting ranging 
from 20% in Kerala to 48% in Bihar, wasting from 7% in Mizoram to 
29% in Jharkhand and underweight from 12% in Mizoram to 48% in 
Jharkhand (IIPS & ICF, 2017). Variations are expected at district level 
within the states due to difference in socioeconomic, demographic and 
ecological conditions which may affect child health outcome. 

In India, the main source of data for child nutrition comes from 
National Family Health Survey (NFHS) (Demographic and Health 
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Survey in other countries). Till date four rounds of NFHS have been 
conducted during 1992–93, 1998–99, 2005-06 and 2015–16. Unfortu
nately, estimates on child health at smallest administrative unit (for 
example, district-level) were not available for child health indicators 
before fourth round of NFHS (2015–16). There is some evidence of 
subnational estimates of childhood malnutrition that uses data from 
single round of NFHS (Singh et al., 2011; Khan & Mohanty, 2018; Singh 
et al., 2019). However, there is lack of district level trends in childhood 
malnutrition over a long period of time. In the absence of reliable district 
level estimates for health indicators, it is difficult to track the progress 
on childhood stunting at lowest administrative units. 

In absence of representative sample at a lower administrative level 
Small Area Estimation (SAE) techniques became the best option to es
timate key developmental indicators at fine geographic level. SAE has 
been widely used in India and other countries to provide reliable esti
mates at local level in absence of representative sample. Therefore, 
firstly present study will provide district level childhood stunting for the 
years 1998-99 by using SAE techniques. Notably, prior studies from 
India have used this technique mainly to provide estimate on agricul
tural indicators. Sud et al. (2011) provided district-level estimates of 
crop yield for paddy in Uttar Pradesh. Another study by Chandra et al. 
(2011) also uses SAE to determine the district level estimates of 
indebtedness in Uttar Pradesh. Further, the SAE was used to derive es
timates of poor households at the districts of Uttar Pradesh and Orissa 
(Chandra et al., 2018; Mohanty & Swain, 2018). Recently using data 
from National Crime Records Bureau, Vicente et al. (2018) estimated the 
district level rape incidence risk in Uttar Pradesh . Apart from this a few 
study used SAE to examine the vaccination coverage and infant mor
tality rate at district level in India (Pramanik et al., 2015). However, 
study from other countries have used SAE techniques for estimating 
under-five mortality, childhood undernutrition, institutional delivery, 
smoking and contraceptive prevalence rate (Dwyer-Lindgren et al.; 
Aliaga & Muhuri, 1994; Fujii, 2010; Johnson et al., 2010; Song et al., 
2016; Chandra et al., 2018). So far, majority of the previous studies from 
India uses SAE methodology to provide the estimates in the field of 
agriculture and socioeconomic status, however there is lack of use of 
SAE techniques in public health in India (Elbers et al., 2003). To the best 
of our knowledge, this is the first study from India which intended to use 
SAE techniques to provide estimates for childhood stunting at district 
level. Second, the estimates obtained by SAE techniques for the year 
1998-99 and direct estimates of childhood stunting obtained by NFHS-4 
(2015–16) will be used to see the district level changes in prevalence of 
childhood stunting between 1998-99 and 2015–16. Distribution of 
childhood stunting must be varying across the geographical regions; 
thus, mapping of nutritional status and tracking the districts lagging in 
reduction of childhood stunting over the period may help to improve the 
program in terms of allocation of resources and policy decision which 
favors to child health. 

Data and methodology 

Data 

The present study is based on the analysis of secondary data collected 
under different rounds of Indian NFHS and Census of India. The NFHS is 
the repeated cross-sectional survey which was aimed to collect the detail 
information about the several health and nutritional indicators in India 
approximately with the gap of 5 years since 1992–93. The census of 
India is one of the important and largest data sources in India, which 
provides information on a variety of socio-economic, demographic, 
educational characteristics and migration status of people at disaggre
gate level. Details about used data set has been given in the appendix 
(see appendix). The study aims to derive the district level estimates of 
childhood stunting in all districts of India for the year 1998-99 using SAE 
technique by combining census and survey data. 

Outcome variable 

The outcome variable is childhood stunting, which is drawn from 
NFHS and binary at unit level. According to WHO criteria children have 
height-for-age z-score less than -2SD has been called as ‘stunted’. The 
parameter of interest is to estimate the district level prevalence of 
childhood stunting under age 3 years for NFHS-2 (1998–99). Notably, 
NFHS-4 (2015–16) was designed to provide district level estimates for 
key maternal and child health indicators including childhood stunting, 
therefore, study did not used SAE technique to estimate prevalence of 
stunting for the NFHS-4 (IIPS and ICF 2017). The study could not include 
NFHS-1 (1992–93) because NFHS-1 did not collect children’s height in 
five major states (Andhra Pradesh, Himachal Pradesh, Madhya Pradesh, 
Tamil Nadu and West Bengal) of India. NFHS-3 (2005–06) was also 
excluded from the analysis due to unavailability of district codes in the 
data. The study restricted our analysis for children under age 3 years as 
NFHS-2 (1998-99) were collected information on key indicators of child 
health and developemnt only for those who were born in three years 
prior to survey. 

Exposure variables 

Exposure variables for the study are taken from the population 
census of India, 2001. The exposure variables are those which is known 
for the entire populations and works as auxiliary information in SAE. 
The best-chosen auxiliary variables were household size, women’s 
workforce participation, availability of separate kitchen for cooking, 
availability of the improved source of drinking water and availability of 
clean fuel for cooking. It may be possible that there are some other in
dicators which may affect the nutritional status of children, but the 
present study did not consider those indicators due to unavailability of 
the information in census data. 

Methodology 

First, direct estimates of childhood stunting for NFHS-2 (1998–99) 
were calculated by dividing the number of stunted children to number of 
sample children in each districts. Notably, number of sample children 
varies from 1 to 587 with an average sample of 57 children in each 
district (see Table S1 in the appendix). Likewise, the number of stunted 
children also varies from 0 to 253 with an average sample of 28 stunted 
children. Further, the direct estimates of childhood stunting vary from 
0% to 100% at district level, which appears to be very unstable due to 
insufficient sample. Therefore, SAE technique was applied to produce 
precise estimates of prevalence of childhood stunting at district level for 
the year 1998–99. The fundamental tenet of SAE approach is to use 
statistical models to link the variable of interest with auxiliary infor
mation such as census and administrative data to produce model-based 
estimators for small areas. In other words, if the area-specific direct 
estimators do not provide adequate precision, then in making estimates 
for small area quantities it is necessary to employ model-based estima
tors that “borrow strength” from other areas. The small areas defined in 
this study are the districts. Small area models can be classified into two 
broad types namely area level or unit level model. Area-level modelling 
is typically used when unit-level data are unavailable, or, as is often the 
case, where model covariates or auxiliary variables are only available in 
aggregate form. We adopt the area level small area modelling because 
the auxiliary variables are available only at the district level. In partic
ular, the present analysis considers the area level generalized linear 
mixed model (GLMM) with logit link function, also referred to as the 
logistic linear mixed model, which is generally fitted for binary variable 
(Chandra et al., 2011). In the fixed effect part of model, states were used 
dummy variable to account for unobserved state-specific heterogeneity. 
In general, in order to derive representative and precise estimates, 
sampling weight should be incorporated in SAE to account for complex 
sampling design. This study adopted Chandra et al. (2019) approach to 
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incorporate the sampling design in SAE under an area level version of 
GLMM. 

In small area modelling, certain diagnostics measures are applied to 
evaluate the validity and accuracy of estimates. In practice, two types of 
diagnostics measures are executed in SAE: the model diagnostics, and 
the diagnostics for the small area estimates (Chandra et al., 2011). The 
model diagnostics are examined to verify the assumptions of the un
derlying model, i.e., how well the model performs when it is fitted to 
data. In small area model, the random area specific effects are assumed 
to have a normal distribution with mean zero and fixed variance. If the 
model assumptions are satisfied, then the area or district level residuals 
are expected to be randomly distributed around zero. The second di
agnostics are used to validate the reliability of model based district level 
estimates generated by SAE technique and are measured through a) bias 
diagnostic, b) percent coefficient of variation (CV) diagnostic and c) 95 
per cent confidence interval (CI) diagnostic. The bias diagnostics are 
used to investigate if the model-based estimates of childhood stunting 
are less extreme than the direct survey-based estimates. The percent CVs 
were used to assess the improved precision of the model-based estimates 
compared to the direct survey based estimates. It is well known that the 
CVs show the sampling variability as a percentage of the estimate. Es
timates with low CVs than larger CVs were considered as more reliable. 
However, there is no cutoff to define ‘too large CVs’ (Amoako Johnson 
et al., 2012; Chandra et al., 2011, 2018; Johnson et al., 2010). The 95 
per cent CIs of the model-based estimates and direct estimates were 
compared to validate the robustness of our model-based estimates of 
childhood stunting (Johnson et al., 2010). The detail theoretical illus
tration of SAE techniques are given in next section. 

Finally, we produced GIS maps, univariate local indicator of spatial 
autocorrelation (LISA) and Moran’s I to understand the trend and 
pattern in district level childhood stunting between 1998 and 2016. 
LISA maps help to identifying local clusters and spatial outliers. LISA 
maps classify clusters into high-high, low-low, high-low, and low-high. 
Usually, high-high and low-low are known as spatial clusters. 
Whereas, high-low and low-high are known as spatial outliers (Anselin, 
1995). On the other hand, Moran’s I measures spatial autocorrelation i. 
e. to what degree the data points are similar or dissimilar to their spatial 
neighbors. While positive Moran’s I indicates that points with similar 
attribute values are closely distributed in space, negative Moran’s I in
dicates that closely associated points are more dissimilar. The value of 
Moran’s I ranges between − 1 and +1. A zero value indicates random 
spatial autocorrelation. 

Notably, sampling framework adopted for NFHS-2 and NFHS-4 was 
Census of India 1991 and 2011 respectively. In NFHS-2 there was 438 
districts whereas in NFHS-4 there was 640 districts in India. In order to 
see the changes in prevalence of childhood stunting between 1998-99 
and 2015–16, study first calculated the district level prevalence of 
childhood stunting for 640 districts corresponding to year 1998–99. 
Three type of classification were made while adjusting increases in 
number of the districts over the years. 1) The unchanged districts pose 
no problem. 2) For the districts partitioned from one single district, es
timates for the new-born districts have been assigned same as of their 
parent districts. 3) In cases where the districts have been carved from 
multiple districts, average values of the parent districts have been used 
for new districts. It was observed that 329 districts out of the 640 dis
tricts in 2011 were unaffected by boundary changes over 1991–2011. 
Two hundred eighty-six districts were clearly partitioned into multiple 
districts over the same period. Remaining 25 districts experienced more 
complex changes (see appendix Table S2). 

Theoretical illustration of SAE 

To start, let Nd and nd be the population and samples sizes in the 
district d(d= 1, ...,D) respectively, where D = 438 is the number of the 
district (or small area) in the population. In particular, in this study, we 
define Nd as the total number of children under age three years in dth 

district recorded in the census and nd as the number of children under 
age three years in dth district recorded in the survey. The total number of 
units in the population is N =

∑d
i=1Ni with corresponding total sample 

size n =
∑d

i=1ni . We used two additional subscript ‘s’ and ‘r’ to denote 
the quantities related to sample and non-sample part of the population 
such that ysd and yrd are the sampled and non-sample counts of the 
stunted children in district d. The response variable ysd follows a bino
mial distribution with parameter nd and πd where πd is the probability of 
being stunted in district d. Further, ysd and yrd are assumed to be inde
pendent binomial variables with common success probability πd. This 
indicates that ysd ∼ Bin(nd, πd) and yrd ∼ Bin(Nd − nd,πd). 

Let xd be the k-vector xd be the k vector of the covariates for the 
district d,. The model linking this success probability with the covariates 
is the logistic linear mixed model of the form 

logit(πd)= ln
{

πd

1 − πd

}

= ηd = x′

dβ + ud, .d = 1, ..., 110. (1) 

Here, 
πd = exp(ηd){1 + exp(ηd)}

− 1
= exp(x′

dβ+ud){1 + exp(x′

dβ + ud)}
− 1 and β 

is the k vector of unknown fixed-effects parameters. ud ∼ N(0,ϕ) is the 
random effect that accounts for between district variability beyond that 
explained by the covariates included in the model. It is evident that 
model (1) relates the area (or district) level proportions (direct esti
mates) from the survey to area (district) level covariates. Often, this type 
of model is called as ‘area-level’ model in SAE terminology (Fay & 
Herriot, 1979; Rao, 2014, pp. 1–8). But the Fay and Herriot method was 
based on the area level linear mixed model, and their approach applies 
to a continuous variable. In contrast, here the model (1) is the special 
case of a GLMM with logit link function which is suitable for binary 
outcome variable (Breslow & Clayton, 1993). Saei and Chambers (2003) 
have described this model in the context of SAE and by definition the 
means of Ysd, Yrd given ud under model (1) are- 

E(ysd | ud) = nd
[

exp
(
x′

dβ + ud
){

1 + exp
(
x′

dβ + ud
)}− 1] (2)  

E(yrd | ud) = (Nd − nd)
[

exp
(
x′

dβ + ud
){

1 + exp
(
x′

dβ + ud
)}− 1]

(3) 

Let Td is the total number of stunted children in district d, then. 
Td = ysd + yrd (d, = 1, 2 ….438). 
The first term ysd is the sample count known from the survey whereas 

the second term yrd is the nonsample count that is unknown. Thus, an 
estimate Tˆd of the total number of stunted children in district d, which is 
obtained by replacing yrd by its predicted value under model (1). That is- 

T̂ d = ysd + ŷrd = ysd

+ (Nd − nd)

[

exp
(

x′

d β̂ + ûd

){

1 + exp
(

x′

d β̂ + ûd

)}− 1]

(4) 

Here Tˆd was estimated using only children within the census window 
to ensure consistency between Nd and nd. The proportion (pd) of stunted 
children in a district d is obtained as the total number of children within 
the district. Thus, an estimate of pd is-  

p̂d =
T̂ d

Nd
(5) 

The estimator (5) defined under model (1) is widely used for the 
estimation of small area proportions, see for example, Chandra et al. 
(2018) and references therein, although it is not the most efficient 
predictor under that model. An alternative to (5) is the empirical best 
predictor (Jiang, 2003). But, this predictor does not have a closed form 
and can only be computed via numerical approximation. This is gener
ally not straightforward, however, and so national statistical agencies 
favour computation of an approximation like the estimator (5). It is 
worth noting model (1) is based on unweighted sample count which 
assumes that sampling within areas is non-informative. As a result, 
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equation (4) ignores the complex survey design. If the sampling design is 
informative and survey weighted counts are available, there are two 
main difficulties. First, the values for the weighted sample counts will 
not necessarily be the integers 0, 1, 2, 3 …. nd; rather they will take a 
value from a finite set of unequally-spaced numbers (not necessarily 
integers) determined by the survey weights of the sample cases in area d. 
Second, the estimated sampling variance of the weighted sample counts, 
ysd implied by the binomial distribution, i.e., v(ysdw) ≈ ndpiw(1 − piw) will 
be incorrect. Several authors suggested that one should use the ‘effective 
sample size’ instead of actual sample size in model while analysing area 
level estimates as a binomial proportion (Korn & Graubard, 1998). The 
use of “effective sample size” has been discussed by several authors 
including (Mercer et al., 2014) and (Liu et al., 2007) as a way of 
incorporating the survey weights. Mercer et al. (2014) observe that the 
pseudo likelihood approach and effective sample size approach lead to 
identical estimates of small area proportions. Using the effective sample 
size rather the actual sample size allows for the survey weights under 
complex sampling. Furthermore, the precision of an estimate from a 
complex sample can be higher than for a simple random sample, because 
of the better use of population data through a representative sample 
drawn using a suitable sampling design. Here we uses a subscript of (e) 
in all the quantities associated with the “effective sample size”. We 
address the above two issues by defining an “effective sample size” nd(e), 
and an “effective sample count” ysd(e) such that- 

ysd(e) = nd(e)piw (6) 

This leads to piw with its corresponding estimator of variance esti
mate v(piw). Then the model equation (1) applied effective sample count 
ysd(e) in district d follows the binomial distribution- 

ysd(e) ∼ Bin(nd(e), πd) (7) 

The effective sample size. nd(e) =
P̂i(1− P̂i)
v*(piw)

Here, P̂i is the preliminary model-based prediction of the population 
proportion Pi under the generalized liner mixed model, and the esti
mates of variance v*(piw) depends on P̂i through the generalized vari
ance function (GVF) (Liu et al., 2007). Again, the value of ysd(e) = 0 if 
piw = 0. But this does not cause problem since P̂i > 0, implies nd(e) > 0. 
Note that we use a generalized variance function (GVF) to generate es
timates of the sampling variance even for areas that have an observed 
count of zero. Consequently, we do not exclude any area from model 
fitting. The empirical predictor of Td is finally obtained by replacing (nd,

πd) by (nd(e), ysd(e)) in model equation (1), thus ensuring that sampling 

weights are used in the small area estimation process. The plug-in 
empirical predictor (EP) of Td is then 

T̂
EP
d(e) = ysd(e) + (Nd − nd(e))*T̂

EP
d(e) (8) 

Therefore, based on the effective sample size nd(e) and effective 
sample count ysd(e) the estimate of the proportion in district d is 

T̂
EP
d(e) =

TEP
d(e)

Nd
(9)  

Results 

The result of this study will be explained in two steps. First, the 
district level estimates of childhood stunting obtained by SAE tech
niques. Second, we will explain the changes in prevalence of childhood 
stunting between the period 1998–2016. 

The model-based district level estimates of childhood stunting for 
1998-99 are presented in Fig. 1 . Figure indicates prevalence of child
hood stunting varies considerably across the districts of India. Preva
lence of childhood stunting ranges lowest from 20.7% in South Goa 
followed by 22.2% in north-Goa districts to 64%% in Dholpur districts 
followed by 63.7% in Balia district. The general pattern of stunted 
children shows the relatively lower prevalence of childhood stunting in 
the southern and north-eastern part of country, however it was rela
tively higher in the norther part of the country. For example- Ernakulum 
is the district with the minimum proportion of stunted children (22%) in 
the south region; however, Dholpur is the district with the maximum 
proportion of stunted children (64%). 

Results of model diagnostic are presented in Fig. 2(a) and (b). Fig. 2a 
shows that residuals are randomly distributed, and also the line of fit 
does not look significantly different from line y = 0. The q-q plots also 
confirm the normality assumptions of the data (Fig. 2(b)). Hence, the 
diagnostic procedures related to the model are fully satisfied with the 
data in the present study. 

To examine the bias diagnostic, scatter plot of the model-based es
timates of childhood stunting against the direct survey based estimates 
are presented in Fig. 3. Fig. 3 shows that the model-based estimates of 
childhood stunting are less extreme than the direct survey based esti
mates. For illustration, the study found that model-based estimates of 
childhood stunting are shrinking towards the mean (survey-based mean 
stunted children are 49.8). The study also highlighted that the districts 
having extreme direct estimates of childhood stunting were mainly due 
to small sample size. 

Fig. 1. District level prevalence of childhood stunting in India during 1998–99, 2015–16 and percent changes over the period of 1998–2016.  
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Table S3 provides district-wise direct and the model-based estimates 
of childhood stunting, along with per cent CV and 95 confidence in
tervals. Also, the distribution of per cent CV of the direct and the model- 
based estimates of childhood stunting have been plotted in Fig. 4 which 
shows that estimated CVs for model-based estimates having more reli
ability than the direct survey-based estimates CVs. For stunting, the CVs 
for direct survey-based estimates are ranging from 0.5% to 3.7%, but the 
CVs for the model-based estimates range between 0.1% and 2.7%. 
Likewise to earlier study, the improvement in per cent CV is bigger for 
the districts with small sample size compared to districts with a larger 

sample size (Das et al., 2019). For a few districts (Delhi, Greater Bom
bay, Aizwal, Imphal, Udaipur, Madras, Kohima, Cuttack, Udhampur, 
Jaipur, Kangra Puri and Alwar) with higher sample size and more 
stunted children, the difference in per cent CV is between 0.62 and 
1.04%. For some districts, it was not possible to compute CV and stan
dard error for direct survey-based estimates because of no sample 
counts. However, the advantage of SAE technique worked here very well 
and helped to predict estimates even in such areas where no sample 
information was available. Fig. 5 also confirms that for districts where 
sample size or sample count are zero, was not possible to compute 95% 

Fig. 2. (a) Model diagnostic plot showing the distribution of the district level residuals and (b) q-q plot for childhood stunting.  

Fig. 3. Bias diagnostics for childhood stunting.  

Fig. 4. District wise coefficient of variation for childhood stunting in India, 1998-99.  
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CI. However, it is evident from the respective figure that the 
model-based estimates are having tight confidence interval than direct 
survey-based estimates. 

We also calculated the percent point difference between direct sur
vey based estimates and model based estimates of childhood stunting 
(Table 1). About 160 district shows a difference of 5% point between 
direct survey based estimates and model based estimates. Difference of 
10 or more percent were observed for 142 districts. For the remaining 
126 districts difference between survey and model based estimates lies 
between 5% and 10%. 

Spatial distribution and changes in childhood stunting in India during 
1998–2016 

Trends in spatial profile of childhood stunting has been shown 
through Fig. 1, which shows that childhood stunting has been declined 
from 50 percent in 1998/99 to 36 percent in 2015/16 with considerable 
amount of variation. During 1998–2016 subsequent changes were 
occurred in the spatial profile of childhood stunting with some intra- 
state disparities. For example-in 1998–99, childhood stunting varied 
from 25 percent in Papum Pare (lowest) district of Arunachal Pradesh to 
72 percent in Etawah (highest) district of Uttar Pradesh. Whereas, in 
2015–16, childhood stunting varied from 12 percent in Tawang (3rd 
lowest districts) district of Arunachal Pradesh to 62 percent in Bahraich 
(highest) district of Uttar Pradesh. There were altogether 285 districts 
where the prevalence of childhood stunting was higher than the national 
average (50%) in 1998-99 however; there were about 272 districts, 
where the prevalence of childhood stunting was higher than the national 
average (36%) in 2015–16. 

Percent changes in prevalence of childhood stunting between 1998 
and 2016 are presented in Fig. 1 . Result shows that out of 640 district, 
81 districts experience more than 50% reduction. These districts are 

coming from the state of Andhra Pradesh (9 districts), Arunachal Pra
desh (1 districts), Bihar (1 districts), Daman & Diu (1 districts), Gujarat 
(2 districts), Haryana (2 districts), Himachal Pradesh (5 districts), 
Jammu & Kashmir (10 districts), Karnataka (3 districts), Kerala (8 dis
tricts), Maharashtra (4 districts), Meghalaya (2 districts), Orissa (6 dis
tricts), Puducherry (1 districts), Punjab (8 districts), Rajasthan (1 
districts), Manipur (3 districts), Nagaland (6 districts), Tamil Nadu (2 
districts), Tripura (2 districts), Uttarakhand (3 districts) and West Ben
gal (1 districts). About 108 and 110 districts experience reduction 
40–50% and 30–40% respectively. The highest number of districts (181 
districts) were experienced the reduction of 20–30 percent in the prev
alence of childhood stunting. Surprisingly, about 90 districts shows a 
reduction of 10–20 percent and 60 districts shows a decline of less than 
10%. 

The univariate LISA cluster results for childhood stunting has been 
presented in Fig. 6. The trends in univariate LISA map depicts high-high 
clusters mainly comprised in districts of Jharkhand, Uttar Pradesh, 
Madhya Pradesh, Gujarat, Bihar, Rajasthan during 1998-99 and 
2015–16. However, we found some additional high-high clusters in the 
districts of Maharashtra, Karnataka, Andhra and Meghalaya in 2015–16. 
Low-low clusters of childhood stunting coming from districts of the 
southern and northeastern part of the country along with Jammu & 
Kashmir, Himachal Pradesh and Punjab. Few of them were also coming 
from the state of West Bengal, Uttarakhand, Maharashtra, Orissa, Tri
pura and Gujarat. Also, the cold-spots for childhood stunting have been 
changed between 1998 and 2016. The study further computed the 
Moran-I statistics, which shows the magnitude of geospatial clustering of 
childhood stunting. The value of Moran’s-I was 0.59 in both the rounds 
of NFHS. Such a high positive value of Moran’s I indicates that districts 
with similar prevalence of childhood stunting are closely distributed in 
space. 

The univariate LISA cluster maps according to magnitude of reduc
tion in childhood stunting between 1998 and 2016 are presented in 
Fig. 7. Finding suggest that districts with higher reduction in stunting 
are clustered in Andhra Pradesh, Kerala, Punjab, Himachal Pradesh, 
Nagaland and Tripura. High-high cluster was also noted in a few districts 
of Maharashtra, Rajasthan, Manipur, Karnataka, West Bengal, Odisha, 
Tamil Nadu, and Mizoram. Majority of the districts with low-low clus
tering was belongs to the Maharashtra, Karnataka, Gujarat and 
Chhattisgarh. 

Discussion 

This study uses SAE method defined under an area-level GLMM with 

Fig. 5. District wise 95% CI for model-based estimates and direct survey-based estimates for stunting in India, 1998–99.  

Table 1 
Percent difference in prevalence of childhood stunting between direct and sur
vey based estimates in India 1998–99.  

Difference between direct estimates and model based estimates 
(%) 

Number of 
districts 

<-10 71 
− 9.99 to − 5.00 65 
− 4.99 to − 0.01 83 
0.00 to 5.00 87 
5.01–10.00 61 
>10.00 71  
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Fig. 6. Univariate LISA (Cluster and Signif
icance) maps depicting spatial clustering and 
spatial outliers of childhood stunting in 
India, 1998–16. A. Univariate LISA Cluster 
map of childhood stunting across 640 dis
tricts of India 1998-99 B. Univariate LISA 
Significance map of childhood stunting 
across 640 districts of India 1998-99 C. 
Univariate LISA Cluster map of childhood 
stunting across 640 districts of India 2015- 
16 D. Univariate LISA Significance map of 
childhood stunting across 640 districts of 
India 2015-16.   

Fig. 7. Results of univariate LISA map for percent changes in prevalence of childhood stunting in India 1998–2016.  
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logit link function for estimating the district-wise prevalence of child
hood stunting in India. In particular, this analysis combined data from 
second round of NFHS conducted during 1998-99 and the 2001 popu
lation census data to develop the reliable district level estimates of 
childhood stunting in India during 1998–99. The study further applied 
several diagnostic tools to examine the reliability and validity of the 
model-based estimates generated by using SAE technique. The model- 
based estimates generated in this analysis were also used to observe 
the level of changes in spatial profile of childhood stunting in 640 dis
tricts of India from 1998 to 2016. 

The findings of this study show that prevalence of childhood stunting 
obtained from model-based estimates are more precise as compared to 
the direct-survey based estimates. Likewise to other studies, present 
study also went through some testing tools to verify the reliability and 
validity of model-based estimates using the methods described in 
(Johnson et al., 2010), which shows that the distribution of the district 
level residuals and normality curves verified the assumptions of the 
underlying model. Further, the bias diagnostic (CV and 95% CI) also 
confirmed the validity and reliability of the model-based estimates, as 
model-based estimates had less extreme values than direct survey-based 
estimates, The CV, which shows the sample variability as a percentage of 
estimates of model-based estimates was found smaller than the CV of 
direct survey-based estimates. Furthermore, the confidence interval of 
model-based estimates was found closure than the confidence interval of 
direct survey-based estimates. Hence, our study follows all the criteria of 
the diagnostic test. 

The present study highlighted that the estimates of childhood 
stunting obatined by direct survey based methods have more extreme 
values than estimates obtained by SAE techniques. Hence, study clearly 
shows the advantage of SAE technique to cope up the small sample size 
problem in producing the estimates or reliable confidence intervals. 
Findings of the study are consistent with the earlier studies conducted in 
Bangladesh, which also combined the survey data with census data and 
found that the estimates at district level were sufficiently accurate (Das 
et al., 2019). In addition, we have also applied SAE techniques to esti
mate prevalence of underweight and wasting for NFHS-2 and examine 
the changes in these indicators between 1998 and 2016 (appendix 
Figure S3 & S4). 

This study further attempted some spatial tools to see the changing 
pattern of childhood stunting in districts of India over the period of 
1998-2016. Importance of using spatial analysis is to generate policy at 
the fine geographic level i.e., district level, to explain intrastate disparity 
more clearly than individual-level factors. This study not only measures 
the spatial clustering of childhood stunting but also looks for the changes 
in the spatial profile of childhood stunting in India for the last two de
cades. Earlier to this, few of the studies were attempted to understand 
the association of spatial factors and child health outcomes in India 
(Singh et al., 2011; Gupta et al., 2016). Our findings suggest that though 
there has been a decline in stunted children, the proportion of decline is 
far away to achieve SDG goals. Not only the rate of decrease was slow in 
the country, but their considerable disparities were observed in the rate 
of decline across the districts of India. Finding of this study are consis
tent with previous study conducted in India (Hemalatha et al., 2020). 
The analysis further suggested that India did not experience the same 
level of reduction in childhood stunting across the country, some of the 
districts experienced a low level of decline however some of the districts 
experienced a fast decline in stunted children. The prime concern of this 
study is to highlight the districts which are still grappling with the high 
burden of childhood stunting. 

A key contribution of the present study is to identify the changes in 
hotspots (i.e., districts with high burden of childhood stunting also 
surrounded by high burden of childhood stunting) over the period of 
1998–2016. The study is also interested to highlight some cold spots (i. 
e., districts with low burden of childhood stunting also surrounded by 
low burden of childhood stunting) and outliers (i.e., district with high 
burden of stunted children surrounded by district with low burden of 

stunted children and vice versa). The finding of this study is consistent 
with the other research conducted in India (Singh et al., 2011). 

Limitation of the study must be stated. First, anthropometric data 
such as height and weight collected in different round of NFHSs are 
subject to measurement error. Second, estimates obtained from NFHS 
may underestimated due to the fact that survey do not collect infor
mation on anthropometric outcomes who had died due to malnutrition. 
However recent evidence from India suggest that at aggregate level child 
anthropometric outcome do not change substantially even after taking 
HAZ-score of dead children into account (Upadhyay & Singh, 2020). 
Third, spatial covariates used to estimate childhood stunting for 
1998-99 do not include complete set of confounders due to lack of in
formation on other indicators at district level. 

In 2018, the Government of India launch National Nutrition Mission 
(NNM), also known as POSHAN Abhiyaan has emphasized targeting 
efforts at the district as well as sub-district levels to accelerate 
improvement in childhood malnutrition (Maiti, 2016; Paul et al., 2018). 
Our study indicates substantial district level variations in prevalence of 
childhood stunting and the rate of decline, which can use to understand 
the extent of efforts required to achieve the target set under NNM. If 
childhood stunting decline with similar rates in future, the target set by 
SDGs cannot be achieved. Therefore, the district level variation observed 
in childhood stunting and rate of decline calls the urgent need for 
appropriate planning and policy interventions to combat the associated 
problems with childhood malnutrition in India. 
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