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ABSTRACT: Although substantial progress has been made in reducing the burden of the disease by 

preventing the risk factors of cardiovascular disease (CVD), potential risk factors still exist and lead to its 

progression. In recent years, numerous studies have revealed that intestinal flora can interfere with the 

physiological processes of the host through changes in composition and function or related metabolites. 

Intestinal flora thus affects the occurrence and development of a variety of CVDs, including atherosclerosis, 

ischemic heart disease, and heart failure. Moreover, studies have found that interventions for intestinal flora 

and its metabolites provide new opportunities for CVD treatment. This article mainly discusses the 

interaction between the human intestinal flora and its metabolites, the occurrence and development of CVD, 

and the potential of intestinal flora as a new target for the diagnosis and treatment of CVD. 
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The epidemiological transition of the 20th century is 

mainly reflected in the decrease in the number of deaths 

caused by infectious diseases and the increase in the 

number of deaths caused by non-communicable diseases. 

Among non-communicable diseases, cardiovascular 

disease (CVD) is the leading cause of death worldwide 

[1]. CVD mainly includes ischemic heart disease (IHD), 

heart failure (HF), and peripheral artery disease, and its 

incidence increases worldwide every year. According to 

the latest data from the World Health Organization, 17.9 

million people died of CVD in 2019, accounting for 32% 

of global deaths. Of these deaths, 85% were due to heart 

attacks and strokes. Of the 17 million premature deaths 

(under 70) caused by non-communicable diseases in 

2019, 38% were caused by CVD. The recognized risk 

factors for CVD include hyperlipidemia, hypertension 

(HTN), diabetes, smoking, and lack of physical exercise 

[2]. Although the mortality rate of CVD is high, the 

prevention of risk factors can reduce the prevalence of 

CVD. 

The interaction between flora inside the gut and its 

host has drawn a lot of attention in recent years. 

Furthermore, increasing evidence indicates that an 

imbalance in intestinal flora may be a potential risk factor 

for CVD. Moreover, the imbalance in intestinal flora may 

also be related to diseases, such as inflammatory bowel 

disease, neurological diseases, and allergies [3-5]. 

Numerous studies have confirmed a close relationship 

between intestinal flora and CVD. First, changes in the 

composition and function of intestinal flora associated 

with diseases are related to atherosclerosis (AS), IHD, HF, 

and type 2 diabetes [6, 7]. Second, metabolites of 

intestinal flora have been identified as an important factor 

in the development of CVD [8]. Intestinal flora can 

produce biologically active metabolites, which can affect 

the physiological function of the host [9]. Through the 

study of transplanted intestinal flora, specific intestinal 

flora-dependent pathways and downstream metabolites 

can lead to the occurrence of CVD through specific host 

receptors and have shown significant clinical relevance in 
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human studies [10]. In this review, we emphasized the 

role of intestinal flora and its metabolites in the 

occurrence and development of CVD, and the potential of 

intestinal flora as new predictors and therapeutic targets 

of CVD. 

 

1. Intestinal flora and its metabolites 

 

Trillions of microbial cells exist throughout the human 

body and play an important role in human health and 

disease. This type of microbial cell population has the 

highest density in the intestine, where they together form 

a complex microbial community called intestinal flora. 

Intestinal flora mainly includes archaea, bacteria, and 

eukaryotes. They establish a complex nutritional 

relationship from symbiosis to parasitism with each other 

and with the human host [11]. The types of bacteria found 

in the human gut microbiome mainly include three phyla: 

Bacteroidetes, Firmicutes, and Actinobacteria. According 

to reports, the number and composition of bacteria vary in 

different parts of the gastrointestinal tract. There are fewer 

bacteria in the upper part of the stomach and the small 

intestine. Furthermore, the number of bacteria from the 

jejunum to the colon gradually increases. Moreover, 

intestinal flora is 10 times more abundant than somatic 

and germ cells, and its collective genome is 150 times 

larger than the human genome. In a human body, 150–170 

species of bacteria dominate and play a variety of 

functions, such as regulating body metabolism, 

neurodevelopment, and energy homeostasis [12]. 

Under normal conditions, intestinal flora can regulate 

human physiology by releasing different metabolites. 

However, an imbalance in intestinal flora reduces 

beneficial substances, including short-chain fatty acids 

(SCFA), leading to the destruction of the intestinal barrier. 

It also leads to the production of numerous toxic 

substances, such as lipopolysaccharide (LPS), 

trimethylamine-N-oxide (TMAO), and phenylacetyl 

glutamine (PAGln), which enter the blood and ultimately 

accelerate the progression of CVD [13]. 

 

1.1 Lipopolysaccharide 

 

LPS is a structural compound found in the outer 

membrane of gram-negative bacteria. It is comprised of a 

hydrophilic polysaccharide and a hydrophobic component 

called lipid A, which is responsible for the main biological 

activities of LPS and is recognized as pathogen-related 

molecules by immune cells [14]. LPS can be recognized 

by Toll-like receptor 4 (TLR4), which induces 

inflammation. The receptor is expressed on immune cells 

(such as macrophages) and many other types of cells 

(including liver and fat cells). Under normal 

circumstances, the intestinal epithelium acts as a barrier 

to prevent LPS from shifting. However, under the 

conditions of ischemia and intake of high fat foods, the 

intestinal barrier function may be destroyed, leading to 

LPS translocation. Thus, the LPS level in blood increases, 

causing systemic inflammation, which leads to a variety 

of diseases, including dyslipidemia, insulin resistance, 

and CVD [15]. 

The possible mechanism of LPS-induced CVD is as 

follows. First, LPS upregulates inflammation-related 

genes and significantly increases the plasma 

concentrations of tumor necrosis factor α (TNFα) and 

interleukin 6 (IL-6) [16]. This inhibits the oxidation of 

mitochondrial fatty acids in cardiomyocytes. As the heart 

mainly produces adenosine triphosphate through the 

oxidation of fatty acids [17], this will eventually cause the 

mechanical function of the heart to decline [18]. Second, 

LPS stimulates macrophages to release pro-

atherosclerotic cell inflammatory factors (such as TNFα, 

IL-1, IL-6, IL-8, and IL-12) to accelerate the progression 

of AS [19] and enhances platelet aggregation through 

TLR4-mediated leukocyte cathepsin G activation [7]. In 

vitro experiments have shown that TLR4 inhibitors can 

attenuate this effect [20]. Simultaneously, LPS can 

participate in the process of thrombosis by upregulating 

the expression of macrophage tissue factor. LPS can also 

enhance the platelet-mediated monocyte production of 

pro-inflammatory cytokines under the action of common 

agonists such as Pam3CSK4 when interacting with TLR4 

to participate in the process of thrombosis [21-23]; 

therefore, LPS can induce inflammation in the body 

through a variety of ways and increase platelet activation 

and thrombosis, thereby accelerating the development of 

a variety of CVDs. In-depth research on LPS is conducive 

to the better treatment of diseases. 

 

1.2 Trimethylamine-N-oxide 

 

Studies have shown that choline and L-carnitine in the diet 

can be metabolized by intestinal flora into trimethylamine 

(TMA), which when absorbed reaches the liver through 

portal vein circulation and is then rapidly oxidized to 

TMAO by flavin-containing monooxygenases (FMO) in 

the liver [24]. Increasing evidence shows that the 

microbiota-dependent metabolite TMAO is related to 

CVD [25-29]. Pro-CVD effects of intestinal flora-

dependent TMAO include inhibition of cholesterol 

reverse transport, promotion of increased cholesterol 

accumulation in macrophages and formation of foam 

cells, pro-inflammatory changes in arterial vessel walls, 

induction of platelet hyperresponsiveness, and increased 

potential for arterial thrombosis [30]. In clinical studies on 

stroke patients [31], it was found that the increase in the 

TMAO level is dose-dependent with the risk of recurrent 

stroke and secondary cardiovascular events, which may 
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be related to the increase in pro-inflammatory monocytes 

caused by TMAO. In addition, TMAO is associated with 

chronic kidney disease [32] and Alzheimer's disease [33]. 

Numerous studies in recent years have identified 

interesting issues that require further exploration. Platelet 

hyperresponsiveness mediated by increased TMAO levels 

can be reduced by low-dose aspirin. Some experts believe 

that increased levels of the metabolite TMAO produced 

by gut microbes may also weaken the antiplatelet effect of 

low-dose aspirin [34]. This brings us to the question: is 

low-dose aspirin beneficial for high-risk CVD patients 

with elevated TMAO? Furthermore, TMAO synthesis 

depends on microbial metabolism to produce TMA, 

which is mediated by the expression of choline TMA 

lyase from the CUTC gene of intestinal flora. Increased 

CUTC gene expression can increase the host's platelet 

reactivity and thrombosis potential by increasing the level 

of TMAO. Thus, we can speculate that inhibiting the 

microbial CUTC gene may be a promising treatment to 

inhibit the development of the disease by reducing the 

possibility of thrombosis [35]. Finally, as the main 

member of the FMO enzyme family, FMO3 expression 

levels showed a significant difference between genders 

(women showed 1,000 times higher expression levels than 

men), and a significant positive correlation between the 

FMO3 expression in the liver and AS lesions was found 

[36]. Among all human FMOs tested, only the expression 

of liver FMO3 was positively correlated with plasma 

TMAO levels [37]. In the body, the regulation of FMO3 

can directly affect the systemic TMAO level and 

participate in the changes of platelet reactivity and 

thrombosis potential that are diet-dependent and intestinal 

flora-dependent [38]. Therefore, future research on 

human TMAO and CVD-related mechanisms may lead to 

unexpected gains in the activity of FMO3. 

 

1.3 Phenylacetyl glutamine 

 

After the essential amino acid phenylalanine is ingested, 

most of it is absorbed by the small intestine. Unabsorbed 

phenylalanine can be metabolized by intestinal flora to 

form phenylpyruvate, which then forms phenylacetic acid 

[39]. After phenylacetic acid is absorbed into the portal 

vein, it is metabolized in the liver and conjugated with 

glutamine (Gln) or glycine (Gly) to produce PAGln or 

PAGly, respectively [40]. There is a clinical association 

between elevated PAGln levels and CVD risk [41, 42]. 

Large-scale clinical studies have found that, compared 

with that in patients without major adverse cardiovascular 

events (MACE), PAGln plasma levels are significantly 

higher in patients with MACE and can be used as an 

independent predictor of MACE [43]. 

Beta-blockers have many clinical benefits in some 

patients with CVD [44]. By treating mice with widely 

used β-blockers in clinical practice, the 

hyperresponsiveness of platelets caused by PAGln and the 

acceleration of thrombosis in the body can be reduced, 

and the thrombosis-promoting effect of PAGln can be 

reversed [43]. Current studies suggest that some of the 

clinical benefits observed with beta-blocker therapy may 

be mediated in part by attenuating PAGln-triggered 

adrenergic receptor (ADR) signal transduction in the 

body. PAGln represents a new intestinal flora-dependent 

metabolite that promotes the progression of CVD and has 

broad research prospects. However, the current research 

is limited to the interaction between PAGln and ADR, and 

its physiological effects and clinical applications still 

depend on further exploration and discovery. 

 

1.4 SCFA 

 

SCFA are derived from the fermentation of dietary fiber 

in the colon by intestinal flora. Acetate, propionate, and 

butyrate account for 90% of SCFA produced by the 

intestinal microbiota [45]. They play an important role in 

the host's energy metabolism, fat and cholesterol 

synthesis, and gluconeogenesis. Acetate is found at higher 

levels in the body, whereas propionate and butyrate have 

lower levels. This is because butyrate is the first energy 

source for colon cells and is locally consumed, whereas 

propionate is metabolized by the liver after being 

discharged into the portal vein. Acetate becomes the most 

abundant SCFA in the peripheral circulation. 

The current research on SCFA is still very limited and 

cannot explain its protective role in the occurrence and 

development of CVD. The possible mechanisms are as 

follows. SCFA affect gene transcription by inhibiting 

histone deacetylase activity. SCFA can also regulate cell 

function by interacting with receptors on target cells. 

Studies have found that SCFA have anti-inflammatory 

properties and can inhibit nuclear factor kappa-B (NF-κB) 

activity in immune cells, resulting in a reduction in the 

production of pro-inflammatory cytokines, including 

interferon γ (IFN-γ), IL-1β, and IL-2. However, the 

specific mechanism still depends on further experimental 

research.  

SCFA receptors are G-protein-coupled receptors 

(GPRs), with seven receptors confirmed to date: GPR41, 

GPR42, GPR43, GPR91, GPR109A, GPR164, and 

vascular olfactory receptor 78 (OLFR78) [46, 47]. SCFA 

can activate GPR43 and GPR109A to reduce pathological 

myocardial remodeling caused by hypertension [48]. By 

activating GPR43 or GPR109A, SCFA can also inhibit 

the expression of genes encoding inflammatory cytokines, 

chemokines, and pro-fibrotic proteins in the kidneys of 

diabetic mice, therefore, the mice show less proteinuria 

and glomerular hypertrophy. Further, podocyte damage 

and interstitial fibrosis reduce the incidence of diabetic 
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nephropathy, playing a role in kidney protection [49]. In 

addition, SCFA can induce hyperpolarization of the 

intestinal epithelial cell membrane in a GPR43-dependent 

manner and activate the NLRP3 inflammasome in the 

intestinal epithelium. SCFA also activate GPR109A to 

stimulate the production of IL-18, promoting intestinal 

homeostasis and preventing colitis [50]. GPR43-deficient 

mice showed increased sensitivity to dextran sodium 

sulfate-induced colitis [51]. In recent studies, SCFA have 

been shown not only to exert its anti-inflammatory and 

protective properties in the intestines but also to reach the 

circulatory system, directly affecting the adipose tissue, 

brain, and liver and producing beneficial metabolic effects 

[52]. SCFA exert these properties in a variety of ways, but 

the underlying mechanism is still unclear.  

SCFA are becoming an emerging therapeutic target 

for systemic inflammation and metabolic diseases, 

including CVD [53, 54], and the future development of 

CVD therapeutic interventions for SCFA is promising.  

 

2. Intestinal flora and cardiovascular disease 

 

2.1 Atherosclerosis 

 

AS is the main underlying cause of CVD. AS is 

characterized by the formation of lipid-rich plaques in 

large and medium-sized blood vessels and is considered a 

chronic inflammatory disease of the arterial vessel wall. 

Chronic inflammation and dyslipidemia are considered 

important factors that lead to AS. Recent studies have 

found that an imbalance in intestinal flora is also a key 

pathogenic factor for AS. Yoshida et al. [55] found an 

abundance of Bacteroides vulgatus and Bacteroides dorei 

in the intestinal flora of patients with AS. They are the 

dominant species of Bacteroides in the human intestinal 

flora. 

Previous studies have found that AS is affected by the 

innate and adaptive immune systems, and cytokines are 

involved in all stages of AS formation [56]. LPS can cause 

systemic inflammation, helping to destroy innate and 

acquired immune responses and accelerating the 

progression of AS [57]. Clinical studies have shown that 

patients with elevated serum LPS levels have an increased 

risk of AS [58]. In a study on apolipoprotein E knockout 

(ApoE−/−) mice [55], it was found that the plasma levels 

of LPS in mice treated with Bacteroides were 

significantly reduced, and the plasma levels of 

atherogenic cell inflammatory factors, such as IL-2 and 4, 

were lower than untreated control group.  

In further research on the function of the intestinal 

flora, we found two interesting phenomena. First, the gene 

expression levels of LpxA and LpxD, essential 

acyltransferases involved in lipid A biosynthesis, were 

significantly lower than those of the control group. This 

may explain the decrease in LPS of mice treated with 

Bacteroides. Second, the mRNA expression of the tight 

junction gene Zo1 in Bacteroides-treated mice was 

significantly increased, leading to a decrease in intestinal 

permeability and inhibiting ectopic LPS from entering the 

circulatory system to cause inflammation in the body. 

Gavage of B. vulgatus and B. dorei can reduce the 

production of LPS in intestinal flora, reducing the plasma 

level of LPS and effectively inhibiting the pro-

inflammatory immune response, which in turn 

significantly reduces the formation of AS lesions in mice. 

However, in a study on ApoE−/− mice, Kasahara et al. 

[59] found that, compared with conventionally fed mice, 

aseptically fed mice showed a significant increase in 

plasma cholesterol levels due to the lack of intestinal 

flora. However, unexpectedly, the area of AS plaques was 

significantly reduced. Further research found that the pro-

inflammatory cytokines in the macrophages and the aorta 

of the mice fed a sterile diet decreased significantly, 

which may be related to the decrease in circulating LPS 

levels and the weakening of the secondary inflammatory 

response. These studies have shown that the lack of 

intestinal flora can reduce inflammatory cytokines and 

chemokines in systemic circulation, inhibiting AS. 

The intestinal flora of caspase1 knockout (Casp1−/−) 

mice can promote an increase in white blood cell levels 

and accelerate the accumulation of pro-inflammatory 

cytokines and neutrophils in AS plaques, leading to the 

progression of AS. Transplanting fecal intestinal flora 

from Casp1−/− mice to low-density lipoprotein receptor 

knockout (Ldlr−/−) mice can lead to increases in AS 

plaques in the aortic roots, number of blood leukocytes 

(particularly monocytes and neutrophils), pro-

inflammatory cytokines (IFN-γ, IL-2, and IL-1β), and 

neutrophil accumulation in AS plaques, and reduced 

SCFA levels in the cecum [60]. These results indicate that 

there is a causal relationship between intestinal flora and 

AS through inflammatory cells and inflammatory factors. 

Therefore, studies have shown that changes in the 

composition and function of intestinal flora have a great 

impact on the occurrence and development of AS, but 

whether there is an inevitable causal link between them is 

worthy of in-depth study. The rational application of 

probiotics is still worth exploring, as the therapeutic value 

for improving the systemic inflammatory response and 

inhibiting the progression of AS is immense. 

 

2.2 Ischemic heart disease 

 

Increasing evidence shows that metabolites of intestinal 

flora are related to the development of IHD. TMAO has 

received extensive attention because of its potential role 

as a risk factor for IHD. Several studies have shown that 

circulating TMAO is a marker of coronary atherosclerotic 
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burden, and there is a dose-dependent relationship 

between its level and atherosclerotic burden. Elevated 

TMAO levels have been positively correlated with the 

carotid plaque burden [61, 62]. TMAO is also a powerful 

predictor of cardiovascular risk for diabetic patients [63]. 

Heianza et al. [64] found that long-term changes in plasma 

TMAO levels were significantly related to the incidence 

of IHD in healthy women. Women with chronically high 

levels of TMAO have a higher risk of IHD, and the initial 

circulating level of TMAO and its 10-year change are 

independently related to subsequent IHD events. This 

may be related to the gradual increase in TMAO within 

10 years, leading to endothelial cell senescence and 

accelerating vascular senescence. Studies on animal 

models of accelerated aging mice have found that TMAO 

can upregulate aging-related β-galactosidase (SA-β-gal) 

activity. Simultaneously, it promotes increased p53 and 

p21 expression to accelerate vascular dysfunction and 

vascular remodeling.  

Cell experiments have confirmed that TMAO can 

inhibit the expression of silencing information regulator 2 

related enzyme 1 (SIRT1), increase oxidative stress, 

reduce endothelial-dependent NO production, and cause 

endothelial dysfunction. TMAO activates the p53-p21-Rb 

pathway to induce senescence of human umbilical vein 

endothelial cells (HUVEC). This may be the mechanism 

by which TMAO accelerates vascular senescence [65]. A 

stratified analysis of eating patterns shows that adherence 

to healthy eating habits may change the unfavorable 

relationship between TMAO and IHD by adjusting the 

level of TMAO, and unhealthy eating patterns enhance the 

TMAO-IHD association. However, healthy eating 

patterns characterized by higher vegetable intake and 

lower animal food intake weakened the TMAO-IHD 

association. This indicates that TMAO can be used as a 

potential intermediate cut-off point for dietary 

intervention and that regulating dietary patterns may 

improve the relationship between TMAO and the 

incidence of IHD. 

In a study of patients with IHD, Zhu et al. [66] found 

that symptomatic AS is related to changes in human 

intestinal metagenomics. The abundance of 

Enterobacteriaceae, including Escherichia coli, 
Klebsiella, and Enterobacter aerogenes, in stool samples 

of patients with IHD was higher than that in healthy 

controls. The relative abundance of bacteria such as 

Streptococcus and Lactobacillus salivarius present in the 

oral cavity was also higher than that in the control group. 

In addition, studies have found that the function of 

intestinal flora of patients with IHD also undergoes 

certain changes. Specifically, it exhibits a higher potential 

to transport monosaccharides and amino acids, whereas 

the biosynthetic potential of most vitamins is lower. The 

levels of enzymes that synthesize TMA in the intestinal 

flora of IHD patients are higher, especially that of 

YeaW/X. As a homologous enzyme of carnitine 

monooxygenase (cntA/B), YeaX/X can use carnitine and 

choline to generate TMA. The increased synthesis of 

TMAO plays a role in promoting AS somewhat. This 

indicates that changes in the composition and function of 

intestinal flora may affect the occurrence and 

development of IHD to some extent. 

 

2.3 Acute coronary syndrome 

 

Gao et al. [67] found that compared with the intestinal 

flora of patients with healthy controls, the abundance of 

Aerococcaceae and Eubacterium was higher, and the 

abundance of beneficial microbes was lower in the 

intestinal flora of patients with acute coronary syndrome 

(ACS). This difference in the composition of intestinal 

flora is related to serum TMAO levels. Therefore, the 

specific intestinal flora composition related to serum 

TMAO levels may also be a potential biomarker for 

predicting the onset of ACS. Studies have confirmed that 

the microbial DNA found in AS plaques can also be found 

in the intestinal tract of the same individual. We 

hypothesized that intestinal flora is the source of 

microorganisms in AS plaques and promotes 

inflammation by producing more pro-inflammatory 

molecules. This affects the stability of AS plaques and 

accelerates the progression of CVD. 

 

2.4 Myocardial infarction 

 

The inflammatory microenvironment is essential for 

initiating endogenous repair in the early stages of 

myocardial infarction (MI) [68]. Recent studies have 

found that intestinal flora can affect the composition, 

migration, and function of various immune cell subgroups 

[69]. As different members of intestinal flora can affect 

the host's immune homeostasis differently, the 

heterogeneity of flora may be the basis for individual 

differences in the host's immune response [70]. In a study 

of MI mice, Tang et al. [71] found that mice whose 

intestinal flora was destroyed by antibiotics before MI had 

a significantly increased, dose-dependent mortality rate 

after MI. In vivo imaging of the mice showed that the 

immune activity of the area around the infarction was 

reduced and that the infiltration of monocytes into the area 

around the infarction was also reduced, indicating that 

repair was impaired after MI. Further research found that 

SCFA are mediated by the homologous SCFA receptor 

GPR43 or GPR109A and uses DNA methylation to 

increase the level of plasma L-3,4-dihydroxy-

phenylalanine and the abundance of regulatory T (Treg) 

cells to achieve cardio protection. Dietary 

supplementation with SCFA can enrich the immune 
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system, restore the immune activity of the area around the 

infarction, improve the survival rate of mice after MI, and 

have a protective effect on the development of heart 

remodeling and myocardial fibrosis. Thus, this new 

dietary treatment strategy enjoins further research. 

The inflammatory response after MI can lead to 

cardiovascular remodeling and HF, ultimately 

accelerating the death of the patient. In a study of patients 

with ST elevation myocardial infarction (STEMI), Zhou 

et al. [7] found that an increase in intestinal bacterial 

translocation products (LPS and D-lactate) was associated 

with increased systemic inflammation and adverse 

cardiovascular events. D-lactate is a fermentation product 

of gastrointestinal bacteria. Increases in its blood 

concentration are due to increases in metabolites produced 

by intestinal flora in the gastrointestinal tract and in 

intestinal permeability. Plasma D-lactate levels have been 

used to assess intestinal damage and are considered 

sensitive markers for the detection of intestinal barrier 

damage [72]. Clinical studies have found that plasma 

levels are negatively correlated with left ventricular 

ejection fraction and positively correlated with mesenteric 

artery blood flow [73]. Acute left ventricular dysfunction 

and low intestinal blood perfusion caused by MI can lead 

to intestinal barrier dysfunction and increased intestinal 

mucosal permeability. This leads to the translocation of 

intestinal flora metabolites into the systemic circulatory 

system, activating excessive inflammation and increasing 

the risk of cardiovascular events after MI [74]. Further 

animal experiments have found that new treatment 

strategies aimed at protecting the intestinal barrier and 

inhibiting the translocation of intestinal bacteria may 

reduce cardiovascular events after MI. 

Many clinical studies have shown that elevated 

TMAO levels are independently associated with an 

increased risk of MI [8, 75]. In STEMI patients who have 

undergone secondary preventive treatment, plasma 

TMAO levels increased slightly from the acute phase to 

the chronic phase. The TMAO level in the chronic phase 

evaluated after 10 months is related to the complexity of 

coronary plaque and the progression of the disease, and it 

can significantly predict the occurrence of future 

cardiovascular events in patients with STEMI [76]. The 

monitoring of TMAO levels is conducive to the timely 

treatment of MACE in patients with MI. Yang et al. [77] 

proved that TMAO or a high-choline diet can aggravate 

cardiac fibrosis in mice after MI. The possible mechanism 

was the accelerated transformation of fibroblasts into 

myofibroblasts by activating the TGF-βRI/Smad2 

pathway. In that study, it was observed that the plasma 

TMAO levels of mice in the TMAO or high-choline diet 

group increased. In addition, the apoptosis and necrotic 

cell rate after MI, the area of myocardial fibrosis in the 

infarct zone and the distal zone, and the infiltration of 

macrophages in the infarct zone all showed significant 

increases. These results indicate that TMAO-aggravated 

cardiac fibrosis is related not only to the direct activation 

of fibroblasts but also to enhanced inflammation and 

promotion of cardiomyocyte apoptosis. Therefore, 

restricting choline in the diet may help improve the long-

term prognosis of patients with MI. 

Previous studies have found that PAGln and PAGly 

have similar functions. They can stimulate the β2 

adrenergic receptor (β2AR) to activate the G protein 

inhibitory α subunit (Gαi)/phosphatidylinositol 3-kinase 

(PI3K)/protein kinase B (PKB) cascade, which inhibits 

myocardial cell apoptosis caused by ischemia/reperfusion 

(I/R) injury [78]. In a mouse I/R injury model, Xu et al. 

[41] found that continuous administration of appropriate 

doses of PAGly can inhibit myocardial cell apoptosis 

caused by myocardial I/R injury in mice and reduce the 

area of MI. However, other studies have found that high-

dose PAGly treatment is associated with higher mortality. 

In animal models of carotid artery injury, elevated levels 

of PAGln and PAGly led to increased platelet thrombosis 

in the injured carotid artery. In vitro studies using platelet-

rich plasma and isolated platelets have shown that PAGln 

can enhance the adhesion of platelets to the collagen 

matrix. PAGln can also dose-dependently enhance the 

degree of platelet aggregation under the action of a variety 

of agonists, such as thrombin receptor-activated peptide 6 

and collagen, to significantly enhance platelet function, 

stimulating thrombus formation. The mechanism by 

which PAGln affects the progression of CVD may be 

through its combination with ADRs, including α2A, α2B, 

and β2, to mediate cell response and regulate platelet 

function and thrombosis potential in vivo [43]. These 

effects may be related to the dose of PAGln. However, the 

combined application of PAGly and aspirin can not only 

reduce the infarct size of I/R injured mice, thereby 

producing a good therapeutic effect, but also prevent the 

high mortality caused by high doses of PAGly. This 

combination of drugs can be used in further clinical 

research as a new therapeutic strategy for inhibiting 

myocardial cell apoptosis in patients with MI. 

Intestinal flora and its metabolites can affect the 

development of IHD and the occurrence of MACE after 

MI by regulating the body's inflammatory response, 

myocardial fibrosis, and myocardial cell apoptosis. The 

intervention measures based on the research mentioned 

here will help improve the long-term prognosis of patients 

with MI and significantly reduce the mortality rate. The 

research also suggests that the intestinal flora targeting 

method has therapeutic potential in reducing the incidence 

of cardiovascular events after MI. 
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Table 1. The mechanism of intestinal flora and its metabolites in cardiovascular disease. 

 
Diseases Intestinal flora/metabolite Effects Mechanism Ref.  

AS Bacteroides vulgatus  

and Bacteroides dorei↓, LPS↑ 

Damage Proatherogenic cytokines (IL-2 and 4)↑→ 

systemic inflammation↑ 

[55] 

AS LPS↓ Protection Inflammatory cytokines and chemokines↓ [59] 

AS Intestinal flora  

(caspase1-/-), SCFA↓ 

Damage Inflammatory cytokines (IFN-γ, IL-2 and IL-

1β)↑, neutrophil accumulation in atherosclerotic 

plaques↑ 

[60] 

IHD TMAO↑ Damage SA-β-gal activity↑, SIRT1↓→ oxidative 

stress↑→ p53-p21-Rb pathway↑→ vascular 

dysfunction and remodeling↑ 

[64, 65] 

IHD Escherichia coli, Klebsiella, 

Enterobacter aerogenes, 

Streptococcus, Lactobacillus 

salivarius↑ 

Damage - [66] 

ACS Aerococcaceae and Eubacterium↑ Damage Inflammatory cytokines↑→ plaque stability↓ ? [67] 

MI SCFA↑ Protection GPR43/GPR109A↑→ 

L-3,4-dihydroxyphenylalanine levels and Treg 

cells↑→ pathological cardiac remodeling↓ 

[71] 

MI LPS and D-lactate↑ Damage Systemic inflammation↑ [7] 

MI TMAO↑ Damage TGF-βRI/Smad2↑→ transformation of 

fibroblasts into myofibroblasts↑→ cardiac 

fibrosis↑ 

Systemic inflammation↑→ cardiomyocyte 

apoptosis↑ 

[77] 

MI PAGly/PAGln↑ Protection β2AR↑→ Gαi/PI3K/PKB↑→cardiomyocyte 

apoptosis ↓ 

[41], [78] 

 PAGly/PAGln↑ Damage α2A, α2B, and β2 ADR↑→ platelet 

responsiveness and thrombosis potential↑ 

[43] 

HF TMAO↑ Damage - [80-82] 

HF Actinobacteria and Bifidobacterium↑ Protection Ammonia concentration and pH in feces↓ [84] 

HF Shigella, Campylobacter, Yersinia 

enterocolitica and Salmonella↑ 

Damage Pathogenic bacteria↑→ intestinal barrier↓→ 

chronic systemic inflammation↑ 

[86] 

HF F.prausnitzii↓, SCFA↓ 

R. gnavus↑ 

Damage Anti-inflammatory effect↓, pro-inflammatory 

mediators (NO, IL-6, and IL-12)↑→ chronic 

inflammation↑ 

[87] 

HF/(Cognitive 

dysfunction) 

Gram-negative bacteria containing 

LPS   

(Escherichia coli and Shigella etc.) ↑ 

Damage Tight junction protein activity ↓ → intestinal 

barrier↓→ systemic inflammation and 

neuroinflammation↑ 

IL-1b and MMP-9↑→ BBB damage↑ 

[93, 94] 

HTN Prevotella↑ and F.prausnitzii, 

Bifidobacterium, 

Coprococcus, Butyrivibrio↓ 

Damage Degradation of purine, ketone body biosynthesis 

and branched-chain amino acid biosynthesis and 

transport↓, LPS biosynthesis and export, PTS 

and biosynthesis of phosphatidylethanolamine↑ 

[96] 

HTN Bacteroides fragilis and arachidonic 

acid↓ 

Damage Intestinal-derived corticosterone production↑→ 

corticosterone levels in serum↑ 

[99] 

HTN Odoribacter↑, SCFA↑ Protection GPR41↑→ systemic blood pressure↓ [100] 
 

(AS= atherosclerosis; LPS= lipopolysaccharide; IL= interleukin; SCFA= short-chain fatty acid; IFN= interferon; IHD= ischemic heart disease;TMAO= 

trimethylamine-N-oxide; SA-β-gal= aging-related β-galactosidase; SIRT1= silencing information regulator 2 related enzyme 1;ACS= acute coronary 

syndrome;MI= myocardial infarction;GPR= G-protein-coupled receptor;Treg cells = regulatory T cells; β2AR= β2 adrenergic receptor;Gαi= G protein 

inhibitory α subunit;PI3K= phosphatidylinositol 3-kinase;PKB= protein kinase B; ADR= adrenergic receptor;HF= heart failure; MMP-9= matrix 
metalloproteinase-9; BBB= blood-brain barrier;HTN= hypertension; PTS= phosphotransferase system) 

2.5 Heart failure 

 

HF, which is caused by the failure of the heart to pump 
enough blood due to pump dysfunction, is the terminal 

stage of a variety of cardiovascular diseases. It is a disease 

with a high fatality rate and places a heavy burden on 

global health and the economy. Unfavorable factors, such 

as inflammation and immune dysfunction secondary to 

the imbalance of intestinal flora, have a significant 
relationship with the occurrence of HF. With bacterial 

culture methods, more pathogenic bacteria related to 
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chronic inflammation can be found in the stool samples of 

patients with HF [79]. 

A study of HF patients found that these patients have 

increased levels of TMAO and that the predictive value of 

TMAO for poor prognosis is independent of traditional 

risk factors and B-type natriuretic peptide levels. Higher 

TMAO levels are associated with all-cause mortality and 

poor prognosis in HF patients [80, 81]. Current guideline-

based HF treatments do not affect plasma TMAO levels, 

and patients with higher TMAO levels before and after 

treatment have a poorer prognosis [82]. Therefore, 

therapeutic interventions to reduce the level of TMAO 

may be used as an adjuvant treatment plan for patients 

with HF. Preliminary clinical trials have found that 

regulating the composition and function of intestinal flora 

through diet, use of probiotics, and targeted non-lethal 

antibacterial enzyme inhibitors can reduce TMAO levels 

[83]. However, whether these measures will improve the 

prognosis of patients with HF requires large-scale clinical 

experimental research. 

Hayashi et al. [84] found that Actinobacteria and 

Bifidobacterium are enriched in stool samples of HF 

patients compared with those of the normal group. 

Moreover, during both the compensatory and the 

decompensation periods, the plasma TMAO 

concentration in the HF group is higher than that in the 

normal group. However, the TMA lyase (CUTC/D) gene 

abundance of the intestinal flora in the decompensated HF 

phase is significantly higher than that in the compensated 

HF phase. This suggests that some bacteria containing 

TMA lyase may be enriched in the decompensated HF 

phase, thereby affecting the progression of HF. 

Bifidobacterium has a variety of physiological effects, 

including reduced levels of harmful bacteria, regulation of 

host immunity, and improvement of the intestinal 

environment by reducing the concentration of ammonia 

and pH in feces [85]. Previous studies have found, based 

on the severity of HF, that HF patients show excessive 

growth of intestinal pathogens, including Shigella, 

Campylobacter, Yersinia enterocolitica, and Salmonella 

[86]. For the same patient's stool sample, Shigella was 

more abundant in the decompensated phase of HF than in 

the compensated phase. This means that，in the process 

of decompensated HF, there is a vicious cycle of 

worsening intestinal conditions. Excessive growth of 

intestinal pathogenic bacteria can damage the intestinal 

microenvironment and cause intestinal inflammation, 

leading to the destruction of the intestinal barrier function 

and systemic inflammation. Furthermore, the decrease in 

bacterial diversity will negatively affect the nutrition and 

metabolic efficiency of patients, reduce the production of 

beneficial metabolites such as SCFA, and accelerate the 

progression of HF. These findings indicate that the 

composition of intestinal flora and related metabolites 

may be related to the pathophysiology of HF, and further 

research will help identify better diagnostic and treatment 

methods for HF. 

Through the study of stool samples, Cui et al. [87] 

found that the composition of the intestinal flora of HF 

patients differed significantly from that of the healthy 

group, but there was no significant difference in the flora's 

composition between HF subgroups caused by different 

etiologies. The decrease in Faecalibacterium prausnitzii 
and the increase in Ruminococcus gnavus are the basic 

characteristics of the intestinal flora of patients with HF.  

It is worth mentioning that the CUTC gene, which 

expresses choline TMA lyase, is significantly increased in 

HF patients, which in turn causes an increase in TMAO 

levels. At the same time, the abundance of butyrate-

acetoacetate CoA transferase in the intestinal flora of HF 

patients is significantly reduced, resulting in a decrease in 

the production of protective SCFA butyrate.  

Previous studies have confirmed that F. prausnitzii is 

very important for anti-inflammatory activity and 

maintains the integrity of the intestinal barrier. It can 

regulate the function of intestinal macrophages and 

downregulate the levels of pro-inflammatory mediators 

(such as NO, IL-6, and IL-12) induced by LPS. It can also 

induce the differentiation of Treg cells and inhibit the 

inflammatory response and progression of HF. As one of 

the most abundant butyrate-producing bacteria, F. 
prausnitzii has been identified as an important anti-

inflammatory symbiotic bacterium [9]. Its reduction 

reduces the anti-inflammatory effect and leads to 

aggravation of chronic inflammation [88]. Studies have 

found that elderly HF patients have lower levels of F. 
prausnitzii than younger patients, which may be related to 

the worsening inflammatory state and poor prognosis of 

elderly HF patients [89], whereas the level of R. gnavus 
increases significantly in patients with HF. Previous 

studies on inflammatory bowel disease have shown that 

R. gnavus has pro-inflammatory properties. After 

implantation in sterile mice, the levels of IFN-γ and IL-17 

in blood were significantly increased, leading to the 

activation of the body's inflammatory response [90]. 

Thus, HF is related to different intestinal flora disorders. 

For some specific core bacterial imbalances, follow-up 

studies are needed to confirm whether there is a causal 

relationship and to explore related intervention strategies. 

Cognitive impairment is a common central nervous 

system complication after HF, with an incidence rate of 

25% to 75% [91]. The main mechanisms include low 

cerebral blood perfusion, abnormal hormone secretion, 

and an inflammatory response [92]. Increasing evidence 

shows that there is also a relationship between intestinal 

flora imbalance and neuroinflammation. In an ischemic 

HF rat model study, Yu et al. [93] found that HF promotes 

the growth of LPS-containing gram-negative bacteria, 
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including E.coli and Shigella. This leads to an imbalance 

of intestinal flora, inhibits the activity of tight junction 

proteins, and destroys the intestinal barrier. This 

phenomenon causes pathogenic bacteria expressing LPS 

in the intestine to escape, activate immune cells, and 

trigger an inflammatory response, leading to systemic 

inflammation and neuroinflammation. Further animal 

studies have confirmed that the levels of IL-1b and matrix 

metalloproteinase-9 (MMP-9) in HF rats were elevated. 

IL-1b can upregulate the expression of MMP-9 mRNA 

and protein, leading to increased degradation of basal 

components by MMP-9, destroying the tight junctions of 

the blood-brain barrier (BBB), and increasing the 

exposure of brain tissue to various cytokines. This 

exposure eventually leads to cognitive impairment [94]. 

The intestinal flora imbalance caused by HF aggravates 

neuroinflammation in part by impairing the permeability 

of the BBB and intestinal barrier. Further studies have 

found that the intake of probiotics can affect the synthesis 

of pro-inflammatory cytokines by inhibiting the 

imbalance of intestinal flora, playing a role in improving 

cognitive impairment. These findings may not only 

explain the underlying mechanism of cognitive 

dysfunction observed after HF but also promote in-depth 

exploration of the treatment of cognitive dysfunction 

caused by HF by improving intestinal flora. 

The composition of intestinal flora and its metabolites 

not only is related to the disease progression of HF 

patients but also affects the long-term prognosis of HF 

directly or indirectly, leading to various complications. 

Treatment options for these problems may include 

optimizing the composition of intestinal flora, inhibiting 

translocation of intestinal flora, and reducing the level of 

related metabolites; however, further research is needed. 

 

2.6 Hypertension 

 

HTN is a multifactorial disease that depends on the 

complex interactions between genetic and environmental 

factors. Previous studies have found that, compared with 

conventional mice, sterile mice without intestinal bacteria 

exhibit lower blood pressure [95]. Therefore, we believe 

that there may be a connection between intestinal flora 

and HTN. In a large clinical study of patients with HTN 

[96], Prevotella increased significantly in the HTN group, 

and F. prausnitzii, Bifidobacterium, Coprococcus, and 

Butyrivibrio, which were enriched in healthy controls, 

decreased in the HTN group. The decreased level of F. 
prausnitzii in the intestine is related to inflammatory 

bowel disease and is essential for the production of 

butyrate. Bifidobacterium is necessary to maintain 

homeostasis of intestinal flora and protect the intestinal 

barrier. The overgrowth of harmful flora and the decrease 

in beneficial flora, accompanied by adverse changes in the 

function of intestinal flora, play an important role in the 

pathological process of HTN. The function of the bacteria 

associated with HTN in the degradation of purine 

nucleotides, the biosynthesis of ketone bodies, and the 

synthesis and transportation of branched-chain amino 

acids is reduced. However, the function of the bacteria 

associated with HTN is significantly improved with 

respect to the biosynthesis and transport of LPS, an 

important mechanism of inflammation that leads to the 

progression of intestinal tumors [97], and to the 

phosphotransferase system related to diabetes, liver 

cirrhosis, rheumatoid arthritis [98], and biosynthesis of 

phosphatidylethanolamine. 

Studies have found that a high-salt diet can cause 

HTN because of the decrease in Bacteroides fragilis in the 

intestine and a decrease in the content of its metabolite 

arachidonic acid. This increases the production of 

intestinal corticosterone and the level of corticosterone in 

the intestines and serum, leading to an increase in blood 

pressure. The HTN caused by this high-salt content can be 

transferred through fecal microbiota transplantation, 

indicating the key role of intestinal microbiota in 

developing the disease [99]. Studies have confirmed that 

the abundance of butyrate-producing bacteria, 

Odoribacter, in the intestines of obese pregnant women is 

negatively correlated with systolic blood pressure (SBP). 

Furthermore, in vitro experiments have confirmed that 

SCFA can reduce systemic blood pressure by activating 

GPR41 [100]. Therefore, supplementation of butyrate-

producing bacteria in the intestine may help obese 

pregnant women maintain normal blood pressure. There 

are broad research prospects for the relationship between 

HTN and intestinal flora, but an in-depth study of the 

pathophysiological mechanism depends on further 

exploration (Table 1). 

 

3. The therapeutic intervention of intestinal flora 

 

Intestinal flora is closely related to cardiovascular health 

and disease. In the treatment of CVD, researchers have 

gradually turned their attention to intestinal flora and 

related metabolites. As a newly identified regulator of 

CVD, the gut microbiome has become a potential target 

for treatment (Table 2). 

 

3.1 Individualized diet intervention 

 

There is a mutually beneficial relationship between the 

diet and intestinal microbiota. Therefore, diet is an 

important external factor affecting the intestinal 

microbiota and is the most effective regulator of its 

composition and function. The risk of CVD can be 

effectively reduced by improving diet or supplementing 

nutrients [101, 102]. 
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Table 2. The therapeutic intervention of intestinal flora in cardiovascular diseases. 

 
Therapeutic intervention Intestinal flora/metabolite Mechanism Ref. 

Diet 

Vegetarian diet Ruminococcus and Pasteurella↑ Oxidized LDL‐C↓ [103] 

Whole-grain diet Lachnospira↑and 

Enterobacteriaceae↓ 

- [106] 

Lower-fat diet Akkermansia muciniphila and 

F.prausnitzii↑, SCFA↑ 

Palmitic acid, stearic acid, indole, hs-CRP 

and thromboxane B2↓ 

[107], 

[110] 

Rich in nuts diet F.prausnitzii and Roseburia↑, 

Ruminococcus and Dorea↓ 

Proinflammatory secondary bile acids and 

LDL-C↓  

[114] 

Rich in propionate diet Bifidobacterium↑ Insulin sensitivity↑, 

Treg cells↑and Th17 cells↓→ systemic 

inflammation↓ 

[117] 

Soy Prevotella and Dialister↓ - [118] 

Fecal microbiota transplantation 

Control → high-calorie diet mice - Disrupted glucose metabolism↓ [126] 

Control → germ-free mice - Arterial remodeling response↑ [127] 

WKYs→ SHRs - Th17 cells/Treg cells in MLNs and 

aorta↓→ endothelial dysfunction↓ 

[128] 

Control → EAM Bacteroidetes↑→F/B↓ IFN-γ gene expression↓→ inflammatory 

infiltration↓→myocardialdamage↓ 

[129] 

Probiotic 

Lactobacillus reuteri - TC↓, HDL-C↑ [130] 

Lactobacillus acidophilus, 

Bifidobacterium lactis and 

Lactobacillus salivarius 

- PWV↓, 

IL-6, TNF-α and TM↓ 

[131] 

Lactobacillus acidophilus and 

Bifidobacterium lactis 

- Insulin sensitivity↑, 

TC/HDL-C and triglycerides↓, HDL-C↑ 

PAI-1 and VCAM-1↓ 

[134-

136] 

Lactobacillus plantarum, Lactobacillus 

acidophilus and Lactobacillus reuteri 

- Hs-CRP and TNF-α↓, 

lipid metabolism↑ 

[137] 

Lactobacillus plantarum - IL-8, IL-12 and leptin↓ [138] 

Probiotics with high biliary salt 

hydrolase activity(Bifidobacterium 

longum, Lactobacillus plantarum etc.) 

- Triglycerides and LDL-C↓ [139, 

140] 

Bifidobacterium animalis subsp. lactis 

420 

SCFA↑ Glycoursodeoxycholic acid and 

tauroursodeoxycholic acid↓ 

[141] 

Bifidobacterium and arginine - Spermidine↑→autophagy↑ [142] 

Lactobacillus acidophilus, 

Lactobacillus casei and 

Bifidobacterium bifidum 

- Hs-CRP and MDA↓, NO↑ [143] 

 

(LDL‐C= low-density lipoprotein cholesterol; SCFA= short-chain fatty acid; hs-CRP= high-sensitivity C-reactive protein; Treg cells = regulatory T 
cells; Th17 cells = T helper 17 cells; WKYs= Wistar-Kyoto rats; SHRs= spontaneously hypertensive rats;  MLNs= mesenteric lymph nodes; EAM= 

experimental autoimmune myocarditis; F/B= Firmicutes to Bacteroidetes; IFN= interferon; TC= total cholesterol; HDL-C= high-density lipoprotein 

cholesterol; PWV= pulse wave velocity; IL= interleukin; TNF= tumor necrosis factor; TM= thrombomodulin; PAI-1= plasminogen activator inhibitor-
1; VCAM-1= vascular cell adhesion molecule-1; MDA= malondialdehyde) 

Changes in diet, including vegetarian, whole-grain, 

and lower-fat diets, have significant preventive effects on 

CVD. Isocaloric vegetarian food can significantly reduce 

plasma total cholesterol (TC), oxidized low-density 

lipoprotein cholesterol (LDL-C) levels, and body mass 

index compared with isocaloric meat [103]. Among the 

individuals with greater reduction in oxidized LDL-C, 

Ruminococcus and Pasteurella were more abundant. This 

suggests the interaction between a specific intestinal flora 
composition and a vegetarian diet can reduce the level of 

oxidized LDL-C. Elevated oxidized LDL-C can activate 

the innate immunity and adaptive immune system, leading 

to an increase in the release of AS-related inflammatory 

factors. It is a powerful predictor of future IHD events 

independent of traditional cardiovascular risk factors 

[104, 105]. Whole-grain diets can promote the growth of 

beneficial bacteria and limit the growth of known 

opportunistic pathogens. Specifically, the SCFA producer 
Lachnospira increased, the pro-inflammatory 

Enterobacteriaceae decreased [106]. Additionally, a low-

fat diet combined with lifestyle intervention alleviated the 
dysbiosis of the gut microbiota [107], which specifically 

manifests with an increase in F. prausnitzii and 

Akkermansia muciniphila.  
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F. prausnitzii has been identified as an important anti-

inflammatory symbiotic bacterium. A high level of A. 

muciniphila is positively correlated with insulin 

sensitivity, and the specialization of A. muciniphila in the 

degradation of mucin makes it a key microorganism for 

maintaining intestinal barrier function [108, 109]. 

Furthermore, a low-fat diet can increase the level of SCFA 

in feces; reduce the concentration of indole, palmitic acid, 

and stearic acid; and reduce the level of LPS in the blood. 

Moreover, it can reduce the level of inflammatory factors, 

including high-sensitivity C-reactive protein (hs-CRP) 

and thromboxane B2, in the plasma, reducing the risk of 

AS [110]. Indole is the precursor of indoxyl sulfate, which 

is related to HTN and CVD in patients with chronic 

kidney disease [111]. Palmitic acid and stearic acid are the 

main saturated fatty acids in food and tissues and can 

stimulate the inflammatory signal transduction of 

macrophages and fat cells. Epidemiological studies have 

confirmed that palmitic acid and stearic acid are positively 

correlated with CVD [112, 113]. These changes in diet 

can prevent or treat CVD by improving the imbalance of 

intestinal flora. 

In addition, dietary intervention also includes 

supplementation with some nutrients to better regulate 

intestinal flora and plays a role in disease treatment. After 

eating nuts, patients showed increased F. prausnitzii and 

Roseburia content, decreased Ruminococcus and Dorea 

content, and reduced secondary bile acid levels in their 

feces [114]. The significant reduction in microbial-

derived pro-inflammatory secondary bile acids, such as 

deoxycholic acid and lithocholic acid, has been shown to 

reduce intestinal inflammation [115, 116]. Normally, 

Dorea and Roseburia are related to the concentration of 

secondary bile acids. This suggests that the relationship 

between the gut microbiota and CVD may be related to 

the microbial metabolism of bile acids. Selectively 

increasing the level of propionate in the diet can regulate 

the body's amino acid metabolism, improve insulin 

sensitivity, increase the proportion of Treg cells, reduce 

the level of pro-inflammatory T helper 17 (Th17) cells, 

and exert anti-inflammatory effects. It can also promote 

the growth of Bifidobacterium to play a protective role in 

the intestinal tract [117]. Interestingly, soy consumption 

can reduce the systolic blood pressure of patients with 

HTN by inhibiting specific intestinal flora such as 

Prevotella and Dialister. However, this only works if the 

gut microbiota is sensitive to soy [118]. This is worth 

further study as a potential treatment. 

 

3.2 Fecal microbiota transplantation 

 

Fecal microbiota transplantation (FMT) is defined as the 

transfer of microbial communities from healthy donors to 

the patient's intestines. FMT is an effective, cheap, and 

safe method that is clinically used to enrich human 

intestinal flora to treat certain chronic diseases, especially 

recurrent Clostridium difficile infection [119-121]. In 

recent years, studies have found that FMT also has 

potential therapeutic value in many aspects, such as type 

2 diabetes, irritable bowel syndrome, inflammatory bowel 

disease, metabolic syndrome (MetS), and CVD [122]. 

MetS is a complex multifactorial disease. Its 

components include obesity, dyslipidemia, glucose 

intolerance, and HTN, which can increase the risk of 

CVD, type 2 diabetes, and stroke [123]. The results of a 

meta-analysis showed that MetS doubled the risk of CVD 

and increased all-cause mortality by a factor of 1.5. 

However, there is still a lack of effective drugs for 

treatment [124]. Studies have found that FMT from vegan 

donors can cause detectable changes in the composition 

of the gut microbiota in patients with MetS but cannot 

cause changes in TMAO production capacity or 

parameters related to vascular inflammation [125]. A 

high-calorie diet induced glucose intolerance and obesity 

in mice. FMT from normal mouse donors can alleviate 

this glucose intolerance in recipient mice, showing 

potential therapeutic value [126]. Compared with that in 

conventionally reared mice, neointimal hyperplasia in 

sterile mice is significantly weakened after carotid artery 

ligation, but the arterial intimal hyperplasia can be 

restored by using conventionally reared mice as donor 

FMT. This phenomenon may be related to the regulation 

of local arterial inflammation by microbiota metabolites 

[127]. 

In rats with normal (Wistar-Kyoto rats, WKYs) to 

spontaneously hypertensive (SHRs) blood pressure, FMT 

can reduce the basal SBP of SHRs, the aorta and 

mesenteric lymph nodes (MLNs), the ratio of pro-

inflammatory/anti-inflammatory cells (Th17 cells/Treg 

cells), and the endothelial dysfunction and vascular 

oxidation state of SHRs. After FMT from SHRs to WKYs, 

the levels of CD80 and CD86 mRNA in MLNs were 

found to be increased, the endothelial function was 

impaired, and the underlying SBP increased. Further 

studies have found that this impaired endothelial function 

caused by the imbalance of intestinal flora may be 

mediated by increased IL-17 production. Using IL-17 

inhibitors can lower the blood pressure of SHRs and 

restore endothelial function. This indicates that the 

Th17/IL-17 axis is essential for the development of 

endothelial dysfunction and HTN caused by FMT from 

SHRs to WKYs [128]. 

Transplanting the fecal contents of normal mouse 

donors into the intestine of experimental autoimmune 

myocarditis (EAM) mice can reduce the expression of the 

IFN-γ gene in heart tissue, inflammation infiltration, and 

myocardial damage. Furthermore, studies have confirmed 

that myocarditis is related to the imbalance of the 
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intestinal microbiota, which is characterized by an 

increased ratio of Firmicutes to Bacteroidetes (F/B). FMT 

can reduce F/B by restoring the abundance of 

Bacteroidetes and the balance of intestinal flora; 

therefore, FMT may be a potential treatment strategy for 

myocarditis [129]. Although evidence suggests that FMT 

is a safe treatment with few side effects, the long-term 

results of FMT have not yet been fully elucidated. 

Therefore, regular follow-up after FMT to monitor 

clinical efficacy and long-term adverse events is an 

important matter for debate. 

 

3.3 Probiotics 

 

Probiotics are microorganisms that are beneficial to 

health. Their therapeutic potential has led to a significant 

increase in research interest to regulate gut microbiota to 

treat CVD in recent years. 

Lactobacillus reuteri reduced plasma TC levels and 

increased high-density lipoprotein cholesterol (HDL-C) 

levels in rats fed a high-fat diet [130]. Supplementing 

multi-species probiotics, including Lactobacillus 
acidophilus, Bifidobacterium lactis, and L. salivarius, to 

menopausal obese women [131] can reduce the blood 

levels of IL-6, TNF-α, and thrombomodulin, one of the 

most sensitive and specific markers of endothelial damage 

[132]. Furthermore, it can significantly reduce SBP and 

pulse wave velocity (PWV) [133]. PWV is the most 

accurate method for non-invasive estimation of human 

arterial stiffness. The combination of L. acidophilus and 

B. lactis can also significantly reduce fasting blood 

glucose and serum insulin concentrations in patients with 

diabetic nephropathy [134] and diabetes with IHD [135], 

increase insulin sensitivity, reduce triglyceride levels and 

TC/HDL-C ratio, and increase HDL-C levels. In addition, 

in patients with MetS, the combination of the two can 

reduce the plasma levels of plasminogen activator 

inhibitor-1 and vascular cell adhesion molecule-1 

(VCAM-1), both of which are vascular inflammation 

markers of endothelial dysfunction. Epidemiological 

studies have found a significant positive correlation 

between high levels of VCAM-1 and CVD [136]. 

The combination of Lactobacillus plantarum, L. 
acidophilus, and L. reuteri can reduce serum hs-CRP and 

TNF-α levels in elderly patients with MetS to exert anti-

inflammatory effects [137]. Furthermore, it can improve 

blood lipid metabolism and has potential therapeutic 

value for CVD. Moreover, supplementing L. plantarum in 

patients with IHD can reduce the circulating levels of IL-

8, IL-12, and leptin and reduce systemic inflammation 

independent of traditional risk factors and changes in 

TMAO levels [138]. Probiotics with high bile salt 

hydrolase activity, such as Bifidobacterium longum [139] 

and L. plantarum [140], can reduce triglycerides and 

LDL-C by reducing intestinal cholesterol reabsorption, 

helping to control high cholesterol in patients with CVD. 

Supplementation with Bifidobacterium animalis ssp. 

lactis 420 in the diet of obese patients can reduce the 

levels of glycoursodeoxycholic acid and 

tauroursodeoxycholic acid in plasma while increasing 

SCFA levels to exert anti-inflammatory protective effects 

[141]. 

Spermidine-induced autophagy has been shown to 

reduce the risk of CVD in mice, and the combination of 

Bifidobacterium and arginine can reduce the risk of AS by 

increasing blood spermidine levels [142]. In the blood of 

patients with IHD, the combination of L. acidophilus, 

Lactobacillus casei, and Bifidobacterium bifidum can 

significantly reduce the levels of hs-CRP and 

malondialdehyde (MDA) and increase the level of nitric 

oxide [143]. Existing studies have found that reducing hs-

CRP and increasing nitric oxide levels can reduce 

vascular oxidative stress, endothelial dysfunction, and 

CVD events [144]. MDA is the most important marker of 

membrane lipid peroxidation caused by reactive oxygen 

species. It can indirectly reflect the level of oxidative 

stress [145] and is related to many diseases, including 

cancer, CVD, and type 2 diabetes [146]. The above results 

show that the reasonable application of probiotics may 

provide potential treatment options for patients with 

dyslipidemia, diabetes, and CVD. However, the intake of 

probiotics can only be a potential supplement to more 

traditional cardiovascular treatments and non-drug 

measures used to prevent disease progression. To 

determine the safety and effectiveness of this treatment, 

more research is needed. 

 

4. The latest developments regarding intestinal flora in 

clinical applications 

 

Up to now, there have been many clinical studies on the 

prevention and treatment of CVD by regulating the 

intestinal flora and its metabolites. MetS, as one of the risk 

factors of CVD, includes a series of metabolic diseases, 

such as hypertriglyceridemia, insulin resistance, and 

impaired glucose tolerance. Central obesity and insulin 

resistance are currently recognized as important 

pathogenic factors for MetS [147]. In a clinical study of 

29 overweight individuals, Vitae et al. [148] found that, 

compared with the conventional Western diet, the 

Mediterranean diet can reduce oral glucose insulin 

sensitivity and LDL-C levels to a greater extent. It also 

results in decreases in the abundance of Ruminococcus 

torques, Coprococcus comes, Streptococcus gallolyticus, 

and Flavonifractor plautii and increases in the abundance 

of Intestinimonas butyriciproducens and Akkermansia 

muciniphila. In a randomized clinical trial of 39 patients 

with MetS, Guo et al. found that intermittent fasting may 
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play a cardiovascular protective role by increasing the 

production of SCFA and reducing the level of LPS in the 

circulatory system [149]. Depommier et al. found in a 

study of 40 overweight patients with insulin resistance 

that dietary supplementation of Akkermansia muciniphila 

can reduce gamma-glutamyl transferase, aspartate-

aminotransferase, and other liver transaminase levels 

[150], which are associated with adverse changes in 

glucose and lipid metabolism. At the same time, such 

supplementation reduces the level of LPS in the blood, 

which has a potential preventive effect on CVD. In a study 

of 78 individuals with central obesity [151], eating foods 

rich in polyphenols and long-chain n-3 polyunsaturated 

fatty acids was shown to significantly increase the levels 

of Bifidobacteria and Ruminococcaceae, reduce the 

abundance of Lachnospiraceae and improve insulin 

secretion and blood lipid levels, thereby reducing the risk 

of morbidity in people with high CVD risk. Thus, we can 

speculate that the gut microbiota may be involved in 

improving glucose metabolism and insulin sensitivity, 

thereby affecting the progression of CVD. Chen et al. 

studied 145 patients with untreated HTN and found that a 

moderate reduction in dietary sodium content increases 

circulating SCFA levels [53], which is associated with 

reduced BP. Supporting dietary sodium may affect the 

progression of CVD by affecting the gut microbiota. 

The research on the role of intestinal flora and its 

metabolites in the diagnosis and treatment of CVD is still 

in the clinical trial stage and has not been widely used in 

clinical practice. However, these latest studies show that 

the supplement of intestinal flora to traditional disease 

diagnosis and treatment programs is huge and exciting. 

We have reason to believe that, in the future, the intestinal 

flora, as a brand-new regulator, will play a greater role in 

reducing the global prevalence of CVD and CVD-related 

mortality and improving the average life expectancy of 

the global aging population (Fig. 1). 

 
Figure1.The role of intestinal microbiota in cardiovascular diseases. 

5. Conclusion 

 

Current research shows there is an important link between 

intestinal flora and cardiovascular disease, emphasizing 

that intestinal flora and its metabolites are closely related 

to diseases such as ischemic heart disease, heart failure, 

and hypertension. However, the existing evidence mainly 

includes small-sample clinical studies and cross-sectional 

studies with inconsistent results. The most important 

pathophysiological link between intestinal flora and 
cardiovascular disease seems to be the induction of the 

host inflammatory response through changes in the 

composition or function of the flora. However, whether 

this change has a clear causal relationship with 

cardiovascular disease and whether it is affected by other 

factors remain to be confirmed. This article also points out 

the potential therapeutic value of intestinal flora for 

cardiovascular disease, including personalized diet 

intervention, intestinal flora transplantation, and the 

rational application of probiotics. These findings provide 

the potential for the development of new strategies for the 

prevention and treatment of cardiovascular disease by 

targeting intestinal flora. 
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