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Abstract

With the increasing availability of high-throughput data, various computational methods

have recently been developed for understanding the cell through protein-protein interaction

(PPI) networks at a systems level. However, due to the incompleteness of the original PPI

networks those efforts have been significantly hindered. In this paper, we propose a two

stage method to predict underlying links between two originally unlinked protein pairs. First,

we measure gene expression and gene functional similarly between unlinked protein pairs

on Saccharomyces cerevisiae benchmark network and obtain new constructed networks.

Then, we select the significant part of the new predicted links by analyzing the difference

between essential proteins that have been identified based on the new constructed net-

works and the original network. Furthermore, we validate the performance of the new

method by using the reliable and comprehensive PPI dataset obtained from the STRING

database and compare the new proposed method with four other random walk-based meth-

ods. Comparing the results indicates that the new proposed strategy performs well in pre-

dicting underlying links. This study provides a general paradigm for predicting new

interactions between protein pairs and offers new insights into identifying essential proteins.

Introduction

With the rapid development of modern high-throughput technologies such as yeast two-

hybrid (Y2H)screens [1, 2], tandem affinity purification (TAP) [3], and mass spectrometric

protein complex identification (MS-PCI) [4], large scale PPI data are available for many organ-

isms. PPI networks provide a comprehensive view of the global interaction structure of an

organism’s proteome, as well as detailed information on specific interactions, which provide

unprecedented opportunities for both biological and computational scientists to understand

the cell at a systems level [5]. For example, PPI networks are widely used for predicting protein

complexes or functional modules [6, 7], as well as essential proteins [8, 9] and proteins associ-

ated with a certain complex disease [10].
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However, the growing size and complexity of experimental data obtained from high

throughput technologies are incomplete, and the PPI network we obtained through high-

throughput technology is far from complete; only a fraction of true PPIs have been docu-

mented even for well-known species [11]. The incompleteness of the PPI network will severely

impair the prediction precision. Revealing the unknown part of these networks by biological

experimental methods is time-consuming and expensive.

In recent years, many computational methods have been proposed to predict the underly-

ing links between two original unlinked proteins [12–14]. These methods basically fall into

two categories: topological-based and similarity of protein biological attributes-based methods.

The first type of method is based on topological properties such as measuring topological simi-

larity [14–16] and characterizing the ‘distance’ by random walks [17–19]. The second category

consists of methods that based on sequence homology as well as protein three-dimensional

structural and phylogenetic profiles [20, 21]. Although these methods have improved the accu-

racy in link prediction, most of these methods highly depend on the topological properties of

the original PPI networks and few methods have examined the co-expression and co-func-

tional the between two protein pairs being considered.

In the present study, we present a novel two-stage method for predicting missed links in the

PPI networks. First, the Pearson correlation coefficient (PCC) and Gene Ontology (GO) simi-

larity value are used as local similarity indices to predict the existence of links between two

unlinked proteins, and we obtained the new constructed networks. Then, we evaluate the new

constructed network and the original network by identifying essential proteins and collect the

new predicted edges associated with the essential proteins that were neglected in the original

network but that are significantly ranked in the top of the new constructed networks. Finally,

we assume that the new predicted edges we selected are truly predicted and validate the new

predicted edges using the PPI dataset obtained from the database STRING, which is a compre-

hensive and reliable database. Our findings suggest a hypothesis for predicting interactions

between two unlinked protein pairs using a two-stage method.

Methods

In this section, we first present a new strategy for obtaining a new PPI network by PPI predic-

tion based on gene expression profiles and GO annotation data. Then, we compare the perfor-

mance of six widely used methods in identifying essential proteins based on new constructed

PPI networks and original networks and select the significant part of the new predicted links.

Finally, we assume the selected significant parts of the links as the true predicted links and con-

firm these links by mining the reliable links obtained from the STRING database. Four other

random-walk based link prediction methods are used to compare the efficiency of the new

strategy.

Evaluating the existence likelihood between two unlinked proteins

In a PPI network, the weight between two proteins is typically a confidence score of the inter-

action, represent the probability of the interaction [22]. We assume that the larger similarity

weights between proteins indicate a higher probability of the two proteins physically

interacting.

Given a PPI network with N proteins, we represent the PPI network with an undirected

graph G = (V, E), where V and E are the sets of nodes and links, respectively. To measure the

missing links and predict their weight, for each unlinked protein pair (u, v), we assign a simi-

larity value to quantify the existence likelihood of the link (u, v). So that all unlinked pairs are

A novel method for predicting interactions underlying PPI networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177029 May 11, 2017 2 / 22

https://doi.org/10.1371/journal.pone.0177029


ranked according to their value, the top ranked links with larger scores can be considered as

the ones with higher existence likelihoods.

PCC is a widely used measure the strength of correlation between two variables of linear

dependence. To assess the similarity value of the unlinked protein pairs (u, v), we adapt the

PCC measurement to evaluate the co-expression value of protein pairs. The PCC of a pair of

genes (X and Y) is defined as:

PCCðX;YÞ ¼
1

n � 1

Xn

i¼1

Xi � meanðXÞ
stdðXÞ

� �
Yi � meanðYÞ

stdðYÞ

� �

ð1Þ

where n is the number of samples of gene expression data, and Xi is the expression level of

gene i. The PCC of a pair of proteins (u and v) is defined as the same as the PCC of their corre-

sponding gene pairs. The value of PCC ranges from -1 to 1, and the larger PCC between the

two considered proteins, u and v, suggests that they are more likely to be co-expressed and

interact physically.

Since the physically interacting protein pairs are likely to have the same function, GO anno-

tation provides valuable information for describing biological properties of the gene product

and a convenient way to study gene functional similarity. GO has been used as an indicator of

the existence likelihoods of the link between two proteins and the GO similarity between inter-

acted protein pairs is higher than disconnected protein pairs [23].

To quantify the functional similarity between two considered proteins, we adapt the GO

similarity method proposed in [24] to compute the semantic similarity between GO terms

annotated to unlinked protein pairs. The GO similarity between two connected proteins is

defined as:

GO simðu; vÞ ¼

X

t2Tu\Tv

ðSuðtÞ þ SvðtÞÞ
X

t2Tu

SuðtÞ þ
X

t2Tv

SvðtÞ
ð2Þ

where Su(t) is the S-value of GO term t related to term u and Sv(t) is the S-value of GO term t

related to term v.

The GO consists of three sub-ontologies (Biological Process (BP), Cellular Component

(CC), and Molecular function (MF)) [25, 26]. The three GO terms are widely used in predict-

ing gene functional associations, and the semantic similarity is used as an indicator for the

existence likelihoods of an unlinked edge.

Another link prediction method

To demonstrate the efficiency of the new proposed strategy, we compare it with four other

state-of-the-art link prediction methods on the test PPI network. The first method is the Ran-

dom Walk with Resistance (RWS) proposed by Lei et al. [14]; the second method is the Local

Random Walk (LRW) [27]; the third method is Supervised Random Walk(SRW) developed by

Backstorm et al. [18] and the last method is Random Walk with Restart (RWR) [19]. The four

methods have been shown to perform well in link prediction for complex networks.

In the present study, we apply the four methods on the test network and obtain the similar-

ity matrix. Then, the similarity values of the unlinked edges are sorted in descending order. To

ensure that the number of new predicted links is similar with each other, we set the appropri-

ate threshold value for each of these methods and select the same proportion of these top

ranked edges as the new predicted interactions. The steps of random walks in LRW and SRW

methods are set to 3, and parameters are set to 0.8.
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Experimental data

To evaluate the performance of the six methods for the new network obtained from link pre-

diction and the original network, we focus our analysis on the widely used Saccharomyces cer-

evisiae’s PPI data. The first PPI data were downloaded from the DIP database [28]. There is a

total of 5093 proteins and 24743 interactions after filtering the duplicate interactions and self-

interactions (S1 Text). The second PPI data were obtained from [29], which contains 17201

interactions among 4928 proteins (S2 Text). The third PPI data were described in the pub-

lished work [7], which contains 14317 interactions and 3672 proteins (S3 Text).

The gold standard essential protein set contains 1285 essential proteins collected from sev-

eral databases, such as MIPS [30], SGD [31], DEG [32], and SGDP (http://www-sequence.

stanford.edu/group/). Out of all the 5093 proteins in the 24743_PPI network, 1167 proteins

are essential, 3591 proteins are non-essential, and the remaining 335 proteins have not yet

been identified as either essential or non-essential. In the 17201_PPI dataset, 1150 out of 4928

proteins are essential, and the rest are non-essential. In the 14317_PPI dataset, 929 out of 3672

proteins are essential, and the rest proteins are assumed as non-essential.

The gene expression data of Saccharomyces cerevisiae were obtained from the published

work in [33], and this dataset contains 36 samples with 6777 genes.

The gene ontology annotations data of Saccharomyces cerevisiae gene products were down-

loaded from the Gene Ontology Consortium (http://geneontology.org/page/download-

annotations). The annotation data for Saccharomyces cerevisiae were released on March 5-th

2016. The GO semantic similarity between two proteins is evaluated by the method mentioned

in section 2.1. For proteins that have no corresponding GO id information, we simply set the

similarity of the interactions with zero values.

Results and discussion

We established a general framework to reveal the missed links of the original network by com-

bining the co-expressed measure of gene expression data and GO similarity of GO annotation

information. Then, we prune the predicted links and select the most significant links as the

true predicted links by filtering the links associated with the essential proteins that could only

be predicted under new constructed networks. The selected links are assumed to be true pre-

dicted links.

Finally, the new predicted links associated with the selected proteins are validated by the

reliable links obtained from the public database. The proposed paradigm is depicted in Fig 1.

Predict the interactions between two unlinked protein pairs and create a

new constructed network

In predicting new interactions, we measured the existence likelihood of unlinked protein pairs

by measuring the co-expression value and GO similarity value under BP term. The reliability

of the new predicted links depends on the threshold of these measures. To obtain appropriate

thresholds of PCC and GO similarity, we first collect the number of the links under different

thresholds of PCC and then filter the new added links by GO similarity threshold.

Table 1 shows the proportion of the added number of links under the different thresholds

of PCC coefficient. When the threshold is set to 0.95, the proportion of the added number of

links reached over 80% of the original number of links. The PCC measured the co-expression

of gene pairs, which may not guarantee the existence of a physical link between the unlinked

protein pairs. To filter the unreliable links, we added GO similarity threshold based on the

added links under a different PCC threshold. The GO similarity threshold is set according to
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the added proportion in Table 1. When the PCC threshold is set relatively low, the GO similar-

ity threshold should increase, so that the quality of predicted links can be guaranteed.

Table 2 shows the proportion of new predicted links when both PCC and GO similarity are

satisfied. From Table 2, we can see that when the PCC threshold is set to 0.95 and GO similar-

ity threshold is set to 0.5, the proportion of added links is approximately 13.4%, suggesting

that adding the GO similarity threshold filtered almost 68% of new added links.

Fig 1. Overview of the proposed strategy for predicting missed links.

https://doi.org/10.1371/journal.pone.0177029.g001

Table 1. The proportion of added links under different PCC threshold for 24743_PPI dataset.

PCC threshold 0.95 0.96 0.97 0.98 0.99

Added Proportion 0.815 0.548 0.319 0.133 0.019

https://doi.org/10.1371/journal.pone.0177029.t001
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To ensure the reliability of the new predicted links between protein pairs, when the thresh-

old of PCC is set relatively low, the threshold of GO similarity score should be increased, so

that the links with a larger similarity score than the threshold can be considered as the ones

with high existence likelihood. We use a moderate threshold for PCC as well as for GO similar-

ity when the threshold is too high, few links satisfy the condition and there is no difference

between the new constructed network and the original network, and when the threshold is too

low, the unreliability o the new constructed network decreases.

In the present study, we illustrated the performance of the strategy by setting the PCC

threshold set at 0.98 (refer to network 1 (S4 Text)), or the PCC threshold was set at 0.95, and

GO similarity threshold set at 0.5 (refer to network 2 (S5 Text)). The proportion of added links

was approximately 13% under both cases for 24743_PPI dataset. In the following analysis, we

take the two new constructed networks (network 1 and network 2) as test networks and com-

pared their performance with the original network under each of the considered methods.

Compare the performance of centrality measures on the original network

and new constructed networks

To validate the efficiency of the proposed strategy, we compare it with six centrality methods

(the definition of centrality measures is provided in the S1 Appendix) on the new constructed

networks and the original network under the benchmark essential protein set. Proteins are

sorted in descending order according to their measurements computed under each method.

We collect the number of true essential proteins in the top 5%, 10%, 15% and 20% predicted

candidate proteins by each method and compare the number of essential proteins identified

by six typical methods on the original network and new constructed network (network 1) in

Fig 2. As shown in Fig 2, the predicted number of each method under the new constructed net-

work is higher than the original network despite the top 5% ranked proteins.

Similarly, we list the number of true essential proteins in the top 5%, 10%, 15% and 20%

predicted candidate proteins by each method and compare the number of essential proteins

identified by six typical methods on the two networks in Fig 3. Compared to the original net-

work, all of the considered methods achieved comparable or better performance under the

new constructed network 2, especially for the topological based methods.

We also validate the efficiency of these methods in predicting essential proteins on the new

constructed networks by precision-recall (PR) curve and jackknife curve in the S1 Appendix.

Analyze the differences of these methods in identifying essential

proteins on two networks

The new constructed networks highly improve the performance in predicting essential pro-

teins under the three considered topological-based methods DC, NC, and SC. To further dem-

onstrate the efficiency of the proposed strategy, we analyze the difference between the new

constructed network and the original network under the three methods by predicting a small

Table 2. The proportion of added links under different PCC and GO similarity thresholds for the 24743_PPI dataset.

PCC & GO_sim 0.95 & 0.5 0.96 & 0.4 0.97 & 0.3 0.98 & 0.2 0.99 & 0.1

Added Proportion 0.13449 0.09629 0.06159 0.0289 0.0043

https://doi.org/10.1371/journal.pone.0177029.t002
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fraction of proteins such as the Top 200. The new network 1 is denoted as new1, the new net-

work 2 is denoted as new2, and the original network is denoted as ori.

The number of overlaps in the top 200 proteins predicted by each method under the new1

and new2 with the original network is denoted as |ori \ new1| and |ori \ new2|, respectively.

|new1 − ori| and |new2 − ori| denote the number of proteins identified under network 1 and

network 2, respectively, but not under the original network for the corresponding methods.

Similarly, |ori − new1| and |ori − new2| denote the number of proteins identified under the

original network but not the new constructed networks for the corresponding methods. The

details of essential and non-essential proteins in the intersection and set difference identified

by the three methods under the original and new constructed networks for 24734_PPI dataset

are summarized in Table 3.

The number of essential proteins identified by the three methods under the new con-

structed networks is relatively larger than the number of essential proteins identified under the

original network, especially for the DC and SC methods. For instance, using the DC method,

42 out of 61 proteins are essential in the set difference of new1 and the original network, 44

out of 53 proteins are essential in the set difference of new2 and the original network.

Fig 2. Comparison of the number of essential proteins predicted by the six methods under the new constructed network (network 1)

and the original network for 24743_PPI data.

https://doi.org/10.1371/journal.pone.0177029.g002
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Fig 3. Comparison of the number of essential proteins predicted by the six methods under the new constructed network (network 2) and

the original network for 24743_PPI data.

https://doi.org/10.1371/journal.pone.0177029.g003

Table 3. The number of essential and non-essential proteins in the intersection and set difference identified by three centrality methods under the

original network and new constructed networks for 24743_PPI dataset.

Number of Essential proteins Number of Non-essential proteins

Methods |ori \ new1| |new1 − ori| |ori \ new1| |new1 − ori| |ori − new1| |new1 − ori| |ori − new1|

DC 139 61 63 42 19 19 42

NC 95 105 55 69 71 36 34

SC 47 153 25 101 52 52 101

Number of Essential proteins Number of Non-essential proteins

Methods |ori \ new2| |new2 − ori| |ori \ new2| |new2 − ori| |ori − new2| |new2 − ori| |ori − new2|

DC 147 53 66 44 16 9 37

NC 86 114 49 82 77 32 37

SC 57 143 24 97 53 46 90

https://doi.org/10.1371/journal.pone.0177029.t003
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These results show that the new constructed network is more effective than the original net-

work for predicting essential proteins, suggesting that the new predicted links may contribute

to the high accuracy in predicting essential proteins.

Similarly, we obtained the number of essential and non-essential proteins in the intersec-

tion and set difference identified by three centrality methods under the original network and

new constructed networks for the 17201_PPI dataset.

The proportion of added links under the different thresholds of PCC coefficient was shown

in S1 Table. To balance the proportion of added links, we also added the GO similarity thresh-

old, and the proportion of new predicted links are listed in the second part of S1 Table when

both PCC and GO similarity are satisfied. When the PCC threshold is set to 0.98, the added

proportion of links is approximately 19%, and the same proportion of added links is obtained

when the PCC threshold is set to 0.96 and the GO similarity threshold is set to 0.4. To test the

performance of the new proposed strategy on the 17201_PPI dataset, we set the PCC threshold

to 0.98 and obtained the new constructed network as “network 1” (S6 Text) and set the PCC

threshold to 0.96 and GO similarity threshold to 0.4 to obtain the new constructed “network

2” (S7 Text) for comparison.

We applied the three topological-based methods to the two constructed networks for the

17201_PPI dataset, and the number of true essential proteins in the top 5%, 10%, 15% and 20%

predicted candidate proteins by each method are collected and compared with the original net-

work (Figs 4 and 5). Compared to the original network, the new constructed networks show

priority in the number of predicted essential proteins under the three methods.

To select the significant essential proteins that could only be predicted under the new con-

structed networks, we collect the essential and non-essential proteins in the intersection and

set difference identified by three centrality methods under the original network and new con-

structed networks for the 17201_PPI dataset (S2 Table), we can see that the new predicted

links are helpful for predicting essential proteins.

For the 14317_PPI dataset, S3 Table demonstrate the proportion of added links under the

different thresholds of PCC coefficient and GO similarity. For simplicity, we set the PCC

threshold to 0.98 and obtained the new constructed network as “network 1” (S8 Text) and set

the PCC threshold to 0.95 and GO similarity threshold to 0.5 to obtain the new constructed

“network 2” (S9 Text) for comparison.

Similarly, we applied the three topological-based methods to the two constructed networks

for the 14317_PPI dataset, and the number of true essential proteins in the top 5%, 10%, 15%

and 20% predicted candidate proteins by each method are collected and compared with the

original network (Figs 6 and 7). Compared to the original network, the new constructed net-

works show priority in the number of predicted essential proteins under the three methods.

To select the significant essential proteins that could only be predicted under the new con-

structed networks, we collect the essential and non-essential proteins in the intersection and

set difference identified by three centrality methods under the original network and new con-

structed networks for the 14317_PPI dataset (S4 Table).

Validate the new predicted links

To reveal the contribution of the new predicted links on high prediction rates for the three

topological-based centrality methods, the following conditions are set. First, we select the can-

didate proteins that could only be predicted by the three methods in the top 200 under the two

new constructed networks for the 24743_PPI dataset, 17201_PPI dataset and 14317_PPI data-

set., and then we validate the essentiality of the candidate proteins by true benchmark essential

proteins set, at last, the true essential proteins in the candidate proteins are selected.
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For the 24743_PPI dataset, there are 21 proteins that satisfy the condition under the two

new constructed networks. To obtain an overview of these 21 proteins in the original network,

we calculate the three centrality measures and sort their value in a descending order. The pro-

tein name and corresponding rank position under the three different methods in the original

network are listed in Table 4.

As shown in Table 4, 21 true essential proteins are ranked in the top 200 under the new

constructed networks, but almost half of these proteins (10 out of 21) ranked over 1000 in the

original network. This finding demonstrates that the new predicted links associated with these

proteins may be statistically significant, and their existence is highly probable.

To validate the new predicted links, we first select the 10 proteins collected in Table 4 and

collect the new predicted interactions associated with the 10 proteins in both of the new con-

structed networks. Then, we collect the interactions associated with these proteins by mining

the STRING database (STRING Database. http://string.embl.de/) and filtering the interactions

with a confidence score smaller than 0.7. The overlaps between the new predicted interactions

and interactions collected in the STRING database are assumed to be truly predicted. For

Fig 4. Comparison of the number of essential proteins predicted by the six methods under the new constructed network (“network 1”)

and the original network for 17201_PPI data.

https://doi.org/10.1371/journal.pone.0177029.g004
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comparison, the total new predicted links in the new constructed networks, i.e., network 1 and

network 2, are also validated by using the reliable links obtained from the STRING database.

Table 5 shows the number and fraction of edges in different groups validated by the

STRING database. The precision of the selected predicted links associated with the 10 selected

proteins is higher than the total new predicted links under both new constructed networks.

The total new predicted interactions in the two new constructed networks and validated

interactions, the new predicted interactions associated with the 10 proteins under the two new

constructed networks, and the confirmed interactions under 24743_PPI dataset were pre-

sented in S1 File at the supplemental part.

The true predicted interactions associated with the 10 proteins under the two new con-

structed networks are displayed in Fig 8. For the new constructed network 1521 edges (involv-

ing 108 proteins) out of 653 edges (79.8%) are validated, and for the network 2467 edges

(involved 75 proteins) out of 609 edges (76.7%) are validated by the STRING database.

For the 17201_PPI dataset, there are 37 proteins satisfying the condition under both new

constructed networks. Similarly, we calculate the three centrality measures and sort their value

in descending order. The protein name and corresponding rank position under three different

methods in the original network are listed in Table 6.

Fig 5. Comparison of the number of essential proteins predicted by the six methods under the new constructed network (“network 2”)

and the original network for 17201_PPI data.

https://doi.org/10.1371/journal.pone.0177029.g005
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As shown in Table 6, 37 true essential proteins are ranked in the top 200 under the new

constructed networks, but 17 out of these ranked over 1000 in the original network. To vali-

date the new predicted links, we first select the 17 proteins collected in Table 6 and collect the

new predicted interactions associated with the 17 proteins in both constructed networks. Simi-

larly, we validate the new predicted interactions associated with the 17 proteins by using the

reliable interactions obtained from the STRING database.

Table 7 shows the number and fraction of edges in different groups validated by the

STRING database. The precision of the selected predicted links associated with the 17 selected

proteins is higher than the total new predicted links under both new constructed networks, i.e.

“network 1” and “network 2”.

The total new predicted interactions in the two new constructed networks and validated

interactions, the new predicted interactions associated with the 17 proteins under the two new

constructed networks, and the confirmed interactions under 17201_PPI dataset were shown in

S1 File at the supplemental part.

For the 14317_PPI dataset, there are 24 proteins satisfying the condition under both new

constructed networks. Similarly, we calculate the three centrality measures and sort their value

Fig 6. Comparison of the number of essential proteins predicted by the six methods under the new constructed network (“network 1”)

and the original network for 14317_PPI data.

https://doi.org/10.1371/journal.pone.0177029.g006
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in descending order. The protein name and corresponding rank position under three different

methods in the original network are listed in Table 8.

Due to the number of true essential proteins in 14317_PPI dataset is less than 1000, here we

set the rank threshold to 800. As shown in Table 8, 24 true essential proteins are ranked in the

top 200 under the new constructed networks, but 10 out of these ranked over 800 in the origi-

nal network. To validate the new predicted links, we first select the 10 proteins collected in

Table 8 and collect the new predicted interactions associated with the 10 proteins in both con-

structed networks. Similarly, we validate the new predicted interactions associated with the 10

proteins by using the reliable interactions obtained from the STRING database.

Table 9 shows the number and fraction of edges in different groups validated by the

STRING database. The precision of the selected predicted links associated with the 10 selected

proteins is higher than the total new predicted links under both new constructed networks, i.e.

“network 1” and “network 2”.

The total new predicted interactions in the two new constructed networks and validated

interactions, the new predicted interactions associated with the 10 proteins under the two new

Fig 7. Comparison of the number of essential proteins predicted by the six methods under the new constructed network (“network 2”)

and the original network for 14317_PPI data.

https://doi.org/10.1371/journal.pone.0177029.g007
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constructed networks, and the confirmed interactions under 14317_PPI dataset were pre-

sented in S3 File at the supplemental part.

To compare the performance of the new method with the four other state-of-the-art link

prediction methods in predicting underlying links in the PPI network, we applied the three

methods on the test PPI network and selected the top ranked edges (approximately 13% of the

edges for the original network of 24743_PPI dataset and approximately 19% of the edges for

the original network of 17201_PPI dataset, and approximately 18% of the edges for the original

network of 14317_PPI dataset) as a new predicted interaction between unlinked protein pairs.

The new predicted links are validated by mining the STRING database with a high confidence

Table 4. The rank position of the selected proteins under the original network by the three corre-

sponding methods for the 24743_PPI data.

Protein name rank in SC rank in DC rank in NC

YCL054W 1212 1338 938

YDL060W 959 715 556

YDR087C 887 1067 666

YGR159C 1363 2151 3369

YJL069C 385 288 304

YLR186W 260 694 1572

YLR222C 237 386 962

YLR276C 1782 1749 1247

YML093W 3703 4786 4280

YMR128W 2007 1301 1207

YMR131C 3960 3837 4354

YMR290C 308 391 231

YNL062C 3845 3871 1121

YNL075W 2468 2645 1122

YNL112W 2200 1781 2295

YNL308C 709 910 1870

YNR054C 2887 3912 1128

YOR004W 1854 3939 4708

YOR272W 291 395 219

YPL012W 672 663 990

YPR144C 2101 2340 874

https://doi.org/10.1371/journal.pone.0177029.t004

Table 5. Validation of the total new predicted links and the new predicted links associated with the 10

proteins by STRING database for the 24743_PPI dataset.

Edge group Number of edges

New network 1 New network 2

Total predicted 3321 3326

Confirmed 2343(0.706) 2098(0.631)

Select predicted 653 609

Confirmed 521(0.798) 467(0.767)

Values in parentheses are fraction of edges validated.

https://doi.org/10.1371/journal.pone.0177029.t005
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score. The number of new predicted links and confirmed links for each method are listed in

Table 10. Compared with the results list in Tables 5, 7 and 9 we can see that the prediction

accuracy of the new proposed method is much better than these random walk-based methods.

Conclusions

Predicting interactions between two proteins is a hot topic in the post-genome era, although

many computational methods have been proposed to predict links for the complex network.

However, most of these methods are topological-based, and the accuracy of these methods

remains unsatisfied.

The two linked proteins are more likely to be co-expressed and have the similar biological

function. In the present work, we propose a new strategy to predict underlying links between

two originally unlinked proteins based on two-stages. We first construct new networks by

measuring the co-expressed score and GO similarity score of unlinked protein pairs and then

select the significant part of new predicted interactions by comparing the essential proteins

identified using the new constructed networks and original network.

To evaluate the performance of the new strategy, we validate the new predicted links using

the high confidence interactions obtained from the STRING database. Simulation results show

that the prediction accuracy can be highly improved under the new proposed strategy for both

test datasets.

Our method may be improved in two directions. On the one hand, it provides new insight

for computationally predicting new interactions through measuring the co-expression and

GO functional similarity of unlinked protein pairs, and it provides new insight for selecting

Fig 8. The new predicted links associated with 10 proteins (marked yellow) under the two new constructed networks. The edges that have been

validated by the interactions collected in the STRING database are marked in red, and the other edges are marked in green. (A) The new predicted edges

associated with 10 proteins in the new constructed network 1. (B) The new predicted edges associated with 10 proteins in the new constructed network 2.

https://doi.org/10.1371/journal.pone.0177029.g008
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Table 6. The rank position of the selected proteins under the original network by the three corre-

sponding methods for the 17201_PPI data.

Protein name rank in SC rank in DC rank in NC

YCL054W 1847 1111 1452

YDL060W 1593 511 538

YDR087C 453 1297 1832

YDR449C 2117 1306 834

YER126C 749 347 251

YGR159C 3567 2601 4523

YGR245C 1023 437 306

YHR148W 2496 1342 1014

YHR169W 1608 477 1064

YIL091C 4489 4282 2511

YJL033W 1475 395 420

YJL050W 3691 2181 4793

YLL011W 1770 703 1450

YLR009W 718 2221 4804

YLR186W 2226 1055 898

YLR196W 527 244 838

YLR222C 903 331 467

YLR276C 1884 1383 814

YML093W 4113 4585 2830

YMR128W 1774 944 1292

YMR131C 4810 4620 2868

YMR290C 340 248 388

YNL002C 1225 852 407

YNL062C 3145 3599 1711

YNL075W 2104 2304 1426

YNL112W 2088 1906 3601

YNL308C 402 604 3497

YNR054C 3431 3642 1722

YOL022C 2731 4733 2995

YOR004W 3325 4764 3027

YOR272W 606 309 255

YPL012W 1051 610 1148

YPL217C 2085 1962 1785

YPR112C 3389 3774 4316

YPR137W 2890 1439 1289

YPR144C 2209 1970 1237

https://doi.org/10.1371/journal.pone.0177029.t006

Table 7. Validation of the total new predicted links and the new predicted links associated with the 17

proteins by STRING database for the 17201_PPI data.

Edge group Number of edges

New network 1 New network 2

Total predicted 3265 3269

Confirmed 2344(0.718) 2066(0.632)

Select predicted 957 948

Confirmed 759(0.793) 697(0.735)

Values in parentheses are fraction of edges validated.

https://doi.org/10.1371/journal.pone.0177029.t007
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Table 8. The rank position of the selected proteins under the original network by the three corre-

sponding methods for the 14317_PPI data.

Protein name rank in SC rank in DC rank in NC

YCL054W 720 1336 1403

YDR449C 348 620 667

YER082C 1770 2230 2171

YER126C 2128 2232 2184

YIL091C 675 1110 1520

YJL069C 842 1118 537

YLR186W 1507 2454 2937

YLR196W 215 358 646

YLR222C 1512 847 458

YLR276C 541 1446 838

YML093W 879 702 1510

YMR131C 2414 1688 3118

YNL062C 1533 2000 3219

YNL075W 2349 2536 3222

YNL112W 868 1140 1192

YNR054C 282 338 424

YOL022C 2268 3500 3337

YOR004W 1935 3526 3391

YOR272W 460 1299 556

YPL012W 504 601 1588

YPL217C 539 782 1301

YPR112C 1493 1160 3644

YPR137W 598 1059 889

YPR144C 848 664 1308

https://doi.org/10.1371/journal.pone.0177029.t008

Table 9. Validation of the total new predicted links and the new predicted links associated with the 10

proteins by STRING database for the 14317_PPI data.

Edge group Number of edges

New network 1 New network 2

Total predicted 2598 2662

Confirmed 1951(0.751) 1739(0.653)

Select predicted 530 561

Confirmed 421(0.794) 407(0.725)

Values in parentheses are fraction of edges validated.

https://doi.org/10.1371/journal.pone.0177029.t009

Table 10. The Number of predicted links and confirmed links for the four random walk-based methods.

Methods 24743_PPI 17201_PPI 14317_PPI

Predicted Confirmed Predicted Confirmed Predicted Confirmed

RWS 3217 270(0.0839) 3268 367(0.112) 2577 271(0.105)

LRW 3226 231(0.0716) 3269 252(0.0771) 2578 248(0.096)

SRW 3222 238(0.0739) 3279 285(0.0869) 2579 227(0.088)

RWR 3218 271(0.0842) 3269 290(0.0887) 2578 249(0.096)

Values in parentheses are fraction of edges validated.

https://doi.org/10.1371/journal.pone.0177029.t010
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the significant part of new predicted interactions by mining the difference between the new

constructed network and original network for identifying essential proteins. On the other

hand, we can increase the accuracy of prediction essential proteins by improving the integrity

of PPI.

Although the new strategy performs well in the detection of underlying links in the PPI net-

work, the network obtained by link prediction is still rough, and the false-positive and negative

links in the networks have not been considered. Therefore, in the future, we will work to

design refined measures in predicting unrevealed links between protein pairs by reasonable

integration of PPI topological information with other types of high throughput data, and we

will work to filter noise underlying the PPI network.
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