S International Journal of
Molecular Sciences

Review

Molecular Pathogenesis and Treatment Perspectives for
Hypereosinophilia and Hypereosinophilic Syndromes

Stefania Stella 120, Michele Massimino >*, Livia Manzella 1>*, Maria Stella Pennisi 12, Elena Tirro 1-

Chiara Romano 12, Silvia Rita Vitale 12, Adriana Puma 2, Cristina Tomarchio 12, Sandra Di Gregorio
Giuseppe Alberto Palumbo 3

check for

updates
Citation: Stella, S.; Massimino, M.;
Manzella, L.; Pennisi, M.S.; Tirro, E.;
Romano, C.; Vitale, S.R.; Puma, A.;
Tomarchio, C.; Gregorio, S.D.; et al.
Molecular Pathogenesis and
Treatment Perspectives for
Hypereosinophilia and
Hypereosinophilic Syndromes. Int. |.
Mol. Sci. 2021, 22, 486. https://
doi.org/10.3390/ijms22020486

Received: 18 November 2020
Accepted: 30 December 2020
Published: 6 January 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: ©2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2
7

and Paolo Vigneri 12

Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
michedot@yahoo.it (M.M.); manzella@unict.it (L.M.); perny76@gmail.com (M.S.P); ele_tir@yahoo.it (E.T.);
chiararomano83@gmail.com (C.R.); silviarita.vitale@gmail.com (S.R.V.); adry.p88@hotmail.it (A.P.);
cristina.tomarchio@hotmail.it (C.T.); digregoriosandra@hotmail.com (5.D.G.); vigneripaolo@gmail.com (P.V.)
Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G.Rodolico-San Marco”,

95123 Catania, Italy

Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania,
95123 Catania, Italy; giuseppealberto.palumbo@gmail.com

*  Correspondence: stefania.stel@gmail.com; Tel.: +39-095-378-1946

1t  These authors contributed equally to this work.

Abstract: Hypereosinophilia (HE) is a heterogeneous condition with a persistent elevated eosinophil
count of >350/mm?, which is reported in various (inflammatory, allergic, infectious, or neoplastic)
diseases with distinct pathophysiological pathways. HE may be associated with tissue or organ
damage and, in this case, the disorder is classified as hypereosinophilic syndrome (HES). Different
studies have allowed for the discovery of two major pathogenetic variants known as myeloid or
lymphocytic HES. With the advent of molecular genetic analyses, such as T-cell receptor gene
rearrangement assays and Next Generation Sequencing, it is possible to better characterize these
syndromes and establish which patients will benefit from pharmacological targeted therapy. In this
review, we highlight the molecular alterations that are involved in the pathogenesis of eosinophil
disorders and revise possible therapeutic approaches, either implemented in clinical practice or
currently under investigation in clinical trials.

Keywords: hypereosinophilia; hypereosinophilic syndromes; PDGFRx and PDGFRf fusions; NGS;
TCR rearrangements

1. Introduction
1.1. Eosinophil Development

Eosinophils are white blood cells of the granulocytic lineage that play an important
role in innate immune functions [1] and develop in bone marrow from pluripotent stem
cells expressing CD34*CD125* antigens. These cells represent about 5% of the circulating
blood leukocytes with an absolute eosinophil count (AEC) in healthy adults that is usually
between 350 and 500/mm?, which increases during inflammatory processes, such as
allergic diseases, parasitic, bacteria, and virus infection [2,3].

Structurally, they possess segmented bi-lobed nuclei and specific primary and sec-
ondary granules. Primary granules exhibit lysophospholipase activity that is involved
in eosinophilic-dependent tissues inflammation [4]. Secondary granules contain many
mediators, such as major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil
peroxidase (EPO), and eosinophil-derived neurotoxin (EDN), which are all able to induce
both inflammation and tissue damage [5].

Furthermore, eosinophils are equipped of lipid bodies that play a critical role in
asthma, as they cause eicosanoidis production [6]. Finally, they are potent productors
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of both reactive oxygen species and nitric oxide, which promote the anti-bacterial activ-
ity, while the ability to internalize the respiratory syncytial (RSV) and influenza viruses
document the role of eosinophils in the viral response [7,8].

1.2. Eosinophil Contents, Biology and Homeostatic Immune Role

Detecting tissue-resident eosinophils showed that they are distributed in heart, skin,
lung, and kidneys [9]. Despite this observation, under the homeostasis condition, eosinophils
are particularly abundant in the gastrointestinal tract (GI), where they are involved in
different biological processes. Both a beneficial and nonbeneficial role of eosinophils in GI
tract have been postulated.

The first role is based on the ability of gastrointestinal eosinophils to mediate anti-
parasitic response and promote with them a symbiotic association that is aimed at the main-
tenance of tissue homeostasis. Moreover, in the GI tract, a high number of eosinophils trap-
ping bacteria represents an effective mechanism to protect this tissue from bacterial invasion.

The nonbeneficial role of gastrointestinal eosinophils is reported in Eosinophil Gas-
trointestinal Disorders (EGIDs) and Inflammation Bowel Disease (IBD). The pathogenesis
of both diseases is dependent on tissue infiltration of eosinophils, followed by the accu-
mulation of activated immune cells, such as B and T cells, as well as the production of
pro-inflammatory cytokines [8].

An additional particular function of eosinophil is their role in tissue regeneration
and remodeling. By the secretion of IL-4, eosinophils are able to facilitate liver and mus-
cle regeneration [10,11], while the increased presence of these cells in the endometrium
prompted speculation that they may play a role in tissue remodeling during ovulation
and menstruation [12]. The absolute number and biology of eosinophils are both usu-
ally controlled by type-2 cytokines, such as interleukin-5 (IL-5), granulocyte-macrophage
colony-stimulating factor (GM-CSF), and interleukin-3 (IL-3), produced by T-lymphocytes,
mast cells, and stromal cells. IL-5, IL-3, and GM-CSF induce eosinophils maturation, sur-
vival, and apoptosis inhibition by PI3K, ERK, and STATs pathway activation. However, in
this biological system, IL-5 shows a more prominent role than IL-3 and GM-CSF dependent
on its high specificity for this leukocyte subset. In particular, the IL-5 receptor (IL-5R) plays
a central role of intracellular signals regulation by its &« and (3-chains. The «-chain contains
the ligand-binding subunit while the 3-chain is defined as non-ligand-binding subunit
and it mediates the intracellular signal transduction. The -chain, in turn, is shared with
IL-3 and GM-CSF receptors (IL-3R) (GM-CSER), thus supporting the intriguing role of IL-5
as central mediator of type-2 cytokines-dependent eosinophil survival. An interestingly
involvement of IL-5 concerns its production by group 2 innate lymphoid cells (ILC2s) after
interleukin-33 (IL-33) stimulation. IL-33 promotes the IL-5 production from ILC2s, which,
in turn, releasing IL-5 improves eosinophils expansion and survival. Hence, ILC2s are a
new important mediator of IL-33-driven eosinophil disorder development [13,14].

Hence, IL-5, to date, is an attractive therapeutic target for the treatment of eosinophil-
mediated disorders [15]. Nevertheless, despite these results, the published data report
that IL-5 over-expression or down-regulation, alone, fail to induce eosinophil-mediated
damage or eosinophils maturation [16], making its role unclear. However, all together,
these observations implicate that the deregulation of IL-3, IL-5, and GM-CSF signaling may
cause HES [15,17,18].

Finally, an important role in eosinophils biology concerns the fibrogenic activity of
transforming growth factor beta-1 (TGF-B1). Eosinophils are a strong productor of TGE-B1,
which is involved in airway remodeling or in disease state in different tissue, such as skin
(atopy), nose (nasal polyposis), and blood (idiopathic hypereosinophilic syndrome) [19].

Eosinophils biology is also regulated by the cell surface glycan-binding protein, named
siglecs (sialic acid immunoglobulin-like lectins). The most important glycan in eosinophils
biology is Siglec-8 (originally named sialoadhesin family 2—SAF-2), as it is expressed
selectively in these leukocyte types. Siglec-8 is stimulated by sialic acids, which induce the
activation of two tyrosine-based motifs, defined immunoreceptor tyrosine-based inhibitor
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motif (ITIM) and a membrane-distal immunoreceptor tyrosine-based switch motif (ITSM),
thus initiating the downstream receptor functions. Siglec-8 is involved in reactive oxygen
species (ROS) production, in the loss of mitochondrial membrane potential, ERK1/2
activation, and caspase cleavage modulating apoptosis and cell survival [20]. For these
regions, Siglec-8 was studied as a therapeutic target in patients with eosinophilic disorders
using chimeric antibodies [21].

1.3. Eosinophil Recruitment into Blood and Tissue, Survival and Death

The term eosinophilia is employed for a small increase of the AEC in the blood (up to
1500/ mm3), while hypereosinophilia (HE) indicates an AEC greater than 1500/ mm? on
two consecutive blood samples drawn at a one-month interval. This persistent eosinophilia
is usually linked to helminth infections, allergies, atopy, drugs, neoplastic disorders, or
autoimmune diseases [22,23].

A second type of hypereosinophilia is tissue HE, which is defined as a percentage of
eosinophils in the bone marrow (BM) that exceeds 20% of all nucleated cells, followed by
extensive tissue infiltration, such as skin (in 69% of subjects), lung, and the gastrointestinal
tract (44% and 38%, respectively) [22-24].

Upon activation, eosinophils infiltrate tissues, degranulate, and release proinflamma-
tory cytokines that cause organ damage and dysfunction, defined as the Hypereosinophilic
Syndrome (HES). HES represents a group of heterogeneous disorders characterized by
persistent and unexplained HE in the blood or peripheral tissues usually associated with
multiple organ damage or dysfunction. This damage may be due to direct cytotoxic effects
of the eosinophil granulate contents or may occur because of the secondary involvement of
other cell types [24,25]. Once eosinophils leave the blood circulation and migrate into tissue
sites, they do not recirculate. Into the tissue, the survival is dependent on local production
of cytokines that also prevent eosinophil apoptosis for several days. In fact, the patterns
of cytokines regulate the recruitment of eosinophils to the specific tissue sites, activate
endothelial cells, and induce tissue-resident cells to produce eosinophil-active chemokines
to facilitate their preferential migration [26].

The cardiovascular system is often involved in HES [27,28].

The presenting symptoms of HE and HES are variable and they may include weakness,
fatigue, cough, dyspnea and rhinitis, myalgias or angioedema, rash or fever, as well as
severe tissue damage or end-organ failure [23,29]. Leukocytosis, anemia, abnormal platelet
counts, increased vitamin B12 (>1000 pg/mL), and tryptase (>12 ng/mL) levels represent
additional alterations that are associated with the disease [23,24].

Because HES is a rare neoplasm, its epidemiology has not been accurately investigated.
Hence, the disease true incidence is unknown, which is mainly due to the lack of specific
coding for the different HES variants. Although HES is mainly diagnosed in adults, 20 to
50 years old, it can also affect children and the elderly [30].

The aim of this review is to outline the molecular alterations that are involved in the
pathogenesis of eosinophil disorders and provide an update on the therapeutic approaches
that are available for the treatment of these disorders.

2. Classification of Hypereosinophilia and Hypereosinophilic Syndrome

HE and HES can usually be divided into multiple subgroups based upon clinical,
laboratory, and molecular features.

HE is classified in three groups: primary (neoplastic or clonal), secondary (reactive),
and idiopathic [24]. Primary HE is caused by a clonal stem cell disorder affecting the
myeloid or lymphoid lineage of the malignant clone, while secondary HE can be associ-
ated with both pathological phenomena (e.g., parasitic infections, allergies, autoimmune
disorders) and/or non-myeloid or solid tumors, in which eosinophilia results from the
production of cytokines by malignant cells, such as in peripheral T-cell lymphoma and
classical Hodgkin lymphoma. If the etiology is not primary or secondary and the HE
persists for six or more months, then the disease is defined as Idiopathic HE (HEys) [30].
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Moreover, a rare familiar form of HE was recently identified that is characterized by au-
tosomal dominant inheritance with a benign clinical course and seldom characterized by
organ dysfunction [23,24,31].

Over the years, the Working Conference on Eosinophil Disorder and Syndromes
proposed various terminologies for eosinophilic syndromes. The HE subtypes were then
divided into a hereditary (familial) variant (HEps), HE of undetermined significance
(HEys), primary (clonal/neoplastic) HE produced by clonal/neoplastic eosinophils (HEy),
and secondary (reactive) HE (HER), with the latter group including the lymphocyte variant
as a subtype. The HEys acronym was introduced as a novel term instead of idiopathic
HE [30].

Similar to the HE classification, HES can be grouped in primary (neoplastic), secondary
(reactive), and idiopathic (undetermined significance), respectively, named HESy, HESR,
and HESUS [23].

The main two pathogenic forms of HES are the myeloproliferative (M-HES) and lym-
phocytic (L-HES) forms of the disease, respectively, classified as Myeloid Hypereosinophilic
Syndrome and Lymphocytic Hypereosinophilic Syndrome. Each group includes several clini-
cally distinct HES disorders [32]. Patients that do not display the M- or L-HES diagnosis
can be classified as being affected by a Idiopathic Hypereosinophilic Syndrome or a Chronic
Eosinophilic Leukemia non otherwise specified (CEL-NOS) (Figure 1).

Hypereosinophilic Syndromes (HES) classification

Eosinophils > 1500/mm?
Persistent eosinophilia and/or end organ damage
Exclusion of secondary causes of eosinophilia

Myeloproliferative HES
(M-HES)

N\

Clonal expansion of
myeloproliferative disease
and/or with cytogenetic

abnomalities, such as FIP1L1-

PDGFRa, ETV6-PDGFRJ, etc.

Lymphocytic Idiopathic HES Chronic Eosinophil Leukemia Non
HES (L-HES) (HESys) otherwise Specified (CEL-NOS)

v V
Abnormal clonal Tissue/organ damage Evidence of clonality (nonspecific cytogenetic
activated T- without f'eatur'e of abnormalities or somatic mutations) and/or
lymphocytes (T-cells) myeloproliferative or immunophenotypically aberrant T cells

lymphocytic forms

Figure 1. Hypereosinophilic syndromes (HES) classification.

2.1. Myeloid Hypereosinophilic Syndrome

Patients with M-HES are characterized by hepatomegaly, splenomegaly, circulating
myeloid precursors, increased serum vitamin Bj, and/or tryptase levels, anemia, throm-
bocytopenia, hematologic diseases (myeloid fibrosis, left shift in maturation of myeloid
precursors), and/or cytogenetic abnormalities [27,31,33,34]. The primary molecular defect
that is responsible for this distinct phenotype is a gene fusion between FIP1-like 1 (FIPLI)
and platelet-derived growth factor receptor alpha (PDGFR«), known as FIP1L1-PDGFRx«
fusion. Several other fusions involve genes encoding for the PDGFR«, PDGFRp, fibrob-
last growth factor receptor 1 (FGFR1), breakpoint cluster region (BCR), janus kinase 2
(JAK2), fms-like tyrosine kinase 3 (FLT3), and Abelson tyrosine kinase 1 (ABL1) genes.
Recently, the WHO added the periocentriolar material 1 (PCM1)-JAK2 fusion in the classifi-
cation of this group [32,35]. Rarely, PDGFRJ rearrangements are cryptic, even if patients
with this anomaly (involving over 30 gene fusion partners) can present a disease with-
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out eosinophilia [23]. M-HES related to gene fusions involving the FGFR1 gene are rare,
although several groups reported up to 14 different FGFR1 gene partners [30,35].

In the last decade, cytogenetics and DNA sequencing have allowed for investigating
the molecular alterations found in HES, demonstrating that somatic mutations are usually
uncommon in patients harboring PDGFRa, PDGFRp, or PCM1-JAK2 rearrangements, but
significantly more frequent in FGFR1 rearranged cases [24].

2.2. Lymphocytic Hypereosinophilic Syndrome

The lymphocytic variant of HES is a less clearly defined disease entity that is charac-
terized by the overproduction of eosinophilopoietic cytokines (IL-5 and/or IL-3) causing
the recruitment of clonal activated T-lymphocytes (T-cells). IL-5 overproduction by T-cells
is responsible for blood and tissue HE, which leads to clinical manifestations, while the
expansion of the abnormal T-cell subset is usually asymptomatic, with the exception of a
few cases that evolve to T-cell lymphoma [27]. Immunophenotypically, these abnormal
T cells include double-negative cells, immature T-cells (e.g., CD3*CD4~CD87), or cells
without CD3 expression (e.g., CD3~CD4"). Furthermore, additional immunophenotypic
abnormalities include high CD5 expression on CD3~CD4" cells and the loss of the CD7
surface marker and/or expression of CD27 [23,36,37].

L-HES is found in 17-27% of subjects with unexplained eosinophilia or HES. Primary
disease manifestations are superficial adenopathy (62%) with rheumatologic (29%), gas-
trointestinal (24%), pulmonary (19%), neurologic (10%), and cardiovascular (5%) organ
involvement, but no significant lymphocytosis [27].

Moreover, elevated IgE and thymus and activation-regulated chemokine (TARC) in
serum are common in patients with L-HES. Particularly, the detection of serum TARC
levels, in addition to the increased production of cytokines, may provide additional support
for a correct diagnosis [23,37,38].

2.3. Idiopathic Hypereosinophilic Syndrome and Chronic Eosinophilic Leukemia non
Otherwise Specified

Idiopathic HES was defined as persistent HES with tissue/organ damage of unknown
cause, whereas CEL-NOS presents clonal cytogenetic or molecular genetic abnormal-
ities. In both syndromes, no rearrangements of PDGFRa, PDGFRB, FGFR1 or PCM1-
JAK2, ETS Variant Transcription Factor 1 (ETV6)-JAK2, and BCR-JAK2 fusion genes are
present. In these cases, the cytogenetic and molecular alterations of chronic myeloid
leukemia (CML), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), chronic
neutrophilic leukemia (CNL), and chronic myelomonocytic leukemia (CMML) should be
excluded [39-44].

3. Molecular Pathogenesis in Hypereosinophilic Syndrome

The laboratory screening performed to formulate a HES diagnosis allow for us to
understand molecular events that cause gene driver alterations in myeloid and lymphoid
disorders that are associated with eosinophilia (summarized in Table 1).

PDGFR« and PDGFRp fusions: PDGFRa and PDGFRS are a class of receptors with
TK activity, which are characterized by an extracellular ligand-binding region and two
intracellular TK domains [45,46]. PDGFRx and 3 are monomeric transmembrane proteins
that dimerize after binding PDGF, leading to TK domain activation. The activated catalytic
domain promotes a cascade of signaling events via downstream pro-survival and anti-
apoptotic effectors, such as SRC, STAT5, and the PI3K/RAS/MAP kinase pathway [47-50].
The most common PDGFR gene alterations reported in the eosinophilic syndrome are
rearrangements with several partner genes, such as FIP1L1, BCR, and ETV6 (Figure 2) [34].
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Table 1. Molecular pathogenesis in Hypereosinophilic Syndrome.

Fusion Genes

Gene Translocation Gene Translocation
PDGFR« PDGFRp
FIP1L1-PDGFRu del(4)(q12;q12) ETV6-PDGFRp t(5;12)(q33;p13)
BCR-PDGFR« t(4,22)(q12;q11)
FGFR1 JAK2
ZMYM2-FGFR1 t(8;13)(p11.2;,q12.1) PCM1-JAK2 t(8;,9)(p22;p24)
CNTRL-FGFR1 t(8;9)(p11.2;,933.2) BCR-JAK2 t(9;22)(p24;q11.2)
BCR-FGFR1 t(8;22)(p11.2;,q11.2) ETV6-JAK2 t(9;12)(p24;p13)
Other Genes
ETV6-FLT3 t(12;,13)(p13;q12)
ETV6-ABL1 t(9;12)(q34;p13)

Receptor Rearrangements

T Cell receptor rearrangement

Mutated Genes

Genes Percentage of mutation Genes Percentage of mutation
RUNX1 83% SETBP1 22%
ASXL1 43% CBL 14%
TET?2 36% NOTCH1 14%
EZH2? 29%
FIP1L1 a FIP1L1-PDGFRa
Fipl motif NLS Fipl motif
}
e b BCR-PDGFRa
CCTR S
BCR PDGFRo/p
CCTK  GEF  RacGAP ™ Y CCTK GEF 3¢
! A 4
ellel2 Z
CCTK  GEF ¥
ETV6 ¢ ETV6-PDGFRp
HLH ETS hY4
ed

Figure 2. Schematic representation of platelet-derived growth factor receptor alpha (PDGFR«)
and PDGFRp fusion rearrangements. (a) FIP1L1-PDGFRg; (b) breakpoint cluster region-PDGFRx
(BCR-PDGFRg); and, (c) ETV6-PDGFRp. The arrows indicate the position of breakpoints of PDGFRs.
BCR = breakpoint cluster region; CC = Coiled-Coil; ETS = (Erythroblast Transformation Specific)
DNA-binding domain; ETV = ETS Variant Transcription Factor 1; FIP1L1 = Fip1-likel; GEF = Guanine
Nucleotide Exchange Factor; HLH = Helix-Loop-Helix oligomerization domain; NLS = Nuclear
Localization Signal; PDGFR = Platelet-Derived Growth Factor Receptor; RacGAP = COOH-terminal
GTPase Activating Protein (GAP) domain; TM = Transmembrane; TK = Tyrosine Kinase.

FIP1L1-PDGFRa fusions: the FIP1L1-PDGFRa rearrangement represents the most
frequently recurrent aberration in eosinophilia detected in different hematopoietic cells,
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including eosinophils, neutrophils, T-, or B-cells [51]. Although it is generally expressed in
chronic myeloid neoplasms that are associated with eosinophilia, patients with lymphoblas-
tic leukemia/lymphoma (T-ALL/LBL) or, less frequently, B-cell acute leukemia display
this fusion transcript [23]. The FIP1L1-PDGFRu« fusion protein is expressed in 10-20% of
patients that are affected by HEN /HESy, with a higher prevalence in males [24].

The FIP1L1-PDGFRa transcript is generated by juxtaposition of the 5" and 3’ regions
of FIP1L1 and PDGFRu, respectively. The fusion between these two genes is caused by an
internal cryptic deletion, which is not detectable by cytogenetic banding techniques, result-
ing in an apparently normal karyotype. This deletion disrupts the juxtamembrane PDGFR«
negative regulator domain, thus deregulating its TK activity [52-55]. The 5'-3' juxtaposi-
tion involves exons 9-13 of FIP1L1 and exon 12 of PDGFRa, which can generate different
FIP1L1-PDGFRu splicing isoforms (not shown) (Figure 2a). In addition, an insertion of an
additional FIP1L1 intron sequence was identified in different patients [52,55,56].

Different researchers conducted several studies in human cell and in clonal HES mouse
model in order to investigate the role of FIP1L1-PDGFR« in the pathogenesis of the disease.
Several data were reported and, although the constitutive FIP1L1-PDGFRu kinase activation
constrains a murine eosinophil-lineage commitment, in human hematopoietic progenitor
cells promotes cytokine-independent colony formation without favoring eosinophil lin-
eage by STAT5 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)
activation [57-59]. In contrast, on the contrary of native PDGFRw, FIP1L1-PDGFR« does
not activate the MAPK pathway, which suggests that its transforming properties do not
require extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) [49,52,60]. This
effect is dependent on different subcellular localization of native or fusion proteins. Hence,
while FIP1L1- PDGFR« has cytosolic location, PDGFR« is a transmembrane receptor that
may access RAS, an upstream mediator of MAPK signaling [56]. However, other authors
showed that FIP1L1- PDGFR« may activate the eosinophilic linage-specific transcription
factors through RAS/MEK/p38 cascade [61].

BCR-PDGFRu fusions: several authors reported that, unlike the common BCR-ABL1
chimeric gene found in CML [62,63], the BCR-PDGFRu fusion detected in HES associates
with different hematological diseases, such as atypical CML and pre-B ALL [64-66]. Molec-
ular analysis revealed that the rearrangement process causes an in-frame mRNA fusion
between exons 1, 7, or 12 of BCR and 12 or 13 of PDGFRa (Figure 2b). This molecular event
disrupts the negative regulator domain of PDGFR« and catalyzes aberrant TK activity that
is mediated by BCR-dependent oligomerization [56].

ETV6-PDGFRS fusions: over 32 fusion genes involving the PDGFRp have been discov-
ered and ETV6-PDGFRp represents the most frequent translocation t(5;12)(q33;p13) [30,35]
found in eosinophilia associated with CML [67]. In the most common variant, the ETV6-
PDGEFRB fusion transcript is generated by exons 4 and 11, respectively (Figure 2c) [68].

The extracellular PDGFRp region contains the ligand binding site that is replaced
by ETV6, which promotes an oligomerization process resulting in the activation of the
PDGFR§ tyrosine kinase [69]. Studies that were conducted in murine models indicate that
ETV6-PDGFR causes growth factor-independent proliferation of Ba/F3 cells and—after
mouse transplantation—leads to a myeloproliferative disease that is not associated with
eosinophilia [70]. Moreover, human CD34+ cells lentivirally transduced with the chimeric
protein displayed increased proliferation and showed an eosinophil differentiation when
stimulated by eosinopoietic cytokines in a NF-kB-dependent manner [59,71].

FGFRI1 fusions: the fibroblast growth factor receptor 1 (FGFR1) is a monomeric protein
that dimerizes upon ligand binding. Dimerization drives TK activity, which promotes
cell proliferation [72]. FGFR1 abnormalities involve at least 14 gene partners generating
gene fusions with different incidences. FGFR1 rearrangements are not cryptic; hence,
they can be diagnosed by conventional cytogenetic analyses [73]. The most common
fusions are represented by Zinc finger MYM-type protein 2 (ZMYM2)-FGFR1 (ZMYM?2 exon
17-FGFR1 exon 9: 40%), BCR-FGFR1 (BCR exon 4-FGFR1 exon 9: 18%), and Centriolin-
FGFR1 [CNTRL (CEP110) exon 15-FGFR1 exon 9: 15%) [30,35,74,75] (Figure 3). In all
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of these pathologic fusions, the improper constitutive activation of the FGFR1 catalytic
domain drives disease initiation and progression. In turn, the FGFR1 kinase phosphorylates
specific tyrosine residues, promoting proliferation and pro-survival mediators, such as
RAS/MAPK, PI3K/AKT, and STATs [24,72]. Hematological neoplasias that are associated
with eosinophilia and expressing these chimeric proteins are MPN, ALL, and AML [24].

ZMYM?2 a ZMYM2-FGFR1

ZNF ZNF ;!

CCTK

CNTRL

f TK

b BCR-FGFRI1

N
GEF RacGAP CCTK =
|
ed
C CNTRL-FGFRI1
LRR ec 4

LRR CcC

}

el5

Figure 3. Schematic representation of FGFR1 fusion rearrangements. (a) ZMYM?2-FGFR1; (b) BCR-FGFR1; (c) CNTRL-
FGFR1. The arrows indicate the position of breakpoints of FGFR1. BCR = breakpoint cluster region; CC = Coiled—Coil;
CNTRL = Centriolin; FGFRI1 = fibroblast growth factor receptor 1; GEF = Guanine Nucleotide Exchange Factor; RacGAP =
COOH-terminal GTPase Activating Protein (GAP) domain; TK = Tyrosine Kinase; LRR = Leucine-Rich Repeat; ZNF = Zing
Finger; ZMYM2 = Zinc finger MYM-type protein 2.

JAK?2 fusions: JAK2 is a component of the intracellular JAK/STAT pathway. The signals
that are mediated by this signaling axis play a critical role in modulating the immune
system through multiple cytokine receptors [76-79]. Chromosome abnormalities that are
located in 9p24 involve JAK2 and different gene partners (Figure 4) [80]. The PCM1-JAK2
fusion (PCM1 exon 25-JAK2 exon 9) (Figure 4a) [57] may be expressed in MPN, MDS
B-ALL, or AML, and has been associated with different levels of eosinophilia in both
blood and BM [57,58,81]. Additional patients have been described exhibiting rare JAK2
rearrangements that are identified as BCR-JAK2 (BCR exon 1-JAK2 exons 15, 17, 18 or 19)
(Figure 4b) and ETV6-JAK2 (ETV6 exon 5-JAK2 exon 12) (Figure 4c) [82-88].

PCM]1, BCR, and ETV6 encode for proteins containing a coiled-coil region that me-
diates an oligomerization process of the ensuing chimeric proteins. This event causes
constitutive activation of the JAK2 kinase increasing cell proliferation, survival, and dif-
ferentiation by STAT signaling [89-91]. The JAK2-rearranged eosinophilia displays an
unfavorable clinical course with a rapid progression from chronic to acute leukemia [85].

Other gene fusions: eosinophilia-associated neoplasm can be characterized by rare
rearrangements involving FLT3 and ABL1. The most common include ETV6-FLT3 and
ETV6-ABL1, which are typically identified in chronic myeloid diseases, such as eosinophilic
leukemia and/or in T-ALL leukemia/lymphoma [92,93]. For both rearrangements, the
ETV6 coiled-coil region triggers an oligomerization process, which causes constitutive
activation of the catalytic domains of either FLT3 or ABLI. This induces the activation of
the RAS/MAPK pathway, which promotes cell survival and proliferation [24].
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Figure 4. Schematic representation of JAK2 fusion rearrangements. (a) PCM1-JAK2; (b) BCR-JAK2; and, (c) ETV6-
JAK2. The arrows indicate the position of breakpoints of JAK2. BCR = breakpoint cluster region; CC = Coiled Coil;
GEF = Guanine Nucleotide Exchange Factor; ETS = (Erythroblast Transformation Specific) DNA-binding domain;
HLH = Helix-Loop-Helix oligomerization domain; FERM = 4.1 ezrin, radixin and moesin domain; JAK2 = janus kinase
2; PCM1 = Pericentriolar Material 1; PK = Pseudo kinase domain; RacGAP = COOH-terminal GTPase Activating Protein
(GAP) domain; SH2 = Src-homology-2 domain; TK = Tyrosine Kinase.

T-cell receptor gene rearrangements: IL-5 overproduction by activated mature T-cells,
leading to the polyclonal expansion of eosinophils, has been reported in several
studies [23,32,94,95]. Therefore, the detection of an aberrant T-cell immunophenotype by
clonal TCR gene rearrangement is required for the diagnosis of most L-HES patients [95,96].
T-cell clonality is not detected in all patients with demonstrated aberrant lymphocyte
cells [36]. However, a negative analysis may not reflect the true absence of clonality, as
the clonal nature of the disease may go undetected, due to a lack of sensibility when the
aberrant cells represent a small proportion of the total lymphocyte population. In these
patients, Roufosse and colleagues suggest repeating clonality testing after the purification
of aberrant T-cells and analyzing T-cell cytokine secretion profiles by measuring the con-
centrations in supernatants of cultured peripheral blood mononuclear cells [36]. It should
be noted that a high portion of HESyg patients (18/42 patients, 43%) exhibit a clonal TCR
gene rearrangement by PCR, although it is unclear whether such clonal T-cell population is
always the cause of the disease [96].

Next Generations Sequencing Approaches to Investigate DNA Mutations in Patients with
Eosinophilic Disorders

In the recent years, the next generation sequencing (NGS) [77] has been used in
the identification of numerous mutations in a large proportion of myeloproliferative
disorders and/or AML and CML patients [97-101]. Moreover, different studies inves-
tigated the use of NGS-based mutation panels to study HE patients. Baer and colleagues
reported that somatic mutations are more frequent in patients with FGFR1 rearrange-
ments when compared to those with PDGFRa, PDGFRp, or PCM1-JAK?2 alterations. For
example, 83% of FGFR1-rearranged individuals harbored RUNX1 mutations [102]. Two
additional studies reported a wide range of mutation frequencies (11-28%) in different
cohorts of 98 and 51 patients with HEus and/or HESus [103,104]. By performing an
NGS panel that was designed for myeloid neoplasias, Wand et al. found that, in 51 id-
iopathic HES individuals, the most frequently mutated genes are ASXL transcriptional
requlator 1 (ASXL1) (43%), Tet methylcytosine dioxygenase 2 (TET2) (36%), Enhancer of zeste
homolog 2(EZH?2) (29%), SET binding protein 1 (SETBP1) (22%), Casitas B-lineage Lymphoma
(CBL) (14%), and Notch homolog 1, translocation-associated (NOTCH1) (14%) [104]. The au-
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thors provided evidence of clonality for subjects with clinical or morphologic features
that are suggestive of neoplasia and/or contributed to the diagnosis of CEL, NOS [104]. A
Korean study investigated T-cell clonality and the impact of the mutations in 30 individuals
that were diagnosed with HEus/HESus by performing NGS, TCR gene rearrangement
assays, and a pathway network analysis [105]. They found that a 53.3% mutation frequency
with the most frequently altered genes NOTCH1 (26.7%), Scribble Planar Cell Polarity Protein
(SCRIB), and Stromal Antigen 2 (STAG2) (16.7%) and SH2B adapter protein 3 (SH2B3) (13.3%).
They also identified 5 (MAPK1, RUNX1, GATA2, NOTCH1, and TP53) out of 21 candidate
genes functionally linked to the eosinophilopoietic pathways and observed that 13.3% of
patients had a clonal TCR rearrangement. The study suggested that mutations affecting
eosinophilopoiesis highlighted a special subgroup of IHE/IHES and that these mutations
were more likely to be associated with a clonal eosinophil proliferation [105]. Finally,
Cross and colleagues found an activating STAT5B N642H driver mutation in 1.6% of pa-
tients with lymphoproliferative disorders that were referred for eosinophilia. The authors
demonstrated that individuals with additional mutated genes, other than Splicing factor 3B
subunit 1 (SF3B1), had an inferior overall survival (OS) when compared to those with the
STAT5B mutation alone [106].

4. Therapeutic Option for Patients with Eosinophilic Disorders

The best clinical treatment of HES depends on disease etiology and subtypes. How-
ever, even in the absence of a known cause, HES must be promptly treated in order to
reduce potential morbidity that can result from organ damage. In this regard, an AEC of
350-500/mm? has been recommended as a threshold for starting treatment [23]. Multiple
therapeutic approaches are currently employed (Table 2) with further compounds under
investigation or in ongoing trials (Table 3). The main therapeutic options for HES patients
can be divided in five groups: corticosteroids, cytotoxic agents, tyrosine kinase inhibitors,
monoclonal antibodies (mAb), and chemotherapy (Figure 5, Tables 2 and 3).
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Table 2. Therapeutic options for eosinophilic disorder.

Drug Mechanism of Action Dose Target Neoplasm
Corticosteroids
Prednisone Slow and prevent end-organ damage 1 mg/kg daily HES
Cytotoxic agents
. . . HES (+ corticosteroids);
Hydroxyurea Inhibit DNA synthesis 500-1000 mg/daily Steroid non-responders.
HES (+ corticosteroids);
o . . Initiation: 1 million units tiw * HES & CEL, NOS refractory to other therapies;
TFNe Inhibit cell growth and induct apoptosis Escalation: 3—4 million units tiw * Lymphocyte-variant
hypereosinophilia.
Targeted therapies
TKIs
PDGFRa rearranged;
. o . PDGRFp rearranged;
Imatinib Inhibit both TGFb and PDGF-R pathway 100400 mg/daily Alternate PDGRFB fusions;
Selected cases HES and CEL, NOS.
Ruxolitinib Inhibit dysregulated JAK/STAT signalling pathway 20 mg PO BID Eosinophilic leukemia with the PCMI-JAK? fusion
[t(8,9)(p22;p24)]-
Sorafenib Inhibit several kinases mvolved.m both tumour cell proliferation and 400 mg/twice daily FIP1L1-PDGFRa rearranged pts with T6741 mutation;
angiogenesis FLT3-rearranged cases.
Monoclonal antibodies
Anti-IL-5
. R . Eosinophilic asthma and eosinophilic granulomatosis
Mepolizumab Inhibit binding of IL-5 to the « chain of the IL-5R 100-300 mg every 4 weeks . S
with polyangiitis.
Reslizumab Inhibit the proliferation of eotslizcl)g;le by binding to the o chain of 1mg/kg Eosinophilic asthma and eosinophilic esophagitis.
Anti-IL-5R
Benralizumab Inhibit hetero-oligomerization of « and 3 subunits of IL-5R 30 mg by subcutaneous injection every 4 weeks Severe asthma.
Anti-IgE
. Inhibit release of cytokines such as IL-4, IL-5, and IL-13; block . Eosinophilic disorders, in particular
Omalizumab unbound IgE. dose/frequency calculated bases on weight per serum IgE asthma/nasal polyps
Anti-CD52
Alemtuzumab Mediate the lysis of CD52+ cells 5-30 mg 1 to 3 times weekly Refractory HES pts.

* subcutaneous injection three times a week. IFNo: Interferon alfa; HES: Hypereosinophilic Syndrome; CEL, NOS: Chronic Eosinophilic Leukemia, Not Otherwise Specified; pts: patients; IL5: Interleukin5; IL-5R:
Interleukin5 Receptor; PO BID: Orally twice day; PDGF-R: Platelet-Derived Growth Factor Receptor; TGFb: Transforming Growth Factor-b; TKIs: Tyrosine kinases inhibitors.
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Table 3. Ongoing clinical trials for eosinophilic disorder.
Drug Combination Target Design Patients Identifier Phase Status
Corticosteroids
Prednisone - - Single Group Assignment; Open Label 100 NCT01524536 Phase IV Recruiting
Dexpramipexole - - Non-Randomized; Single Group Assignment; Open Label 15 NCT02101138 Phase II Unknown
Targeted therapies
TKIs
Imatinib Ruxolitinib FIP1L1-PDGFRx & PDGFRp Non-Randomized; Sequential Assignment; Open Label 60 NCTO00044304 Phase II Recruiting
Nilotinib - FIP1L1-PDGFRa & PDGFRf NP NP NCT04498871 NP Available
Ruxolitinib - BCR-JAK?2 Fusion Protein Expression Single Group Assignment; Open Label 25 NCT03801434 Phase II Not yet recruiting
Monoclonal antibodies
Mepolizumab IL-5 NP NP NCT00244686 NP Available
610 * Placebo IL-5 Randomized; Parallel Assignment 52 NCT04445038 Phase I Recruiting
Benralizumab - IL-5R Multicentre; randomised; double-blind; parallel Assignment 120 NCT04191304 Phase III Not yet recruiting
Placebo : Randomized; Parallel Assignment 22 NCT02130882 Phase II/111 Active, not recruiting
Chemotherapy
Azacitidine, . . ) .
Venetoclax Pevonedistat - Single Group Assignment; Open Label 40 NCT03862157 Phase I/11 Recruiting

IL5: Interleukin5; IL-5R: Interleukin5 Receptor; NP: Not provided. * Recombinant anti-IL5 humanized monoclonal antibodies.
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Figure 5. Working model depicting the mechanism of action of pharmacological agents used in hypereosinophilia dis-
orders. Alemtuzumab = anti-CD52 monoclonal antibody; Benralizumab = anti-IL5-R monoclonal antibody; Dexpramipexole,
Hydroxyurea and IFNa = cytotoxic agents; Imatinib and Nilotinib = PDGFRs inhibitors; Pegatinib = FGFR1 inhibitor;
Mepolizumab, Reslizumab and 610 = recombinant anti-IL5 humanized monoclonal antibody; Omalizumab = anti-IgE mono-
clonal antibody; Prednisolone = corticosteroid; Ruxolitinib = Jak2 inhibitor; Sorafenib = PDGFR« and FLT3 inhibitor; Venetoclax
in combination with Azacitidine and Pevonedistat = chemotherapy regimens.

4.1. Corticosteroids

This group of drugs is the current mainstay for slowing and/or preventing organ
damage and it can be used as first-line therapy in patients with strictly defined HES.
Because steroid therapy can be complicated by side effects in patients requiring long-term
treatment, different studies have been conducted in order to better define the right steroid
dose [107,108]. An ongoing study (NCT 01524536) is trying to determine whether a single
prednisone dose can be used to predict which subjects with hypereosinophilia will respond
to treatment with individuals developing symptom recurrence or an increase in their AEC
requiring the addition of a second drug, such as hydroxyurea (HU) (Table 3).

4.2. Cytotoxic Agents

The main drugs that are employed for the treatment of HES are hydroxyurea (as a
first-line agent or in combination with corticosteroids in non-responders patients) [29,109]
and Interferona (IFN«), with the latter drug used as a second-line agent after steroid-failure
(Figure 5 and Table 2). IFNa can also be used in conjunction with corticosteroids or as a
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steroid-sparing agent for patients requiring higher doses of prednisone or presenting con-
traindications to steroid therapy [110-112]. In addition to HU and IFN«, dexpramipexole is
an orally bioavailable synthetic aminobenzothiazole, which, in a non-randomized, proof-of-
principle study, reduced blood and tissue eosinophils and enabled corticosteroid reduction
or cessation in HES patients (Figure 5 and Table 3) [113]. Currently, a trial (NCT02101138)
is evaluating whether dexpramipexole can reduce the steroid dose that is needed to control
eosinophilia and HES symptoms (Table 3).

4.3. Tyrosine Kinase Inhibitors

Imatinib and Nilotinib: currently used as ABL1-directed inhibitors for CML patients [114-116],
they were considered to be possible therapeutic agents in HES for their ability to inhibit PDGFR
kinase activity. However, to date, only imatinib has been approved as a first-line treatment for
patients with myeloid disease, with eosinophilia expressing FIP1L1-PDGFRw or carrying other
PDGFRa or PDGFRB fusions [107,117] (Table 2). The Food and Drug Administration (FDA)-
recommended starting dose for patients with the FIP1L1-PDGFRx rearrangement is 100 mg daily,
which is sufficient to achieve complete hematologic and molecular remissions. For patients with
myeloid neoplasms and eosinophilia expressing PDGFRp fusions, the recommended starting
dose is 400 mg, being lowered to 100 mg during maintenance [117]. A phase 2-trial is evaluating
the safety and efficacy of a combination of imatinib and ruxolitinib in reducing peripheral blood
eosinophilia in patients with the myeloid form of HES (NCT00044304) (Table 3 and Figure 5).
Furthermore, the experimental data obtained while using rat or mouse models demonstrated
that ABL inhibition by imatinib reduces the TGF-B1 profibrogenic activity in renal and lung
tissues interested from eosinophil disorders [118,119].

An ongoing study designed as a managed access program presently allows access to
nilotinib for eligible patients that were diagnosed with HES (NCT04498871) (Table 3 and
Figure 5).

Pemigatinib: INCB054828 is an oral FGFR1, 2 and 3 inhibitor that is currently under
evaluation in FGFR1-rearranged myeloid /lymphoid neoplasms [120].

Ruxolitinib and Sorafenib: these two multi-kinase inhibitors should be considered to
be a bridge to HSCT for patients displaying the JAK2 or FLT3 tyrosine kinase fusions,
respectively (Table 2 and Figure 5) [92,121-123]. Ruxolitinib is also under investigation
in HES patients expressing the BCR-JAK2 fusion, in order to determine their overall
hematologic response to this drug (NCT03801434) (Table 3). In addition, Lierman and
colleagues reported that Sorafenib seems to be an in vitro potent inhibitor in FIPIL1-
PDGFRu rearranged patients with T6741 mutation [124].

Monoclonal antibodies: several FDA-approved antibodies have shown benefit in reduc-
ing circulating eosinophils, either by targeting eosinophilopoietic cytokines, or by depleting
eosinophils via antibody-dependent cellular cytotoxicity. The antibodies that are presently
available or undergoing clinical trials are directed against IL-5, the IL-5 receptor, IgE, or the
CD52 antigen.

Mepolizumab: a fully humanized monoclonal IgG antibody that inhibits the binding of
IL-5 to the chain of the IL-5 receptor expressed on eosinophils, reducing their survival and
TGF-B production [125-127]. The FDA has currently approved this compound for severe
asthma and eosinophilic granulomatosis with polyangiitis, but not for HES. It is available
on a compassionate use-bases for individuals with life-threatening HES who have failed at
least three standard lines of treatment (NCT00244686) (Table 3 and Figure 5).

Reslizumab: a humanized anti-IL5 IgG4 monoclonal antibody approved by the FDA
for severe eosinophilic asthma that has not yet been studied in HES [128] (Table 3 and
Figure 5).

Benralizumab: an anti-IL5 receptor antibody that is employed in patients with severe,
uncontrolled asthma [129], with initially unsatisfactory results in HES [130]. After binding
to IL-5R, eosinophils become a target for destruction by NK cells via antibody-dependent
cell-mediated cytotoxicity [131]. Currently, a phase 3 study is evaluating the efficacy and
safety of benralizumab for HES patients (NCT04191304). A second trial (NCT02130882)
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is testing the ability of this drug to safely decrease eosinophils in individuals that are
diagnosed with HES (Table 3 and Figure 5).

Omalizumab: an anti-IgE monoclonal antibody approved by the FDA for the treat-
ment of asthma and chronic spontaneous urticaria. It showed promising activity in some
eosinophilic disorders, although results were not as consistent as those that were seen with
anti-IL-5 or anti-IL-5R antibodies (Table 2 and Figure 5) [132]. The drug may lead to the
inhibition of the release of cytochines, such as IL-4, IL-5, and IL-13, as these are responsible
for eosinophils recruitment and activation [132].

Alemtuzumab: an anti-CD52 monoclonal antibody that has been evaluated in HES ;¢
based on the expression of the CD52 antigen on the eosinophil surface (Table 2 and
Figure 5) [133,134]. Verstovsek and colleagues found that alemtuzumab achieved a com-
plete hematologic remission in 10/12 (83%) patients with refractory HES and a partial
remission in the remaining two subjects [135].

Finally, chemotherapy, as well as autologous stem cell transplant, are usually em-
ployed for patients with eosinophilic leukemia, T-cell lymphomas, or other types of primary
HES that are refractory to alternative treatments [136,137]. As an alternative to chemother-
apy, an ongoing phase I/1I trial (NCT03862157) is studying the association of venetoclax,
azacitidine, and pevonedistat in patients with newly diagnosed acute myeloid leukemia and
other hematological disorders, including CEL-NOS (Table 3 and Figure 5).

5. Conclusions

Eosinophilic disorders represent a group of highly heterogeneous diseases that are
characterized by various degrees of persistent blood and/or tissue hypereosinophilia with
potential for end-organ dysfunction [2,23]. Hence, a timely diagnosis is essential and it
requires a combination of histopathologic, immunophenotypic, cytogenic, and molecular
analyses. The identification of specific and recurrent genetic alterations in HES suggests
the possible use of molecularly targeted therapies that have proven to be successful in
many tumor types, as this approach selectively kills neoplastic cells that harbor a specific
molecular hallmark [138-144].

In this context, the distinction of each HES variant is critical for the appropriate man-
agement of the disease. The development of non-invasive sampling methods, coupled with
an extensive NGS-based molecular characterization, will be important in distinguishing the
different disease variants and discriminating an eosinophil myeloid neoplasia from HEs.
Moreover, this approach will enable an accurate disease monitoring, promptly identifying
patients with a rapidly progressing hematological malignancy.

The recent focus of HES is based on the increasing of availability compounds targeting
different mediators and the cells involved in the mechanism of the disease.

Different ongoing clinical trials (Table 3) based on different drugs, used alone or in
combination, will allow for a better understanding of the best initial therapy for any single
patients with HES while taking the individual pathogenesis into consideration. Indeed,
more targeted approach to treatment need an implementation of significative changes in the
way that patients are managed through a more personalized approach to prognostication,
the prediction of treatment responses.

Finally, with increasing use of anti-IL-5 or anti-IL-5R antibodies for hypereosinophilic
disease in clinical practice, in the near future the focus should be on optimizing doses and
regimens. A better combination of different active molecules will be investigated in order
to design efficacious and minimally toxic tailored treatment regiments for patients with
these complex disorders.
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Abbreviations

ABL1 Abelson murine leukemia

AEC Absolute Eosinophil Count

ALL Acute Lymphoblastic Leukemia

BCR Breakpoint cluster region

CEL-NOS  Chronic Eosinophilic Leukemia non otherwise specified
CML Chronic Myeloid Leukemia

CMML Chronic Myelomonocytic Leukemia

CNL Chronic Neutrophilic Leukemia

CNTRL Centriolin

FGFR1 Fibroblast growth factor receptor 1

FIPL1 FIP1-like 1

FLT3 fms-like tyrosine kinase 3

GM-CSF  Granulocyte-Macrophage Colony-Stimulating Factor
GUSpB -glucuronidase

HE Hypereosinophilia

HES Hypereosinophilia syndrome

IL-5 Interleukin 5

JAK2 janus kinase 2

MDS myelodysplastic sindromes

MPN myeloproliferative neoplasms

PDGFRx  Platelet-Derived Growth Factor Receptor alpha
PCM1 Periocentriolar material 1

TARC Thymus and activation-regulated chemokine
TK Tyrosine kinase

TKI Tyrosine kinase inhibitor

TFR Treatment-free remission

ZMYM2 Zinc finger MYM-type protein 2
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