
Complete Genome Sequence of a Veterinary Pseudomonas
aeruginosa Isolate, Pa12

Keisuke Nakamura,a Jumpei Fujiki,a Takaaki Furusawa,a Tomohiro Nakamura,a Satoshi Gondaira,b Michihito Sasaki,c

Masaru Usui,d Hidetoshi Higuchi,b Hirofumi Sawa,c,e Yutaka Tamura,d,f Hidetomo Iwanoa

aLaboratory of Veterinary Biochemistry, Rakuno Gakuen University School of Veterinary Medicine, Ebetsu, Japan
bLaboratory of Animal Health, Rakuno Gakuen University School of Veterinary Medicine, Ebetsu, Japan
cDivision of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
dLaboratory of Food Microbiology and Food Safety, Rakuno Gakuen University School of Veterinary Medicine, Ebetsu, Japan
eInternational Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
fCenter for Veterinary Drug Development, Rakuno Gakuen University, Ebetsu, Japan

ABSTRACT Pseudomonas aeruginosa causes various opportunistic infections in ani-
mals. Here, we report the complete genome sequence of P. aeruginosa strain Pa12, a
fluoroquinolone-resistant isolate from a canine skin lesion. To expand the molecular
antimicrobial characteristics of the isolate, the whole Pa12 genome was sequenced
and assembled via long- and short-read platforms.

P seudomonas aeruginosa is an opportunistic Gram-negative bacterium and an important
pathogen of humans and animals. In veterinary medicine, P. aeruginosa typically causes

skin and urinary tract infections in dogs (1–3). The recent spread of antimicrobial resistance
(AMR) has become a major problem in veterinary medicine; notably, the rate of resistance to
fluoroquinolones has increased rapidly (4–6).

Pseudomonas aeruginosa exhibits AMR via multiple mechanisms. Multidrug efflux (Mex)
systems are associated with intrinsic fluoroquinolone resistance, and P. aeruginosa can also
acquire fluoroquinolone resistance through mutations in genes of the quinolone resistance–
determining region (QRDR) (7–10).

We previously isolated P. aeruginosa strain Pa12 from a canine skin lesion at a vet-
erinary hospital in Japan (11). The specimen was cultured on sheep blood agar and
MacConkey agar at 35°C for 24 to 48 h under aerobic conditions. This strain exhibited
intermediate resistance to orbifloxacin in MIC assays (11, 12). In the present study, we
report the complete genome sequence of P. aeruginosa strain Pa12 to enhance molec-
ular understanding of the isolate with respect to AMR.

DNA was extracted from an overnight culture (grown at 37°C in LB medium) using phenol
and chloroform (13) and purified using a QIAamp DNA minikit column (Qiagen, Hilden,
Germany). The DNA concentration was determined using a Qubit fluorometer (Invitrogen,
Carlsbad, CA, USA). Whole-genome sequencing was performed using MiSeq (Illumina, San
Diego, CA, USA) and GridION X5 (Oxford Nanopore Technologies [ONT], Oxford, UK) platforms.
Libraries for Illumina sequencing were prepared using a Nextera XT DNA library preparation
kit (Illumina). The whole genome was then subjected to 300-bp paired-end sequencing on
the MiSeq platform. The resulting 8,118,954 reads were trimmed of adaptors and low-quality
bases (Q scores of,20), and short reads (,127bp) were removed using Sickle v1.33. Libraries
for GridION X5 sequencing were prepared using a native barcoding expansion kit (ONT) and a
ligation sequence kit (SQK-LSK109; ONT) without DNA shearing. The resulting sample was
sequenced on the GridION X5 platform using an R9.4.1 flow cell (ONT) and Guppy v3.2.10 for
live base calling. The resulting 56,776 reads were trimmed and quality filtered using Porechop
v0.2.3 and Filtlong v0.2.0 (minimum length, 1,000bp; N50, 25,214 bp). Hybrid de novo assembly,
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genome circularization, and genome rotation were performed using Unicycler v0.4.7 (14),
resulting in one circular contig with a total length of 6,411,763bp and a G1C content of
66.4%. Finally, the assembled contig was annotated using DFAST v1.1.0 (15). Default parame-
ters were used for all software except where otherwise noted.

The genome of Pa12 consists of one circular chromosome with a total of 5,855 coding
sequences (CDSs), 12 rRNAs, and 73 tRNAs (Table 1). ResFinder v4.1 analysis (16, 17) detected
five AMR genes in the Pa12 chromosome, and four Mex systems (MexAB, MexCD, MexEF,
and MexXY) were identified in DFAST annotation, although no previously reported muta-
tions were found in the Pa12 QRDR (5, 6, 10).

These results suggest that Pa12 fluoroquinolone resistance does not involve QRDR
mutations. Therefore, other mechanisms, such as production of Mex systems, might
contribute to the strain’s multidrug resistance.

Data availability. The complete genome sequence of P. aeruginosa Pa12 was deposited
in DDBJ/ENA/GenBank under accession number AP024513. Illumina and GridION X5 sequence
reads for the strain were deposited in the Sequence Read Archive (SRA) database under acces-
sion numbers DRR276530 and DRR276531, respectively.
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