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Abstract

Although techniques for cell-specific gene expression via viral transfer have advanced,

many challenges (e.g., viral vector design, transduction of genes into specific target cells)

still remain. We investigated a novel, simple methodology for using adenovirus transfer to

target specific cells of the kidney tubules for the expression of exogenous proteins. We

selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the

proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascend-

ing limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of

the three genes were linked to a GFP-coding fragment, the final constructs were then incor-

porated into an adenovirus vector, and this was then used to generate gene-manipulated

viruses. After flushing circulating blood, viruses were directly injected into the renal arteries

of rats and were allowed to site-specifically expression in tubule cells, and rats were then

euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adeno-

virus-derived EGFP and endogenous proteins were examined to verify orthotopic expres-

sion, i.e. “adenovirus driven NPT2a-EGFP and endogenous NHE3 protein”, “adenovirus

driven NKCC2-EGFP and endogenous NKCC2 protein” and “adenovirus driven AQP2-

EGFP and endogenous AQP2 protein”. Owing to a lack of finding good working anti-NPT2a

antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3)

that is also specifically expressed in the proximal tubule was used. Kidney structures were

well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer

method is easier than using genetically engineered animals, and it confers the advantage of

allowing the manipulation of gene transfer after birth. This is the first method to successfully

target gene expression to specific cells in the kidney tubules. This study may serve as the

first step for safe and effective gene therapy in the kidney tubule diseases.
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Introduction

The prevalence of chronic kidney disease (CKD) is estimated to be 8–16% of the global popula-

tion [1], and the presence of CKD is intimately associated with large increases in both end-

stage kidney disease and cardiovascular disease risk [2]. One major cause of CKD is the disrup-

tion of genes that are expressed in specific cells of the renal tubules; this can result in several

different diseases, e.g., Fanconi syndrome, Bartter syndrome, Gitelman syndrome, and Dent

disease [3, 4, 5, 6]. Although gene transduction may be useful to treat these patients, kidneys

are composed of many distinct cell types; therefore, highly accurate, site-specific gene expres-

sion is necessary to minimize adverse effects resulting from such a treatment [7]. Furthermore,

gene therapy has not yet been established in nephrology [8].

From the standpoint of gene transduction efficiency, adenoviral vectors are the strongest

among all available vectors, including other viral and artificial vectors [9]; adenovirus vectors

are the most commonly used viral vectors in gene therapy clinical trials (23.3%) [10]. However,

systemic administration of adenoviruses results in gene expression exclusively in the liver [11–

18]. To overcome the mass accumulation of adenoviruses in the liver, two approaches have

been conducted to date [19]. One approach is to modify the existing viruses to develop artifi-

cial transduction vehicles; however, many of these are also accumulated in the liver [20, 21].

Another approach is direct administration to the target organ. However, direct administration

into deep tissues is invasive, and it is difficult to induce genes in the entire tissues, or at the

desired sites, of the target organ. For these reasons, targeted gene expression is currently lim-

ited to the surface tissues of such organs as the eyes and the respiratory tract. In the case of the

kidney and urinary tract, the target sites have been the bladder [21, 22], kidney parenchyma

[14, 22], and ex vivo organs during surgery [7, 16], which were used in an attempt to obtain

direct access to tissues. However, non-specific CAG promoters are expressed not only in the

target cells, but also in other types of cells located within the injection area; furthermore, direct

access to target organs via surgery may carry high risks of complications due to infection,

bleeding, and tissue damage. In addition, direct surgical access to a target organ does not facili-

tate the selection of specific cell types, because most organs contain many different types of

cells within close proximity.

Therefore, we were prompted to achieve transgene expression in specific cell types within

the kidneys. Briefly, we designed and cloned several promoters and incorporated to adenovirus

vectors to make express EGFP into the kidneys that should be cell-specific, so as to circumvent

expression of EGFP in non-targeted cells. The cloning promoters were for the very site-specific

expression genes within three different segments of the kidneys—the proximal tubule, the

thick ascending limb of Henle (TALH), and the collecting duct. Then, the renal artery flushed

out with natural saline, these adenovirus vectors are injected into the renal artery, the renal

artery was clamped for a while to enhance infection efficiency, and the last, the clamps were

removed from the vessels to restore blood flow in rats.

The main goal of this study was to create a safe, effective method for accomplishing

targeted gene expression in the kidneys. Here, we show that combining site-specific pro-

moters and adenoviral transduction methodology allows the expression of transgenes spe-

cifically to the TALH, the proximal tubules, and the distal tubules, without causing kidney

damage, in rats.

Materials and methods

Gene analyses

We focused on representative genes normally expressed in specific kidney tubule structures:

sodium-dependent phosphate transporter 2 (NPT2a; SLC34A1) in the proximal tubule [15],
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sodium-potassium chloride cotransporter (NKCC2; SLC12A1) in the TALH [16], and aqua-

porin 2 (AQP2) in the collecting duct or distal tubule [16]. Genome sequences of these three

genes were examined using National Center for Biotechnology Information (NCBI) data-

bases and the Ensembl Genome Browser website (http://www.ensembl.org/index.html). The

enzyme cutting sites for cloning were examined using the Mikenora free software (Daiich

Kagaku, Akashi, Japan). To match the genome sequences among many species, and to deter-

mine the transcription factor binding sites, Vector NTI Advance software (version 10, Invi-

trogen, Carlsbad, CA) and the TRANSFAC database with "Match" application (http://www.

gene-regulation.com/pub/programs.html) were used. The gene accession numbers of the 50

upstream sequences of Npt2a, Nkcc2, and Aqp2 are ENSMUSG 00000027202, ENSRNOG

00000015262, and ENSRNOG 00000000297, respectively.

Promoter construct cloning

Npt2a promoter. The genomic clone was used as a template for PCR amplification, with

a sense primer at position -3,379 (50-AAATTTGTCTGGATATAATGT-30) and an anti-sense

primer at position +630 (50-GATGGGCACCCACAATGAGTCCTGTGTAT-30), with "-1" being

relative to the ATG translational start codon. We tried to incorporate the closest sequence (-1)

just upstream of the ATG translation starting codon to make the total length as long as possible

(up to ~4 kbp). PCR conditions were the following: 98˚C for 5 min, 66˚C for 30 sec, 68˚C for 4

min and 30 sec for 30 cycles, and 68˚C for 10 min.

Nkcc2 promoter. We examined vectors as previously published by Dr. Peter Igarashi

[17]. They two different, constructed proximal 50-flanking region segments of the Nkcc2 gene

constructs were cloned from PGL3 basic vectors (Promega, Madison, WI); one spanned posi-

tions -2,255 to -188 (construct named pNKCC2DI), and the other ran from positions -1,529 to

-188 (construct named pNKCC2pvu). We also constructed a third promoter to be of a length

intermediate between pNKCC2DI and pNKCC2pvu. The genomic clone was used as a tem-

plate for PCR amplification, with a sense primer located at position -1,612 (50- GCAATTAGCA
AGGCAAGACAGTT-30) and an anti-sense primer ending at position +9 (50- CTCCCATGCAAA
CTTCAGAATG-30). PCR conditions were the following: 95˚C for 3 min, 62˚C for 1 min, 68˚C

for 1 min and 40 sec for 30 cycles, and 68˚C for 10 min.

Aqp2 promoter. We constructed plasmids carrying three different sections of the 50

upstream region of Aqp2, because of the long promoter sequence. The first construct spanned

from positions -8,347 (50-TCTTACCATCTATTAAAGACAAAAGCAA-30) to -2,936 (50-CTTCT
GGTATTAACAAATCTGATCTCTG-30). PCR was performed as follows: 98˚C for 5 min, 66˚C

for 30 sec, 68˚C for 5 min for 30 cycles, and 68˚C for 10 min. The second construct spanned

from position -3,652 (50-TGATCCAATTGATAAGATATAATTTTTGC-30) to position +1,860

(50-TATACCATGTTAGAAAGTTTGATTTTGG-30). PCR was performed as follows: 98˚C for

30 sec, 66˚C for 30 sec, 68˚C for 4 min and 30 sec for 30 cycles, and 68˚C for 10 min. The third

construct spanned from positions +906 to +930. We then adopted the oligo construct span-

ning from -5,338 to +930 (-1 relative to the ATG translational start codon) (50- AGAAGTCGGA
GCAGCACCGGTTCA-30) as the AQP2 promoter. The three Aqp2 constructs were ligated into

one fragment, which had a sequence that spanned from position -8,347 to -1 from the starting

codon.

CAG (non-specific) positive control promoter. The enhanced green fluorescent protein

(EGFP) gene in the pEGFPN1 vector was subcloned into the CAG-promoter cosmid (pAxCwit

adenovirus cosmid) (Takara Bio, Otsu, Japan).
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Adenovirus construction

The promoters of the test genes (Npt2a, Nkcc2, and Aqp2) were purified from genomic DNA

obtained from the blood of Wistar rats. Rats were purchased from the Charles River Labora-

tory in Japan. The gene constructs of pNKCC2DI and pNKCC2pvu were gifts from Dr. Peter

Igarashi (University of Texas Southwestern Medical Center). All promoters created for this

study are available upon request. Of note is that the adenovirus construct lacks the coding

region of translation.

Adenovirus constructs were subcloned into the Zero Blunt cloning vector (Invitrogen

k2700-20, Carlsbad, CA), then were subcloned into the pEGFPN1 vector (Clontech, Mountain

View, CA), and were finally subcloned into the promoterless pAxCwit adenovirus cosmid.

NKCC2DI-EGFP, NKCC2pvu-EGFP, pNKCC2-EGFP, NPT2a-EGFP, and AQP2 EGFP were

used to infect human embryonic kidney cells (HEK293 cells; ATCC, Manassas, VA), which

were cultured with Dulbecco’s modified Eagle’s medium (DMEM; Nissui, Tokyo, Japan) con-

taining 5% fetal bovine serum. We precisely selected a single clone of adenovirus, and identi-

fied its DNA via enzyme cutting and DNA sequence analyses. The titer of each adenovirus

exceeded 1013 pfu/mL. After purification of these adenoviruses, each colony was used to infect

four rats; CAG-EGFP was used to infect three rats

Adenoviral infection procedure

When adenoviruses are introduced into a target organ via peripheral intravenous or intra-

arterial routes, co-expression in the liver cells is almost always observed [10]. For selective

infection of the kidneys, uptake of the adenovirus into kidney cells must occur before the ade-

novirus arrives at the liver. We used four different approaches for injecting adenovirus into

the kidney of 8- to 10-week-old rats (S1 Fig): (a) intra-arterial bolus injection into the renal

artery for 2 min, (b) continuous intra-arterial slow drips into the renal artery for 16 h, (c) an

injection into the bladder, to be transduced by retrograde infusion, and (d) 10 repetitions of

direct injections into the renal parenchyma from all directions. To describe approach (a) in

greater detail: following clamping between the abdominal aorta and the beginning of the left

renal artery, 1 mL of normal saline was injected into the left renal artery over 2 min. Then, 1

mL of adenovirus solution was injected into the artery over 2 min, followed by clamping of the

renal vein for 10 min, after which the clips were removed from the vessels to restore renal

blood flow. Surgery was performed under nitrous oxide-oxygen anesthesia. All experimental

procedures were approved by the University of Tokyo Animal Care Committee # KA10-2-1.

43 rats were used for this study.

Immunohistochemistry

Four days after injection, we anesthetized and euthanized the gene-transferred rats. Each

removed kidney was fixed with 4% paraformaldehyde for two nights, after which it was paraf-

fin-embedded and prepared in sections. Deparaffinized sections were stained with HRP

(1:200; Dako, Denmark and Carpinteria, CA, USA)-DAB (Dako) and ALP (1:80; Dako)-

NBT-BCIP (Dako). We used antibodies against the following proteins: EGFP (1:200; Molecu-

lar Probes), NKCC2 (1:2000; Shimadzu), AQP2 (1:200; Abcam, Cambridge, Science Park,

UK), and sodium-hydrogen exchanger 3 (NHE3; SLC9A3P2) (1:300; ACR). The antibody

against NHE3 was used in lieu of the antibody against NPT2a, due to a lack of the latter’s avail-

ability. We immunostained the deparaffinized sections using the avidin-biotin complex immu-

noperoxidase method.

For transmission confocal microscopy (LSM510, Carl Zeiss, Jena, Germany), frontally sec-

tioned kidney slices were frozen in liquid N2, embedded in Optimal Cutting Temperature
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compound (Sakura Finetek, Tokyo, Japan), and stored -80˚C until use. The same antibodies as

described above were used, and nuclear staining was done with Hoechst 33342 (Cat# H3570,

Thermo Fisher, MA, USA).

Results

Design of Nkcc2 promoters

To optimize the efficiency of the promoter constructs, we first compared three different pro-

moters of Nkcc2. These gene constructs for the 50 upstream region of the Rattus Nkcc2
(Slc12a1) genes were prepared according to the data on construct-expression relationships pre-

viously published [18]. The three promoters, named pNKCC2DI, pNKCC2pvu, and pNKCC2,

are positioned as shown in Fig 1a. Using primary cultured tubular cells, Igarashi et al. found

that pNKCC2pvu exhibited the highest level of promoter activity, while pNKCC2DI exhibited

the lowest level of activity, among the seven promoters examined [18]. However, the sequence

of area A only harbored by pNKCC2DI (Fig 1a) was found to have conserved sequences across

various mammalian species, and was also found to have many transcription binding sites, such

as c-Rel, CREB, and Evi-1. For this reason, we expected to see better gene expression using

pNKCC2DI than the other constructs. We then linked the respective promoters to the EGFP

gene to evaluate promoter-EGFP expression patterns.

Comparison of administration routes

Four different approaches of adenoviral infection were compared by observing adenovirus-

derived EGFP expression in the kidneys. Because approaches (b), (c), and (d) in S1 Fig did not

show satisfactory expression patterns of NKCC2 in the rat kidney, we selected approach (a) for

further experiments. The (a) procedure was, the renal artery flushed out with 1ml of natural

saline, the adenovirus vectors of 108U/ml, 1ml are injected into the renal artery, the renal

artery was clamped for 10 min to enhance infection efficiency, and the last, the clamps were

removed from the vessels to restore blood flow in rats.

The explanations for this decision are the following. Approach (b) was continuous slow

drip for 16 h into the left renal artery: But there was no promoter-driven EGFP detected; we

speculate the infection rate of adenovirus in this case was very low, due to the presence of

the blood. Approach (c) was to inject into the urinary tract to flow upstream: The promoter-

driven EGFP was stained very clearly; however, the microvilli of the proximal tubule van-

ished; we suspect this was due to the excessive intra-tubular pressure by retrograde flow.

This method not only injured the kidney structure, but also introduced a risk of urinary

tract infection. Approach (d) was direct injections to the renal parenchyma from all direc-

tions: The EGFP expression area was restricted to be solely within the injection sites, and the

structure of renal parenchyma was damaged by repeated injections.

Using intrarenal volus injections of adenovirus (a), we tested for differences in NKCC2

expression. Non-specific expression of CAG-EGFP was evident throughout the kidney tissues,

suggesting the uniform infection of adenovirus and the distinct expression of the gene con-

struct, but without site specificity (Fig 2a).

We next compared the differences in expression patterns of the three promoters of Nkcc2,

using the endogenous expression of NKCC2 as a reference. Among the three promoters, the

expression patterns of NKCC2DI-derived EGFP (Fig 2b) most closely matched the staining

patterns of the endogenous NKCC2 protein (Fig 2c). By contrast, NKCC2pvu showed broader

distribution (Fig 2d) than endogenous NKCC2 (Fig 2e), also, pNKCC2-derived EGPF showed

broader distribution than endogenous NKCC2 (Fig 2g).

Targeting gene expression to kidney cells
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Fig 1. Designs of cloned pNKCC2, NPT2a, and AQP2 promoters. a. Three different NKCC2 promoters used in this

study. Transgene expression patterns were compared among the constructs, using these promoters. b. NPT2a promoter.

c. AQP2 promoter.

doi:10.1371/journal.pone.0168638.g001
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Fig 2. Immunostaining of the kidneys from adenovirus administered rats. a. EGFP staining of the kidneys

in rats received CAG-EGFP adenovirus (brown). b and c. EGFP staining of the kidney in rats received

NKCC2DI-EGFP (b, brown). The adjacent section of the kidney was stained with endogenous NKCC2 (c, blue).

d and e. EGFP staining of the kidney in rats received NKCC2 pvu-EGPF adenovirus (d, brown). The adjacent

section was stained with NKCC2 (e, blue). f and g. EGFP stating of the kidney in rats received pNKCC2-EGPF

adenovirus (f, brown). The adjacent section was stained with NKCC2 (g, blue). Scale bar: 1 cm.

doi:10.1371/journal.pone.0168638.g002
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At higher magnification, CAG-EGFP was expressed throughout the kidney tissue, except

for the glomeruli (Fig 3a and 3b), where it was not expressed. Similar to observations made at

lower magnification, staining of pNKCC2DI-EGFP and endogenous NKCC2 localized to the

same cells. Double staining was peformed to verify the precise pattern of protein expression.

The expression of pNKCC2DI-EGFP (brown color) was localized to the TALH cells, and

endogenous NKCC2 protein (pink color) was localized to the same TALH cells (Fig 3c and

3d). To further verify these specific expression patterns, we performed confocal microscopy

and confirmed that pNKCC2DI-EGFP and endogenousNKCC2 were expressed in the TALH

cells (Fig 3f). By contrast, CAG-EGFP stained in the cytoplasmic areas of all types of kidney

tubules non-specifically (Fig 3e). Conversely, we did not detect EGFP expression in the contra-

lateral kidney, liver, spleen, ileum, or lung via any of the four injection routes used.

Regarding adverse effects or toxicity induced by intra-renal arterial injections of adenovi-

rus, apparent damage was not observed in the renal tissue structure by microscopic examina-

tion, and there was no change in renal and liver function by laboratory serum and urine data.

Npt2a promoter for targeting proximal tubules

Next, the 50 upstream region of the Rattus Npt2a (Slc34A) gene, encoding the NPT2a promoter,

was constructed. We designed our promoters based on the premise that an optimal promoter

would begin at the -1 codon from the ATG start codon of the 50-flanking region, and that the

longer the promoter was, the better the expression would be (Fig 1b and 1c).

Since an effective and specific antibody against NPT2a was not available, an antibody

against NHE3 was used to identify proximal tubule cells. Under low magnification, the expres-

sion patterns of NPT2a-EGFP and endogenous NHE3 looked similar (Fig 4a and 4b). More-

over, double staining was peformed with NPT2a-EGFP (brown color) and NHE3 protein

(pink color) to determine the precise expression in the same cells. However, NPT2a-EGFP

(brown color) localized to the cytoplasm of the proximal tubule cells, whereas NHE3 protein

(pink color) localized to the apical membrane of the proximal tubule cells (Fig 4e and 4f).

Laser confocal microscopy further confirmed that NPT2a-EGFP was localized to the cyto-

plasm, while endogenous NHE3 was localized to the apical membrane of the identical cells

(Fig 4i). To explain this in more detail, both NPT2a protein and NHE3 protein were shown in

the cells of the proximal tubule, but their localization patterns within those same cells are dif-

ferent. It is probably because NPT2a promoter driven EGFP and NHE3 promoter driven

NHE3 (endogenous NHE3) are different protein and different distribution pattern in the same

cells because of different posttranslational modifications. Our aim here is to demonstrate that

while NPT2a-derived EGFP and endogenous NHE3 appear in the same cells, but the same

expression pattern in the cells. Of note is that the expression site of targeted transgene is the

present study was clearly restricted to the authentic tubule segment without aberrant expres-

sion in other segments.

Aqp2 promoter for targeting collecting ducts

We constructed the 50 upstream region of the Rattus Aqp2 gene, encoding an AQP2 water

channel promoter. At low magnification, AQP2-EGFP and endogenous AQP2 were detected

in the same areas (Fig 4c and 4d). Under high magnification, AQP2-EGFP (brown) staining

was localized to the cytoplasm of collecting duct cells, whereas endogenous AQP2 (purple)

staining was limited to the apical membrane of the collecting duct cells (Fig 4g and 4h). These

findings were verified by laser confocal microscopy (Fig 4j). Again, the expression site of tar-

geted transgene in the present study was restricted to the authentic tubule segment without

aberrant expression in other segments.
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Fig 3. Immunohistochemistry of the kidneys. a. Paraffin-embedded sections of the kidneys infected with CAG-EGFP

adenovirus. The arrow indicates glomerulus. Adenovirus-derived EGFP was stained in brown. b and c. Paraffin embedded sections

of the kidney infected with NKCC2DI-EGFP adenovirus. Adenovirus-derived EGFP is shown in brown and endogenous NKCC2 is

shown in pink. e and f. Immunostaining of frozen kidney sections infected with CAG-EGFP is shown in e and NKCC2DI-EGFP is

shown in f. e.Green indicates CAG promoter derived EGRP and f. Green indicates NKCC2 promoter-derived EGFP. f. Red

indicates endogenous NKCC2. e and f. Blue indicates nucleus.

doi:10.1371/journal.pone.0168638.g003
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Fig 4. Expression patterns of the NPT2a and AQP2 promoter constructs. a and b. Paraffin embedded sections. a.

NPT2a adenoviruses derived EGFP was shown in brown (a). Endogenous NPT2 was stained in the adjacent section

(b, shown in blue). c and d. AQP2-adenovirus derived EGFP was shown in brown (c), and endogenous AQP2 was

shown in blue in the adjacent section (d). e and f. Immunostaining of kidney infected with NPT2a-EGFP. Brown

indicates adenovirus-derived EGFP, and pink indicates endogenous NHE3. Nucleus is stained in blue. g and h.

Immunostaining of kidney infected with AQP2-EGFP. Brown indicates adenovirus-derived EGFP, and pink indicates

AQP2. Nucleus is stained in blue. i and j. Immunostaining of frozen sections of kidneys infected with NPT2a (i) or

AQP2-EGFP (j). Green indicates adenovirus-derived EGFP and blue indicates nucleus. Red indicates endogenous

NHE3 (i) or AQP2 (j).

doi:10.1371/journal.pone.0168638.g004
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Discussion

This study clearly demonstrated that site-specific expression of an exogenous protein is possi-

ble by adenovirus-mediated transgene methodologies. We chose an adenovirus vectors as the

gene carrier because adenoviral vectors exhibit the highest levels of transgene expression

among all currently available vectors [9, 11–14, 19]. Moreover, adenoviral vectors have an

important advantage in that they are able to deliver large-sized genes (up to 8 kbp) compared

to other viral vectors [8]. In addition, the adenoviral vector infects quiescent or terminally dif-

ferentiated cells, i.e., both dividing and non-dividing cells, and therefore has considerable ver-

satility for gene induction within contexts such as airway epithelial cells [20]. To develop

targeted gene therapeutics, and to yield a clear phenotype, sufficient amounts of expressible

transgenes are necessary. We attempted to develop specific promoters that harbor the -1 posi-

tion of the translation initiation codon, and with as lengthy a promoter as possible. In this

study, we succeeded in making constructs as long as 4–8 kbp, leading a successful expression

of the transgenes. Several routes of administering the adenovirus vector were compared, rang-

ing from direct infusion into the renal artery to retrograde infusion through bladder; only the

method of direct infusion into the renal artery demonstrated successful adenoviral infection in

kidney tissues. The other approaches did not work well. In previous reports, retrograde ureter

infusion was shown to be amenable to transgene methodologies [20, 21]. However, in our

hands, retrograde ureter infusion did enable pNKCC2DI-EGFP to be expressed in TALH cells,

but tubule structures were badly damaged, probably as a result of the increase in intra-tubular

pressure. The method of infusing adenovirus into the renal artery for 16 h did not work well;

we speculate it is because the blood plasma components have immune-mediated mechanism,

may inhibit the virus from infecting the cells. Thus, we conclude that washing out the blood

from the vessels for a while and intra-renal artery injection of high concentration of adenovi-

ruses may be indispensable for successful infection of the renal cells with adenoviruses. Then,

no detectable damages were found in the renal tissue. Considering of the mean width of the

slit diaphragm of the glomerulus is less than the diameter of the adenovirus, the adenovirus

might reach tubules through the vasculature but glomerulus.

There was slight difference in expression patterns between promoter-driven EGFP and

endogenous protein. The reason was estimated because of the difference of the expressing pro-

tein. NPT2a, NPCC2 and AQP2 proteins have their own posttranslational modification sys-

tems and distribution pattern in the cells, these patterns are different from those of EGFP. To

be more specific, it can be explained by the difference of posttranslational modifications, i.e.

trafficking signal peptides [23] and/or a shortage of posttranslationally modifiable sites, such

as those that could undergo phosphorylation upon activation [24]. Thus, the merged picture of

this protein’s expression patterns showed different localization to both the membrane and

cytoplasm. Anyway, the EGFP expression site in the present study was restricted to the authen-

tic tubule segment without aberrant expression in other segments. These results indicate that

promoter-directed gene expression were successfully accomplished

This study indicates the future potential for the clinical application of gene therapy for cer-

tain kidney diseases, including tubular disease. Inherited and acquired tubular diseases encom-

pass a variety of kidney conditions such as Bartter syndrome, Gitelman syndrome, Fanconi

syndrome, Liddle syndrome, nephrogenic diabetes mellitusand diabetes insipidus. Of special

note is that these tubular diseases all involve transporter dysfunction in specific renal tubules.

Thus, the final goal of successful site-directed treatment requires site-specific expression to the

target cells. Therefore, further studies of the translation of coding regions should follow in the

near future. The targeting of specific cells, as demonstrated in this study, may open new hori-

zons for site-directed gene therapy—even in the complex tissues of the kidney. Adenovirus
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infusions to the target tubular cells would be accomplished with percutaneous catheter manip-

ulation in human.

We must mention several limitations to the present study. Firstly, the translation of the tar-

get protein has not achieved in this study, and this step is fundamental to making gene therapy

amenable to clinical use. Secondly, the adenovirus gene expression is not permanent because

adenovirus is not integrated.

Despite these limitations, this is the first study to report successful targeting of gene expres-

sion to specific sites of the kidney tubules. Future work is necessary to advance site-specific

gene therapy, and the present study may serve as the first step.

Conclusions

Transducing genes into the kidneys, and in a cell-selective manner, have been accomplished

by the combination of two strategies. The first was the cloning of appropriate, site-specific pro-

moters that have sufficient specificity and expression efficiency. The second was adenovirus

infection through direct injection into the renal artery after washout the blood in the kidney.

Although the translation of target proteins in the specific site remains the next required step,

the methods described in the present study probably make site-directed gene therapy much

easier than was ever thought possible.

Supporting information

S1 Fig. Gene-targeting strategy to the specific cells in the kidney. Four routes of adenovirus

infection were compared: 1) bolus injection for 2 min into the left renal artery, 2) continuous

slow drip for 16 h into the left renal artery, 3) injection into the urinary tract to flow upstream,

and 4) direct injections to the renal parenchyma from all directions.
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