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Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract

disease in children<2 years of age. Increasedmorbidity andmortality have been reported

in high-risk patients, such as premature infants, patients with cardiac disease, and

severely immune compromised patients. Severe disease is associated with the virulence

of the virus as well as host factors specifically including the innate immune response. The

role of type I interferons (IFNs) in the response to RSV infection is important in regulating

the rate of virus clearance and in directing the character of the immune response, which

is normally associated with protection and less severe disease. Two RSV non-structural

proteins, NS1 and NS2, as well as the envelope G glycoprotein are known to suppress

type I IFN production and a robust type I IFN response to RSV does not occur in human

infants or neonatal mouse models of RSV infection. Additionally, presence of type I

IFNs are associated with mild symptoms in infants and administration of IFN-α prior

to infection of neonatal mice with RSV reduces immunopathology. This evidence has

driven RSV prophylaxis and therapeutic efforts to consider strategies for enhancing type

I IFN production.

Keywords: infant immunity, respiratory syncytial virus, type I interferons, human, mouse, vaccine

INTRODUCTION

Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract disease in infants
and young children (1–3). Although 30–70% of infants develop bronchiolitis upon primary
RSV infection, only 1–3% are hospitalized (4). Despite this heterogeneous course of disease, the
global burden of RSV disease is estimated at 64 million cases and 160,000 deaths annually (5, 6).
Increased morbidity and mortality have been reported in high-risk patients, such as premature
infants, infants with cardiac disease, and severely immuno-compromised patients (7–9). Moreover,
the consequences of severe RSV infection are long lasting and constitute a risk factor for childhood
asthma and bronchiolitis (10–14). The elderly and immune compromised also suffer from RSV,
particularly those with prior pulmonary problems (15). Notwithstanding the advances in our
understanding of the immune response to RSV and the recently determined high resolution
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structures of the two major immunogenic viral proteins, the RSV
F and G proteins, we still lack adequate therapeutics as well as a
safe, robust, and effective vaccine (16).

Both viral and host immune factors have been implicated in
severe infections (17–20). RSV is an orthopneumovirus in the
Paramyxoviridae family (21, 22). The RNA genome contains
10 genes encoding 11 proteins. The envelope of the virus
is formed by the matrix (M) protein, the small hydrophobic
(SH) protein, and two abundant, glycosylated surface proteins:
the fusion (F) and attachment (G) proteins. The G and F
proteins control the initial phases of infection (23, 24). The
G protein is composed of three epitope regions identified by
murine monoclonal antibodies: mostly invariant epitopes in
the central conserved domain (CCD); group-specific epitopes
(subtype A or B); and strain-specific epitopes in the C-terminal
hypervariable region of the G protein ectodomain (25, 26). The
two antigenically distinct subtypes, A and B, can co-circulate
during the same epidemic season (27–29). The clinical impact of
different subtypes likely contributes to different disease severity.
While the F protein has historically been the major target for
antiviral and vaccine development, both G and F proteins are
naturally targeted by neutralizing antibodies induced by infection
(23, 24, 30–33). The two non-structural proteins, NS1 and NS2,
suppress IFN production (34–36), with NS1 known to bind
RIG-I within the cytoplasm of host cells thereby abrogating
the signal transmitted via MAVS (2). Further, the G protein
also impedes IFN-α expression through the interaction of the
CX3C chemokine-like motif in G, which interacts with CX3CR1
and impairs the immune response to RSV. Infection with an
RSV strain that lacks the CX3C motif (mimic of the human
chemokine called fractalkine or CX3CL1) or treatment with
an anti-G monoclonal antibody (MAb) that blocks binding to
CX3CR1 result in increased levels of type I/III IFN (37).

The fractalkine receptor, CX3CR1, is expressed on human
plasmacytoid dendritic cells (pDCs) and epithelial cells (37–39).
The former are specialized immune cells that infiltrate the lung to
produce large amounts of type I IFN in response to viral infection
(40, 41).

The link between RSV G protein and type I IFN expression
is well established (42–44) with details elucidated that include
TLR4 signaling and SOCS3 regulation of type I IFN (45–50).
For example, the RSV G protein contributes to immune evasion
by modifying host cytokine and chemokine responses whose
expression is negatively regulated by suppressor of cytokine
signaling (SOCS) proteins (48). SOCS1 and SOCS3 are closely
related and well characterized members of the family acting
through the JAK/STAT pathway to regulate cytokine expression
via a kinase inhibitory region (51). SOCS1 and SOCS3 are
downstream from toll like receptors (TLR) and can indirectly
regulate them (52). Specifically, SOCS3 induction by TLR is
dependent on Myd88 (52). SOCS1 and SOCS3 strongly suppress
TLR7-mediated type I IFN production by binding IFN regulatory
factor 7 (53). In addition, SOCS1 modulates TIRAP which is
downstream of TLR1/2, TLR2/6 and TLR4 but not TLR9 (51).
It has been shown that SOCS1 and SOCS3 regulate type I
IFN in normal fully-differentiated human bronchial epithelial
(NHBE) cells, with the pathway including interferon-regulatory

factor (IRF)-3 activation and nuclear translocation (48). Further,
interferon-stimulated gene (ISG)-15 expression is altered very
early after infection and RSV infection has been shown to
upregulate SOCS 1 and SOCS 3 in epithelial cells (46). NHBE
cells infected with an RSV mutant virus lacking the G gene have
distinct responses as compared to wild-type RSV (30). Notably,
RSV mutant strains without secreted G induced less CCL2 and
CCL5 with no apparent lung disease in mice. Interestingly,
mice developed good antibody responses despite the attenuated
infection (54). These findings suggest that RSV surface proteins
signal through multiple pathways, and this may be an important
means of reducing anti-viral type I IFN expression, thereby
promoting virus replication.

Of interest, RSV does not induce robust, long term immunity
and people may be repeatedly infected with the same and
different strains of RSV (55, 56). These finding are particularly
relevant to the multiple failed RSV vaccine trails to date,
including the original formalin inactivated RSV (FI-RSV) vaccine
as well as more recent subunit and live attenuated vaccines. The
deficient response to both natural and artificial exposure to RSV
antigens in human represents a barrier to the development of
novel therapeutic or preventive strategies (57–64). Further, the
immune response to both primary and repeat infections with
RSV needs further study to better understand short- and long-
term immunity. More detailed characterization of the response
of healthy adults as compared to the elderly and to infants is
also needed. The importance of elucidating the host response
to RSV infection is underscored by recent clinical evaluation
of prophylaxis with the anti-F protein monoclonal antibody
(mAb) palivizumab in healthy preterm infants. In this single-
blind, randomized, placebo-controlled trial, suppression of RSV
replication did not have a major effect on reducing the RSV-
associated asthma incidence at age 6 years, suggesting that
other factors besides viral load contribute to the clinical severity
(11, 65).

Type I IFNs are a group of related proteins that help
regulate the activity of the immune system. The mammalian
types are named IFN-α (alpha), IFN-β (beta), IFN-κ (kappa),
IFN-δ (delta), IFN-ε (epsilon), IFN-τ (tau), IFN-ω (omega),
and IFN-ζ (zeta) (66, 67). IFN-α has 13 different subtypes in
humans (α1/13; α2; α4; α5; α6; α7; α8; α10; α14; α16; α17;
α21) (68) and is primarily produced by pDCs, while IFN-β is
produced largely by fibroblasts; both have antiviral activity that
is an important component of the innate immune response.
Quantitative and qualitative differences in gene expression have
been observed, with type I IFN being notably absent in the
RSV infected cells (69). This result is consistent with results
from the INFANT study, conducted by Argentine doctors to
investigate the causes of respiratory diseases that seriously affect
children such as RSV associated asthma and bronchiolitis, and
pneumonia and influenza virus infection. In the INFANT study,
RSV infection failed to induce a robust type I IFN response in the
nasal mucosa of infants even when co-infected with influenza,
which normally induces a robust response (70). Intriguingly,
neonatal mouse models of RSV infection recapitulate these data
from humans. Specifically, neonatal mice infected with RSV fail
to induce a type I IFN response to RSV in contrast to adult
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mice infected with RSV (71). Furthermore, as compared to non-
treated controls, administration of IFN-α during infection of the
neonate enhances the immune response to RSV infection 5 weeks
later and prevents Th2 biased immune responses (including
perivascular inflammation and mucus production) and airway
hyperreactivity (71). Notably, studies examining human cord
blood-derived pDCs exposed to RSV showed reduced type
I IFN production when compared to vehicle control or left
unstimulated (40). These recent correlations between type I IFN
responses and RSV disease severity in infants merit further
investigation. Here, we review the mechanism surrounding RSV
and type I IFN production in humans and mouse models
and discuss its implications for development of therapeutics
and vaccines.

IFN Biology and RSV Disease
Human IFNs are classified as type I (IFN-I), type II (IFN-
II), or type III (IFN-III) with each class binding to specific
receptors. All type I IFNs bind to a specific cell surface receptor
complex known as the IFN-α receptor (IFNAR) that consists
of IFNAR1 and IFNAR2 chains (72). The ability to produce
and respond to IFN-I is distributed in a wide variety of
cells. This confers several autocrine and paracrine effects that
have been extensively characterized, mainly in viral infections.
IFN-I signaling is mediated through a common cell surface
receptor, the IFN-I receptor (IFNAR), signaling through the
JAK-STAT cascade leading to transcriptional upregulation of
the IFN-ISGs. The IFN-II family is represented by a single
gene product, IFN-γ, and is mainly produced by T lymphocytes
and natural killer (NK) cells. The associated receptor (IFNGR)
regulates several cell functions related to host defense to
intracellular pathogens. IFN-λ comprises four subtypes: IFN-
λ1, IFN-λ2, IFN-λ3, and IFN-λ4. The members of this IFN-
III family interact through a unique receptor, the IFN-λ
receptor (IFN-λR). It has been shown that IFN systems differ
in terms of tissue distribution of their receptors (73, 74).
While IFN-α/β systems are more prominent on endothelial
cells, they are expressed on all cells. On the other hand, IFN-
λ expression is more restricted occurring predominantly on
epithelial cells of the intestines and lungs (73). RSV infection
induces high expression levels of IFN-λ 1–3 in the lungs,
and these have been associated with more severe disease in
children (75).

Type I and III IFNs are induced in virtually all cell types
upon recognition of viral proteins by cytoplasmic and endosomal
receptors (67, 68). IFN induction by RSV involves the recognition
of RSV by TLRs which activate innate and acquired immunity
(47, 49, 76–78). Leukocytes express several TLRs, including
TLR2, TLR6, TLR3, TLR4, and TLR7 (79). Using knockout
mice, TLR2 and TLR6 signaling in leukocytes has been shown
to activate innate immunity against RSV by promoting TNF-α
(tumor necrosis factor), IL-6 (interleukin-6), CCL2 (monocyte
chemoattractant protein 1), and CCL5 (RANTES) (80). TLR4
was shown to also contribute to cytokine activation, and TLR2
and TLR6 activation was shown to be important for controlling
viral replication in vivo in mice (81). TLR2 interactions with
RSV promoted neutrophil migration and dendritic cell activation

within the lung. TLR3 has been associated with more severe
disease in mice models (82).

TLR4 is upregulated by RSV F protein interaction with TLR4
(76, 77). RSV G protein reduced TLR4 activity to baseline
levels even in the presence of LPS (lipopolysaccharide), a
strong stimulus, as assayed using a luciferase reporter construct
for TLR4 signaling (76). As previously noted, RSV infection
of normal human bronchoepithelial cells has been shown to
modulate expression of SOCS, an effect mediated by G protein,
leading to inhibition of type I IFN and ISG15 expression (48).
These findings suggest that RSV surface proteins signal through
multiple TLRs, and that enhanced expression and activation of
type I IFNs may promote viral replication. Accordingly, IFN-
α has been considered as an adjuvant for RSV vaccines as it is
known to promote the activation and survival of virus-specific T
cells (83).

The role of type I IFN in RSV infection, shedding, and
disease severity in humans has been a subject of interest for
decades (84, 85). While early studies struggled to identify a
role for type I IFN in RSV disease (84–88), novel findings
in recent years implicate type I IFN as determinants of RSV
pathogenesis and immune responses (40, 41, 89, 90). RSV is
a poor inducer of IFN and as a consequence, these IFNs and
related cytokines have been speculated to have a limited role
in the host defense against viral infection (84, 85, 87, 88). In
fact, most hypotheses for RSV disease susceptibility in infants
have been based on unique structural respiratory factors such
as smaller airway size, lack of interalveolar pores and channels
and different innervation patterns, inflammatory responses, and
Th2 polarization of the adaptive immune response (78, 91,
92). Reconsideration of this bias is needed. Unlike the case in
infants and children infected with influenza virus, IFN levels
were undetectable or low in nasal secretions of infants and
young children with RSV lower respiratory tract illness and
did not correlate with resolution of clinical signs (84, 85). In
a more recent study of infants in Argentina, type I IFN was
detected more frequently in those infected with influenza A
virus than in those infected with RSV or hMPV (93). RSV
infected infants hospitalized with bronchiolitis displayed low,
intermittent concentrations of IFN-α in respiratory secretions
(87). No significant correlation was seen between these low
respiratory IFN levels and RSV shedding (88). In human
macrophages and peripheral blood mononuclear cells, RSV
infection also induced minimal IFN activity and elicited no
detectable transcription of IFN-α or IFN-β gene products (86),
which is consistent with low IFN-α production in monocyte
cultures from young infants (40).

Intriguingly, RSV-induced IFN-α expression by primary pDC
collected from older children (from 1 to 5-year-olds) was
notably higher than that of healthy full-term infant counterparts
suggesting expression may be linked to age of the patient.
Likewise, higher IFN-α expression was detected in primary pDCs
obtained from healthy adults (40). Age at the time of initial
infection is an important predictive factor for disease severity (94,
95). Cohort studies demonstrated that young infants (<6 months
of age at initial infection) are at greater risk for severe disease than
older infants (96, 97). Furthermore, long-term consequences
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of RSV infection, such as development of asthma, are closely
associated with severity of infection (10, 13). Extrapolation of
response to vaccines or therapeutics in adults to those in young
infants is thus highly problematic.

While clear linkage between IFN expression and RSV
infection in humans has been elusive, a factor that needs further
study is the prolonged incubation period of RSV disease in
infants for whom the mean time from infection to symptoms
is 4–6 days (87) in sharp contrast to the considerably shorter
incubation period for influenza virus (average of 2 days). Type
I IFN levels peak early after infection, and therefore sampling
of respiratory secretions after symptoms appear may be too
late to detect its antiviral effects for infants infected with RSV
(84, 85, 93). Support for a function of type I IFNs in RSV
pathogenesis is also growing from analysis of developmental
innate immune mechanisms associated with poor type I IFN
responses in newborn and young infants. For instance, and as
mentioned above, RSV-induced IFN-α production appears to
be primarily mediated by pDC, (40, 41). Indeed, compared to
adult pDC production of type I IFN during RSV infection is
substantially impaired in infants when disease is particularly
severe (40, 90). Impairment in infants is explained by deficits
either in MAVS or RIG-I at the post-translational level or by
signaling events downstream of MAVS (40).

Additional evidence supporting a role for type I IFN in RSV
infection and illness is the strong inhibition of IFN induction and
signaling mediated by the two earliest genes transcribed among
the 11 RSV gene products, NS1 and NS2 (89). NS1 and NS2
have been postulated to have various roles in RSV pathogenesis,
generally linked to their anti-IFN activity. In addition to
antagonizing type I IFN, NS1, and NS2 may negatively modulate
dendritic cell maturation, affect Th17 lymphocyte proliferation,
and promote Th2 polarization (35, 98–105). Deletion of anti-IFN
proteins NS1 and NS2 in RSV live vaccines is responsible for
attenuated phenotypes (89).

In the era prior to availability of antibodies against RSV,
topical administration of recombinant IFN-α-2a accelerated
control of upper respiratory tract symptoms during RSV
infection in a randomized, double-blinded trial while not
affecting duration or magnitude of viral shedding (106). This
early result is of interest in the context of a more recent
study of nasal epithelial cells from children with wheeze
and/or atopy that showed reduced IFN-β in the nasal swabs
in response to RSV infection, which was associated with
increased viral shedding (107). However, consistent with other
successful immunotherapies, this regimen elicited adverse effects
and severity of those effects were dose-dependent (108).
Common side effects due to IFN-α include flu-like symptoms,
pulmonary toxicity (109), gastrointestinal symptoms (110),
and neurotoxicity (111). Lethal toxicities associated with IFN-
α regimen are rare and severe toxicities due to IFN-α are
manageable if recognized expeditiously (112, 113). Importantly,
IFN-α therapy in children (114) and infants with RSV-induced
bronchiolitis (115) is generally safe and well tolerated. However,
caution is still warranted in use of recombinant IFN-α in
the context of an RSV infection, due to the side effects
mentioned above.

It is also possible that antiviral agents may benefit from
restoring natural type I IFN responses, which may lead to
faster clearance of the virus. Two studies using healthy adult
volunteers experimentally infected with RSV and treated with
antivirals showed that rapid RSV clearance was related to reduced
disease (116, 117). Similarly, a higher RSV load was linked to an
increased risk for severe bronchiolitis in a large multicenter trial
in the United States (28). None of these studies have attempted
to define the mechanism by which higher viral load contributes
to disease severity. In that regard, a study in infants with RSV
bronchiolitis that described an association between viral load
and disease severity (length of hospital stay) is of interest since
a correlation was also noted with relative expression of ISG-56
(118). Finally, additional evidence for the role of type I IFN in
disease severity comes from two studies of rare loss-of-function
variants in IFIH1 (which encodes a RIG-I-like receptor involved
in the sensing of viral RNA); the variants result in defective
innate recognition of RNA viruses preventing the activation
of an efficient antiviral IFN response. These rare but serious
immunodeficiencies lead to extreme susceptibility to RSV and
other respiratory viruses (119, 120).

Responses in Mice
Mice provide a semi-permissive model for human RSV and while
attempts to adapt a strain to this model have repeatedly failed
(121) data from numerous laboratories demonstrate similarities
in age related immune responses between humans and neonatal
mice. Since, our current understanding of the features that
contribute to severe RSV disease in infants is tied to our
understanding of developmental immunity during the first year
of life, the neonatal mouse model of RSV infection is a helpful
tool (122–124). Numerous studies utilizing mouse models of
RSV infection have revealed a bias toward a T helper type
2 (Th2) cytokine response when mice are initially infected as
neonates as compared to adults (71, 125–128). Upon reinfection,
mice initially infected as neonates mount significantly greater
Th2 responses as compared to mice initially infected as adults
(126). This skewed Th2 response upon reinfection is associated
with lung dysfunction (lung eosinophilia, increased mucus
production, and air hyperresponsiveness) (126, 127, 129). Such
responses mirror observations made in infants with severe
RSV disease (130–132). Production of type I IFN by pDC
during RSV infection of the neonate mouse, as in humans,
is considerably impaired. However, both pDC number and
production of type I IFN in response to RSV increase with
age; adult mice recruit substantially higher numbers of pDCs
to the lungs after RSV infection when compared to those of
same age that are not infected and to neonatal mice infected
with RSV (71). A single dose of IFN-α or adoptive transfer of
adult-derived pDCs (capable of mounting a type I IFN response),
prior to a primary RSV infection, substantially impedes the Th2-
biased immunopathology observed during reinfection (71). A
related strategy to revert poor outcomes associated with RSV
infection in neonatal mice has been administering Flt3 ligand
to neonates before RSV infection (133). Ftl3 ligand is a growth
factor that stimulates the proliferation of hematopoietic cells
that triggers expansion of cDCs and pDCs in human cord
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blood and strongly promotes IFN-α production by pDCs in
response to viral exposure (134, 135). This treatment has led to
increased lung DC numbers and reconditioning of the type I
IFN pathway toward Th1-mediated immunity. In addition, these
mice were protected from exacerbated airway disease upon adult
re-exposure to RSV (133).

Treating mice with neutralizing mAbs against the RSV
G protein reduced G protein-mediated lung inflammation.
Specifically, TRL3D3, a human mAb against the G protein
CCD, enhanced IFN responses, decreased airway inflammation,
and improved lung function upon secondary infection, whereas
mice treated with an anti-F mAb (palivizumab) had less IFN
than mock infected mice (30, 33). Since RSV infection is
inhibited by IFN-induced transmembrane proteins (71, 117),
the impact of counteracting the G protein’s suppressive effect
on IFN production likely also contributes to the antiviral effect
of such mAbs. Consistent with these results, intranasal IFN-
α administration in neonatal mice prior to RSV infection
appreciably reduced RSV viral load in both nasal associated
lymphoid tissue and lungs when compared to age-matched
controls (136).

Interestingly, while the IFN-α response to RSV progressively
increases with age (40, 136); another cytokine IL33, an
alarmin cytokine, decreases with age (126). Recent work has
demonstrated that IL-33 is significantly greater in neonatal
compared to adult mice during RSV infection. IL-33 signaling
in the neonatal mouse model of RSV has been shown to
induce RSV immunopathogenesis including Th2 bias (126).
Elevations in IL-33 are inversely correlated with age at RSV
infection (126) and severity of RSV infantile disease has
been associated with elevated levels of respiratory IL-33 and
polymorphisms within ST2, the receptor for IL-33, (137). IL-
33 promotes Th2 responses via multiple signaling pathways that
are summarized in Figure 1. Similarly, intranasal instillation
of IL-33 significantly impaired the production of IFN-α/λ
in the BALF and reduced the expression of IFN-stimulated
genes in the lung following PVM infection (138). Table 1

summarizes the significant advances in the role of age-dependent
differences in various immune and non-immune cells related
to the immune pathogenesis of RSV infection in infants.
Figure 1 highlights age-dependent differences in RSV-mediated
immune pathogenesis.

Implications for RSV Vaccines and
Therapeutic Agents
Current RSV vaccine candidates seek to induce high levels of
RSV-specific serum neutralizing antibodies, which are associated
with reduced RSV-related hospitalization rates. However, serum
neutralizing antibodies may not be sufficient to prevent infection
and/or induce protective responses. This feature of RSV biology
was exemplified by the antibody responses induced to the FI-
RSV vaccine in the 1960’s, which elicited lower avidity, non-
protective antibodies as compared to those that develop after
natural RSV infection (150). Furthermore, mucosal antibodies
have been shown to correlate better with RSV protection than
serum antibodies in both infants and adults (151–153).

The majority of vaccine efforts to date have focused on the
RSV F protein, based on the assumption that reducing RSV load
will reduce or eliminate disease. While mAbs against RSV F
protein (palivizumab) given to premature infants (at or before
35 weeks) do help to protect children with certain lung or heart
conditions who are at high risk for severe RSV disease, such
treatment does not fully protect from disease. Further, in a recent
study of viral burden in healthy full-term infants (<70 days
old), nearly a third experienced a multi-log rebound in viral
load at around 2 weeks after onset of symptoms (154). Since
viral load had declined by several orders of magnitude by that
point, the most likely cause was mutational escape which is a well
characterized response to anti-F protein mAbs (155).

In short, the role of RSV viral load as a driver for severity of
infection remains controversial. On the one hand, quantitative
RT-PCR correlation with disease severity in patients showed that
viral load was associated with disease severity in younger patients
although not in older patients (63). For patients intubated due
to respiratory distress, RSV infection resulted in higher viral
load than those not intubated, and higher viral loads were
associated with longer hospitalization (156). In the adult human
RSV challenge model, virus replication is inversely correlated
with the level of nasal secretory neutralizing antibody prior to
infection (157). Higher nasal immunoglobulin (Ig) A predicts
lower infectivity and lower measures of viral replication (151)
and low RSV-specific nasal IgA is an independent significant
risk factor for RSV infection (158). On the other hand, several
groups have failed to find an association of higher viral load in
nasopharyngeal lavage (159) or nasal aspirates with either length
of hospitalization, duration of oxygen supplement or severe
bronchiolitis in either infants (160) or children (161).

The picture that is emerging is that primary reduction in viral
load is useful, but not sufficient, to reduce the clinically relevant
pathology. Accordingly, a combination of an anti-viral agent with
an agent that reduces the RSV induced alteration in the innate
immune response is the most likely route to improved outcomes.
Targeting the F protein addresses the first issue. Targeting the G
protein addresses the second issue; since anti-G protein mAbs
also have potent antiviral activity, targeting the G protein alone
may be sufficient to achieve both goals.

The optimal type of RSV vaccine employed, i.e., RSV F
and/or G protein, will likely be dependent on the host target
population (162, 163), with four groups being of interest: (1)
infants and young children, (2) adults, (3) the elderly, and
(4) pregnant woman. Immunization schedule (prime/boost)
and the specific platform for delivery of the vaccine are
also likely to be important (162, 164, 165). Consequently,
there are a spectrum of RSV vaccines being tested that
include live-attenuated and chimeric virus, purified F protein
(including variants engineered to present predominantly the pre-
fusion conformation), particle and vector-based presentations
of the antigen(s) (165). For example, RSV F protein particle-
based (Novovax) (166, 167) and RSV F subunit (GSK; NIH)
vaccines are being evaluated for use in pregnant mothers,
while RSV F protein particle-based (Novovax; Mucosis) and
live-attenuated vaccines such as RSV deletion mutant vaccines,
e.g., 1M2-2 and 1NS2 constructs (Sanofi; NIH) are being

Frontiers in Immunology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 566

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hijano et al. Type I Interferons: RSV Disease

FIGURE 1 | Age-dependent differences RSV-mediated immune pathogenesis. The expression of RSV-induced IFNα is limited during infantile RSV infection and

progressively increases with age. Type I IFNs are capable of suppressing Th2 development and promoting type 1 immunity. Type I IFNs have been implicated in the

regulation of NK and CD8+ T cells functionality. Type I IFNs can elicit the activation of cytotoxic IFN-γ+ CD8+ T cells by enhancing the recruitment of inflammatory

myeloid cells into infected lungs. These infiltrating myeloid cells then differentiate into macrophage and DC, and acquire antigen presenting ability, subsequently

activate CD8+ T cells and trigger CD8+ T cells IFN-γ production. In addition, type I IFNs can also act directly on CD8+ T cells and NK cells by targeting its receptor

IFNAR1 on membrane of CD8+ T cells and NK cells. This results in the production of IFNγ, a key mediator for type 1 immunity, which presumably favors Th1

polarization from naïve CD4+ T cells. In contrast with IFN-α, IL-33 has been implicated in the induction of Th2-biased immune pathogenesis during neonatal RSV

infection. A large amount of IL-33 is rapidly released following RSV infection in neonatal but not adult mice. IL-33 can elicit ILC2-mediated IL-13/IL-4 production

through its cellular receptor ST2 on ILC2. ILC2-derived IL13/IL-4 then can facilitate cognate expansion of Th2 by upregulating the expression of Th2 costimulatory

molecules (CD86 and MHCII) on DC. ILC2-derived IL-4 also promotes the proliferation of Th2 cells. It involves the upregulation of IL4Rα on both DC and Th2 cells.

Similarly, IL-33 can promote Th2 polarization from naïve CD4+ T cells by targeting DC via ST2 receptors on DC and then enhance the expression of OX40L on DC

(ligand for cellular receptor OX40 on naïve T cells).

targeted for the pediatric population with potential extension
to older children and young adults (168). An important caveat
for using live vaccines is the need to prevent transmission
to the immune compromised, or those with reduced or
waning immunity. An additional issue for vaccinating infants
and young children is that the vaccine needs to balance
safety (higher attenuation) and efficacy (lower attenuation). A
promising recent study of an RSV vaccine candidate having a
deletion of the M2-2 coding sequence showed downregulation
of viral replication and upregulation of transcription and
antigen synthesis (169). For healthy older adults, several RSV
vaccine candidates are being considered, including vector-
based platforms such as VXA-RSV F oral (Vaxart) and
Ad26.RSV.preF (Janssen) (168). Given the high transmissibility
of RSV, even a safe and effective vaccine will likely leave gaps
in protection for high-risk, very young infants. Vaccinating
pregnant women has become an area of high interest to induce
passive protection in the infant by generating high maternal
antibody titers.

Antibodies directed to dominant antigenic sites on the
F protein have variable neutralization capacities with the

most potent neutralization epitopes associated with the pre-F
conformation (170–174). Stabilized F protein antigen in both
pre- and post-fusion morphology are being explored (31, 172,
175, 176). The typical benchmark is achieving a protective titer at
a defined time point, but the time course of increase in antibody
titer is also an important parameter, which will likely differ
according to vaccine type and composition. The RSV G protein
is also an antigenic target for neutralizing antibodies, but despite
this fact, the G protein has not usually been considered as a RSV
vaccine candidate because of its variability across RSV strains
(175–177). However, with the recent discovery of the G protein
structure (29, 32), and the known role of the G protein oligomer
on the virus surface vs. its monomeric secreted form (54, 178),
there has been reinvigorated interest in its potential as a RSV
vaccine candidate.

Passive transfer of antibodies is protective against severe RSV
infection using polyclonal or monoclonal antibodies (mAbs;
RSV-IVIG, palivizumab) (179) The ratio of antibody transfer and
decay kinetics is considered a principal parameter to measure
protection. More recent versions of mAbs have become available
with improved antibody transfer and decay kinetics such as
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TABLE 1 | Differences in immunological responses toward RSV in the respiratory tract.

Respiratory immune responses Adult mice Neonatal mice Human infants

IFNα UPSTREAM SIGNALING

Respiratory/pulmonary pDC +++ (71, 139) + (71, 139) older (≥4 months) infants had fewer BAL pDCs

than younger (<4 months) (140)

IFN-α +++ (71, 133, 139) + [(71, 139), Remot, 2016 #432] IFN-α production by primary pDC collected

from healthy term infants is lower than older

children (from 1-year to 5-year-olds) (40)

IFNα MEDIATED IgA-PRODUCTION OF B CELLS

Nasal associated lymphoid

tissue—B cells

+++ (136) ++ (136)

Respiratory IgA +++ (136, 141) + (136) IgA levels in nasal aspirates are lower in

younger infants (4–8 months) compared to

older infants and young children (9–21 months)

during RSV infection (142, 143)

OTHER IMMUNE MEDIATORS

CD103+/CD11b+ DC +: CD103+/CD11b+ ratio (144) +++: CD103+/CD11b+ ratio (144)

+++: CD80 and CD86 (144) +: CD80 and CD86 (144)

+: OX40L expression (145) +++: OX40L expression (145)

CD4+ T cells Th1 responses >Th2 responses

(126, 146)

Th2 responses >Th1 responses

(126, 146)

Th2 responses > Th1 responses

(131, 132, 147) (Cormier SA,

Unpublished Data)

CD8+ T cells +++: IFN-γ producing (148) +: IFN-γ producing (148) +++ (149) and Tc2 responses > Tc1

responses (Cormier SA, Unpublished Data)

(+, low; +++, high).

MEDI-8897 which is optimized from the human antibody D25
that targets RSV pre-F protein (24, 170, 172, 180, 181). This
type of treatment potentially offers novel immunotherapeutic
strategies to bridge gaps with RSV vaccine candidates.

Many studies indicate that certain cytokines can mediate
strong vaccine responses associated with a good outcome. For
example, IFN-α2b is an FDA-approved therapy for adjuvant
treatment of patients with certain cancers (182) and hepatitis
C (183). Of particular interest is the recent demonstration that
administration to neonatal mice of IFN-α prior to RSV infection
increased RSV specific IgA production in nasal washes when
compared to age matched controls (136). Furthermore, IgA levels
became comparable to those of adult mice infected with RSV
(136). In addition, IFN-α induced expression of B cell activating
factor (BAFF) in nasal associated lymphoid tissue (NALT) (136).
BAFF, a B cell survival factor andmediator of B cell activation and
class switching, and APRIL, a TNF ligand family member that
shares receptors with BAFF, regulate B cell survival, proliferation
and differentiation. Gene expression analysis from NALT and
lung homogenates further support a role for IFN-α in regulating
granulocyte migration and neutrophil-mediated immunity (136).

Comparative studies of genetic background of mice has shown
diverse influences on Th cell differentiation by controlling the
capacity for IL-2-induced IL-4 production by naive CD4+ T
cells. BALB/c mice are Th2-prone, while C57BL/6 mice are
Th1-prone (28, 184–186). Notably, type I IFN pathways are
reconditioned in neonatal BALB/c mice after RSV infection as
lung dendritic cells (DC) numbers increase; the associated shift
toward a Th1 response protected the mice from exacerbated
airway disease (187). Adult mice produce considerably higher

levels of type I IFNs in response to RSV than do neonatal mice.
Finally, recent studies have implicated the type III IFN-λ as
being significant for mucosal antiviral immune responses to RSV
infection (41, 65).

Since SOCS-1 and SOCS-3 negatively regulate the IFN-
induced signal cascade, and NS1, NS2, and G protein inhibit
the type I IFN response, any of these viral proteins may prove
to be useful targets to induce a more effective innate immune
response (45, 50). Understanding how these viral proteins modify
host immune responses is thus crucial to the development of
effective countermeasures. Although no animal model perfectly
mimics the human response, the mouse offers a far greater set
of tools for analyzing the immune system than other popular
models, such as the cotton rat, and the mouse has for that reason
become the nearly exclusive model for studies on RSV and the
host immune response.

Clinical Implications
Over the past decade, targeting the F protein has repeatedly
produced disappointing clinical results. In particular, agents
targeting the F protein have not been proven effective post-
infection. This is not only problematic for the multiple
populations in need of treatment but also for vaccines since
healthy full term infants (<70 days old) experienced a significant
rebound in viral load at around 2 weeks after onset of
symptoms in nearly a third of the study population (154).
Moreover, palivizumab is only approved for prophylaxis in
premature infants and those at high risk for severe RSV disease.
Retrospective analysis of samples from the clinical trials leading
to approval of this drug revealed a striking skewing of TLR4
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polymorphisms (188). Mutations that interfere with function of
this key innate immune system receptor have an incidence in the
general population of∼10%, but 90% of the high-risk premature
birth infants had a TLR4 mutation. This striking result has been
replicated (78). As described above, the RSV F protein stimulates
TLR4, while the G protein suppresses this signaling pathway (48).
In the premature birth population, antibodymediated removal of
the TLR4 stimulus should not impact the overall response since
the pathway is already suppressed genetically. In the broader
population, however, removal of that beneficial stimulus may
contribute to the lower observed efficacy compared to what
was expected.

In light of these empirical failures and the improved
understanding of RSV diseasemechanisms, interest has increased
in the role of the other major viral envelope protein, the RSV
G protein, on viral entry, on viral neutralization, and most
critically on RSV-mediated pathology (33). In mouse pDCs,
mutating the G protein CCD prevented suppression of IFN-
α attributable to the G protein; the Fab of a murine mAb
against this region of the G protein was nearly as effective as the
mutation (39).

Human mAbs targeting the CCD of RSV G protein (189) have
recently been compared to anti-F mAbs, as both prophylactic and
therapeutic treatment in BALB/c mice. The results showed that
targeting the G protein was more effective for reducing viral load,
leukocyte infiltration, and pro-inflammatory cytokine expression
in cell-free bronchial alveolar lavage (BAL) supernatants (190).
These results are consistent with in vitro studies on the type
I IFN response of normal human bronchial epithelial cells
to RSV in conjunction with mAbs to either the F or G
protein which showed clear superiority for targeting the G
protein (48).

TLR3D3 is a native human mAb that binds the G protein
CCD with low pM affinity; it has strong activities as both an
antiviral and for immune response normalization (189). It is
currently in IND-enabling preclinical development. In light of
the accumulated results summarized here on the mechanisms
underlying RSV disease, it is appropriate to test this agent as a
post-infection treatment. If proven effective, design of a vaccine
to induce comparable mAbs will benefit from recently published
structural analysis of the binding of TRL3D3 to the G protein
CCD (32).

CONCLUSION

RSV infections continue to be a major cause of morbidity
and mortality around the world affecting a wide variety of
patients. Infants, the elderly, and those with comorbidities are at

particularly high risk of hospitalization and death. Mainstream

therapy remains restricted to supportive care. Despite successful
antigen presentation leading to high titer of neutralizing
antibodies by several approaches, we still do not have a licensed
vaccine. Although the single licensed monoclonal antibody,
palivizumab, is effective, it protects only a minor fraction of the
population at high risk. Advances in therapeutic and vaccine
development for RSV has mainly been hampered by the lack
of understanding of the immune response to the virus both in
the setting of primary infection as well as recurrent reinfections.
Diverse approaches have converged over the last few years on
identification of Type I IFN as a key actor and a readily measured
biomarker of the broader innate immune response. Clinical
studies in human infants have shown that RSV is a poor inducer
of type I IFN responses, and there is accumulating literature
reporting an inverse correlation between type I IFN responses
and disease severity.

As our understanding improves of how viral proteins modify
host immune responses, and the age dependence of those
responses, research efforts can focus on development of effective
countermeasures to overcome the virus’s sophisticated sabotage
of the host immune system. Animal models, complemented by
studies on human cells in vitro, continue to be essential in the
discovery and/or confirmation of the key features surrounding
the host-virus interaction. Mouse models have proven to be
particularly informative, including demonstrations that neonatal
mice fail to produce IFN-α in the setting of RSV infection
due to poor pDC recruitment, and that administration of
IFNα decreases Th2-biased immunopathology and viral load.
In addition, and importantly, administration of IFNα enhances
mucosal RSV specific IgA production, which is critical given the
clinical evidence that suggests that mucosal antibodies correlate
better than systemic antibodies with protection. Although the
known toxicities of recombinant IFN precludes use in this setting,
a variety of approaches to restoring the normal IFN response have
been identified, offering new opportunities for both therapeutic
and vaccine discovery.
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