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Ovarian aging leads to endocrine disorders and systemic degeneration of tissue and organ structure and
function, seriously affecting women's physical and mental health. Safe and effective treatments for this
condition are lacking. Umbilical cord mesenchymal stem cells (UCMSCs), which have multidirectional
differentiation potential, show strong self-renewal, secrete bioactive factors and release exosomes, can
undergo homing, colonization, integration and differentiation into supporting and functional cells in
tissues and organs through direct manipulation and can also improve the tissue microenvironment
through paracrine action, promoting cell division, proliferation and microangiogenesis, inhibiting
inflammation and apoptosis, reducing oxidative stress, and mediating two-way immune regulation.
These processes activate dormant cells, repaired damaged cells, replace necrotic cells, and regenerate
fresh cells, restoring the structure and function of the ageing ovary. Furthermore, with the increasing
development of UCMSC research and technology, the therapeutic use of UCMSCs is expected to become
an effective means for the treatment of ovarian ageing caused by tissue cell ageing, degeneration, and
necrosis.

© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
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1. Introduction

1.1. Pathobiology of ovarian ageing

Ovarian ageing is a complex biological process that accumulates
gradually with the interaction of many factors. Decreases in follicle
quantity and quality are notable characteristics of ovarian ageing. In
addition to age, DNA damage, oxidative stress, inflammation,
fibrosis, apoptosis and metabolite accumulation are considered
important causes of ovarian ageing. Single-cell transcriptome
sequencing revealed that the ovary was mainly composed of oo-
cytes, granulosa cells, thecal cells, stromal cells, immune cells,
endothelial cells and epidermal cells, and with ovarian ageing, the
proportion of oocytes, granulosa cells and membrane cells
decreased, while the proportion of lymphocytes and fibroblasts
increased significantly [1]. At the spatial level, the analysis of age-
related gene expression showed that the DNA damage response
may be the key biological pathway of oocyte senescence [2].
Ovarian aging can cause endocrine disorders, lead to systemic
degeneration of tissue and organ structure and function, reduce
fertility, and increase the occurrence and development of chronic
diseases such as osteoporosis, metabolic syndrome and diabetes.
Safe and effective treatments for this condition are lacking, and this
issue should be addressed.

1.2. A new medical model of UCMSCs in the treatment of ovarian
ageing

Umbilical cord mesenchymal stem cells (UCMSCs) have become
one of themost respected new type of cell biotherapy technology in
recent years, and the main biological characteristics of UCMSCs
have been revealed [3]. At present, a number of research and
development institutions and stem cell clinical research hospitals
have conducted clinical research projects on UCMSCs [4e6], and
the technical system for large-scale preparation, quality control and
long-term storage of UCMSCs has been established [7], providing
the basis for clinical application. In animal models of human dis-
ease, UCMSC treatment was shown to be safe and effective for
tissue injury [8], inflammation [9], autoimmune diseases [10],
metabolic diseases [11], coagulation disorders [11,12], and formu-
lated clinical therapy strategies [13,14]. Importantly, UCMSC prod-
ucts already meet the technical conditions for clinical application
and are in the transitional stage from the laboratory to the clinic.

One umbilical cord can produce standardized UCMSC products
for hundreds of treatments and is associated with ease of use and
low cost; these products have been widely studied by researchers
[15]. No notable acute immune rejection response was observed
when UCMSCs were transplanted through intravenous infusion,
vascular administration or local administration. Many studies have
found that UCMSCs differentiate into mature cells under the
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induction of the tissue microenvironment and participate in injury
repair [10,16,17], and these cells can also secrete cytokines and
exosomes to promote tissue repair [18], regulate immunity and
inflammation, and improve the balance and stability of tissue
microenvironment [19] to promote structural and functional
regeneration. Thus, UCMSCs have good potential in the treatment
of ovarian aging.

2. Development of UCMSCs in vivo

2.1. In vivo pathways and biological processes

UCMSCs can home to injured and inflamed tissue, migrate out of
blood vessels through the space between endothelial cells and then
migrate to and colonize inflamed or injured target tissue [20e23].
Homing to inflamed, ischaemic, and injured tissue is one of the
important characteristics of UCMSCs and is a multistep coordinated
process involving cytokines, chemical factors, adhesion factors, and
extracellular matrix-degrading proteases [22e25]. UCMSCs first
identify the microvascular endothelial cells in the target tissue and
roll along the vascular endothelium, pass through the blood vessels
through the intercellular space, and then enter the target tissue in
response to specific tissue microenvironmental factors. During
tissue injury, a variety of chemokines, adhesion factors and growth
factors are released locally, and this series of microenvironmental
changes are the initial factors that attract UCMSCs [24,26]. The
interaction between a variety of chemical factors and their re-
ceptors in the internal environment guides UCMSCs to diseased
tissue [21,22,25,26].

The fate of UCMSCs that are injected intravenously in vivo is
not completely clear and involves internal pathways and bio-
logical processes. The internal pathways include internal circu-
lation, migration, distribution, colonization, and survival, and
biological processes include differentiation, integration, repair
of injury, secretion of cytokines and exocrine processes [27,28].
According to the in vivo tracking results of UCMSCs labeled with
green fluorescent protein, the red luciferase gene, chemicals
labeled and chromosomes labeled [29e31], the basic processes
of UCMSCs in vivo are as follows (see Fig. 1): (1) cells flow
through various tissues and organs through the blood circula-
tion; (2) some cells enter the lung, spleen, liver, bone marrow
and other tissues; (3) the cells nest in inflamed tissue and
ischaemic tissue; (4) the cells colonize the tissue, differentiate,
integrate and repair injured tissue; and (5) some UCMSCs die
and are degraded. The main biological processes are (1) the
release of growth factors, inflammatory and immunomodulatory
factors, and exosomes into the blood circulation, which remotely
regulate related biological responses; (2) homing to the target
tissue to participate in injury repair; (3) the secretion of growth
factors, inflammatory and immunoregulatory factors, exosomes
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and other regulators of the surrounding tissue environment to
promote injury repair (these factors can also remotely regulate
other tissues in the body); (4) the cells proliferate and differ-
entiate into mature functional cells induced by the tissue
microenvironment, and their phenotype and function change as
they become functional cells of the tissue type, repairing and
replacing injured cells; (5) these cells directly contact or secrete
factors that regulate the balance of inflammation and immunity,
save tissue from cell death and promote in situ cell growth; and
(6) they indirectly promote metabolic, endocrine and antioxi-
dant functions.

2.2. The ultimate destination

The fate of UCMSCs after transplantation in vivo is not only a
scientific question but also a common concern of doctors and pa-
tients. UCMSC homing is relatively targeted, as these cells generally
reach the injured tissue to participate in and promote injury repair,
and these cells are induced by the tissue microenvironment to
differentiate into mature cells of the corresponding tissue type;
they will not differentiate into other types of cells in the tissue
[32,33]. Ultimately, UCMSCs exhibit the following fates (see Fig. 1):
(1) a small number of UCMSC colonize, differentiate, integrate and
survive in the injured tissues; (2) some are distributed in liver, bone
marrow and other tissues, and a small number may survive for a
long time; (3) the cells may be rejected due to the expression of
certain antigens after differentiation or disappear due to apoptosis,
scorching and death; and (4) macrophages may be eliminated by
phagocytosis and decomposition, but the evidence of this outcome
is not sufficient.
Fig. 1. Fate of UCMSCs in vivo. UCMSCs enter the lung, spleen, liver, bone marrow and other
and chemokine signals to attract UCMSCs, and UCMSCs identify the microvascular endothe
blood vessels through the intercellular space, and then enter the target tissue in response to
injury repair and colonization, differentiation, and integration to repair damaged tissue. Final
tissues; some are distributed in the liver, bone marrow and other tissues and are partly
mediated phagocytosis and degradation.
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2.3. The effects of UCMSCs in treating ovarian ageing

Ovarian ageing is a progressive and dynamic process of ovarian
function decline until exhaustion, and this process is closely related
to patient age; it is regulated by multiple factors, including he-
reditary factors, the nervous system, the endocrine system, the
immune system, oxidative stress, genetic susceptibility, and mito-
chondrial damage [32,34]. This condition mainly manifests as tis-
sue atrophy, structural destruction and functional decline, oocyte
quantity and quality decline, and decreased sex hormone secretion
and regulation ability [33,35]; the corresponding induction of
oocytematuration disorders and follicular atresia result in a decline
in female fertility and affect the structure and function of whole-
body tissues and organs. According to animal models in which
UCMSCs have been used to treat human diseases and in clinical
trials, UCMSC therapy is mainly suitable for diseases caused by
degeneration, necrosis, and the loss of tissue cells due to me-
chanical, physical, chemical, and biological factors [34,36]. As a
complex biological process with multifactor interactions and
gradual accumulation, a decrease in follicle quantity and quality are
the key factors leading to ovarian ageing [35]. Studies have shown
that exogenous supplementation of mesenchymal stem cells is the
most promising way to treat ovarian ageing, and UCMSCs play an
important role in promoting structural and functional regeneration
of ageing ovaries [34,36e38]. UCMSCs secrete hepatocyte growth
factor (HGF) to activate the PI3K-AKT pathway to improve ovarian
structure and function [37,39]. UCMSCs regulate the AMPK/NR4A1
signalling axis to significantly improve the ovarian tissue structure,
restore ovarian function, and reduce fibrosis [38,40]. UCMSCs
regulate NR4A1-mediated mitochondrial mechanisms and inhibit
tissues through the blood circulation. The injured ovarian tissues release inflammatory
lial cells in the target tissue and roll along the vascular endothelium, pass through the
specific tissue microenvironmental factors. UCMSCs secrete cytokines and exosomes for
ly, a small number of UCMSC colonize, differentiate, integrate and survive in the injured
rejected, where they undergo apoptosis, cell death, and elimination by macrophage-
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theca interstitial cell apoptosis to recover ovarian function [39,41].
However, research on the use of UCMSC therapy to reconstruct
reproductive function has not been reported at home or abroad,
indicating that there are still many scientific and technical prob-
lems to be solved in UCMSC therapy.

2.4. Adjuvant therapy and drugs and food to avoid during UCMSC
treatment

The main function of UCMSC therapy is to promote the growth,
differentiation, and proliferation of tissue cells and to regenerate
the structure and function of damaged tissue [42,43]. Thus,
appropriate adjuvant therapy for patients receiving UCMSC therapy
is helpful for ensuring and improving the efficacy of UCMSCs. The
following adjuvant treatment measures are suggested (see Fig. 2):
(1) proper exercise is recommended, and some fatigue or symp-
toms similar to those in the early stage of a cold may be felt within a
short period of time after the infusion of UCMSCs, which can
gradually disappear after a brisk walk of 2e3 km; maintaining
proper exercise is helpful to promote blood circulation and improve
the curative effect, but strong irritating exercise and strong physical
labour should be avoided; (2) proper ingestion of nutritious food,
especially food with high levels of vitamins and trace elements,
which provides the necessary nutrients for UCMSC renewal; (3)
prioritizing a light diet, reducing the intake of high-fat and high-
energy foods; and (4) some drugs that promote blood circulation
contribute to the secretion and homing of UCMSCs.

Cytotoxic drugs are not suitable for the use in combination with
UCMSCs because these drugs are cytotoxic and interfere with or
block cell proliferation; these drugs will affect the biological ac-
tivity and reduce the curative effect of UCMSCs [44,45]. Alcohol
consumption, especially excessive alcohol consumption, should be
avoided asmuch as possible after treatment with UCMSCs, as a high
alcohol concentration in the blood may weaken the therapeutic
effect. In addition to drinking, patients should also try to reduce the
consumption of food with cytotoxicity and strong stimulation to
the human body, such as spicy food and fried or barbecued food.

2.5. Timing, optimal dose, and course of UCMSC treatment

Based on the biological characteristics of UCMSCs, clinical
treatment needs to consider ways that are conducive to the entry of
UCMSCs into tissue, the appropriate tissue microenvironment and
the in vivo environment that plays the most effective therapeutic
role [46,47]. In clinical practice, the appropriate treatment time
should be chosen according to the specific disease, different stages
of the samedisease and thedegree of tissue injury. For inflammatory
and autoimmunity resulting in ovarian ageing, it is suggested that
UCMSC treatment should be performed in the early and middle
stages of the disease because during the acute reaction or progres-
sive stage of tissue injury, the injured tissue can release more in-
flammatory factors and factors that attract UCMSCs to the injured
tissue,microvascular injury is also conducive to the entry ofUCMSCs
into tissue, and the tissuemicroenvironment is also conducive to the
colonization and differentiation of UCMSCs [48e50]. When ovarian
ageing enters the chronic stage, treatment mainly depends on
paracrine effects or remote secretion byUCMSCs, and the number of
UCMSCs that enter the injured tissue is relatively low [51,52]. It is
necessary to increase the dose and the number of treatment times to
exert therapeutic effects. For natural ovarian ageing and degenera-
tion [53e55], the timing of UCMSC treatment is unrestricted
because the development of the disease is slow, the inflammatory
reaction in the diseased tissue fades, the concentration of factors
that attract UCMSCs is relatively low, and there is little difference in
the therapeutic effect at different time points.
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At present, there is no unified accepted standard for the optimal
dose of UCMSCs for treating diseases, and the dose-effect rela-
tionship for different diseases is not fully understood. Most of the
reports calculate a single treatment dose of UCMSCs based on body
weight, and doses in animal model experiments and clinical studies
are calculated as 1 � 106 cells/kg [56]. A dose of 5 � 107 cells has
been used by adults according to age, and the range of single
treatment is approximately 3 � 107e1 � 108 cells per dose [57]. To
ensure safety, it is recommended to use a dose of
1 � 106e1 � 107 cells/kg [10], the volume should not be too large,
and the density of UCMSCs should not be too high to avoid
microvascular embolism caused by the accumulation of UCMSCs,
which can be injected several times at regular intervals.

The course of UCMSC treatment depends on the type and
severity of the disease. The course of treatment in the author's
research centre is 1� 106 cells/kg body weight, once per week for 3
consecutive doses; for some chronic diseases, 5 consecutive doses
may be administered, or within a safe range, the dose can be
shortened to once per day for 3 consecutive times [58e60].
UCMSCs can regulate inflammation and immunity, and the
continuous effect after a single treatment is approximately 2weeks.
Generally, three consecutive treatments can show obvious curative
effects. After that, increasing the number of treatments may be
helpful in improving and consolidating the curative effect. We
conducted a course of treatment on individuals with autoimmune
and inflammatory diseases and some health conditions. The pa-
tients were treated with 1� 106 cells/kg once every other day, once
per week, once per month, 3 times per month and 5 times per
month. The overall impression was that the effect of once every
other day, 3 times per week and 5 times in a row was the best,
followed by 3 times per week and 5 times per week, and there was
little difference between the other two regimens. However, this
was only a small batch of asynchronous therapeutic studies, and
in vivo biological behaviours such as migration, distribution, colo-
nization, differentiation and survival times of UCMSCs in vivo need
to be studied. A large sample control experiment must be con-
ducted before we can accurately explain the difference in curative
effects between different treatment courses. Our suggestion is that
for ovarian ageing, 5 � 106 cells/kg body weight, once every other
day, 3 times in a row, is recommended.

3. The mechanism of UCMSCs in the treatment of ovarian
ageing

3.1. Paracrine effects

3.1.1. Cytokines
Cytokines are characterized by low expression levels but have a

robust effect on the initiation and amplification of outcomes. Both
in vitro and in vivo, UCMSCs secrete growth factors, interleukins,
colony stimulating factors, chemokines, interferon and tumour
necrosis factors, neurotrophic factors, metalloproteinases, plasmin
and superoxide dismutase, which promote the in situ growth of
injured tissue through paracrine or other regulatory mechanisms
and play an important role in cell growth, inflammation and im-
mune regulation [27,61,62] (see Fig. 3). UCMSCs can be injected into
animals or patients with ovarian tissue and organ injury and
secrete a variety of bioactive factors that play important roles in
promoting in situ cell growth and injury repair in injured tissues,
and these are important mechanisms for inhibiting the inflamma-
tory response and regulating the immune balance [63,64]. Based on
the comparative analysis of the secretory functions of MSCs from
different sources, UCMSCs secreted stem cell growth factor,
vascular endothelial growth factor and nerve growth factor more
robustly than MSCs from other sources [65,66], suggesting that



Fig. 2. Adjuvant therapy, drugs and food should be avoided during UCMSC treatment. Appropriate adjuvant therapy includes proper exercise, nutritious food, light diet, and
promotion of blood circulation, while cytotoxic drugs, alcohol, and spicy and fried food are not suitable for use in combination with UCMSCs.
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UCMSCs may play a more powerful role in promoting cell growth
than other types of MSCs.

3.1.2. Exosomes
Exosomes are nanoscale membranous vesicles that are released

into the extracellular environment after the fusion of eukaryotic
polyvesicular endosomes and cell membranes, and these factors
contain different kinds of proteins, lipids, mRNAs, microRNAs, sig-
nalling molecules and other biologically active substances and
easily fuse with the cell membranes of neighbouring cells [67].
Biologically active substances are selectively delivered to recipient
cells to transmit information, regulate signal transduction, and play
a variety of biological roles [68]. The role of exosomes in tissue
repair mainly involves (1) promoting cell proliferation and inhib-
iting apoptosis [69]; (2) regulating inflammation and immunity,
improving the microenvironment of injured tissue, and preventing
secondary inflammatory injury [70]; (3) promoting angiogenesis,
improving nutrient supply and the secretion of metabolites [71];
and (4) delivering and releasing mRNA, miRNA and proteins to
regulate gene transcription and expression, cell growth and pro-
liferation, inflammation and immunity [72,73]. In summary, exo-
somes, which are a transmission medium, transmit specific cargo
such as proteins, mRNAs, miRNAs and lncRNAs to injured ovarian
tissue to activate or inhibit certain signalling pathways or signalling
proteins and promote the repair of tissue injury by regulating cell
proliferation, apoptosis, angiogenesis and immunity (see Fig. 3).

3.2. Direct participation

During the treatment of some diseases involving tissue and
cell degeneration, necrosis and loss, it was found that some
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MSCs migrated and homed to the injured tissue after superficial
intravenous infusion, vascular administration, lacunar injection
or localized transplantation [74]. MSCs colonize injured tissue,
differentiate into functional cells of the corresponding tissue
types and integrate into the tissue under the induction of the
tissue microenvironment [75]. However, there was almost no
distribution of MSCs in healthy control animals without tissue
damage, indicating that transplanted MSCs were involved in the
structural remodelling of injured tissue. During the treatment
of systemic radiation injury with UCMSCs, the distribution of
MSCs in intestinal tissue was highest; a proportion of trans-
planted cells was also found in the liver, kidney, lung, thymus
and skin, but no GFP-labeled MSCs were found in unirradiated
control animals [16,76]. In UCMSC-treated systemic lupus ery-
thematosus, UCMSCs were distributed in liver, kidney, skin, and
other autoimmune injured tissues, and the structure and
function of corresponding tissues were improved [77,78],
indicating that UCMSCs transferred in vitro were not only
distributed in injured tissues but also played a role in repairing
the damage. In summary, there have been many reports about
the migration, distribution and colonization of UCMSCs in
injured tissue and their differentiation into functional cells of
the injured tissue type to promote injury repair. There is suffi-
cient in vivo evidence to indicate that exogenous MSCs directly
participate in injury repair. However, the distribution and
colonization of UCMSCs infused in vivo are limited, the direc-
tion of differentiation is determined by the components of the
tissue microenvironment, and the survival time is relatively
short. The fate of UCMSCs in injured tissue is not very clear, and
their role in promoting injury repair needs to be further
confirmed.



Fig. 3. The mechanism underlying the effects of UCMSC treatment of ovarian ageing. UCMSCs promote division and proliferation of in situ cell, inhibit apoptosis, suppress collagen,
reduce inflammation, induce angiogenesis, decrease ROS, and increase the quantity and quality of follicles through paracrine mechanisms, direct participation, regulation of
signalling pathway, and stimulation of endogenous FGSCs to restore the structure and function of aged ovaries.
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3.3. Regulating key signalling pathways to promote cell division
and proliferation in situ

UCMSCs interfere with ovarian senescence by secreting cyto-
kines or releasing exocrine factors, and they play a therapeutic role
in repairing damaged ovaries with multiple targets and multiple
mechanisms. The effect of human umbilical cord mesenchymal
stem cell exosomes (HucMSC-exos) on ovarian senescence has been
a research hotspot in recent years. HucMSC-exos activate the PI3K/
AKT/mTOR signalling pathway of oocytes by carrying functional
microRNAs such as miR-146a-5p, miR-21-5p and miR-126-3p,
which promote follicular development and maturation, enhance
the division and proliferation of ovarian granulosa cells, induce
microvascular network neovascularization, inhibit apoptosis, in-
crease the levels of E2 and AMH in peripheral blood, decrease FSH
levels, and increase the number of follicles [79,80]. In addition,
miR-29a carried by HucMSC-exos can activate Wnt/b-catenin by
targeting HMG-box transcription factor (HBP1), promote the divi-
sion and proliferation of granulosa cells(GC), inhibit apoptosis, and
restore ovarian function [81]. UCMSCs release exosomes to regulate
the Hippo pathway, promote the division and proliferation of
granulosa cells, and improve the structure and function of the ovary
[82]. HucMSC-exos can inhibit the NF-kB signalling pathway, in-
crease the expression of the anti-inflammatory factor IL-10,
decrease the expression of the inflammatory factors TNF-a and
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IFN-g and inhibit apoptosis in ovarian granulosa cells [83]. In a rat
model of premature senility induced by chemotherapy, UCMSC
transplantation was found to regulate the NGF/TrkA signalling
pathway, restore the disturbance of hormone secretion and follic-
ular development in premature ovarian failure, and increase the
pregnancy rate of POF rats [84]. UCMSC transplantation can regu-
late the phospho-NR4A1 and AMP-activated protein kinase (AMPK/
NR4A1) signalling axes, inhibit tissue fibrosis and restore ovarian
function [85]. UCMSCs can secrete hepatocyte growth factor (HGF)
to activate the PI3K-AKT pathway, promote follicular development
and maturation, and improve ovarian function [86]. UCMSCs
mainly regulate related signalling pathways through the paracrine
pathway, promote cell division and proliferation in situ, inhibit cell
apoptosis, reduce the inflammatory response, and then interfere
with ovarian senescence.

3.4. Stimulation of endogenous reproductive stem cells to promote
oocyte differentiation

The niche of ovarian reproductive stem cells is the microenvi-
ronment around female germline stem cells (FGSCs), which can
provide external signals related to nutrition supply and immune
cytokine levels, maintain FGSCs homeostasis, promote FGSCs divi-
sion and proliferation and initiate cell differentiation [87]. The
study found that the senescence of ovarian reproductive line stem
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cells in this niche may be the main cause of ovarian senescence.
Germline stem cell senescence in the niche leads to the depletion of
reproductive stem cells and a decrease in the number of follicles,
which eventually leads to impaired female fertility [88]. At present,
the specific regulatory mechanism by which UCMSCs affect the
niche of reproductive stem cells and interfere with ovarian senes-
cence is not clear. According to previous research data, we specu-
late that UCMSCs may stimulate and mobilize ovarian reproductive
stem cells through the paracrine pathway, promote the division
and proliferation of endogenous reproductive stem cells, increase
the number of stem cells, and eliminate, repair or replace damaged
cells to facilitate cell differentiation into oocytes in time, increasing
the number of oocytes, in addition, UCMSCs can differentiate into
ovarian reproductive stem cells through direct participation.
Studies have shown that UCMSCs can be induced to differentiate
into germ stem cell-like when the ovarian microenvironment is
stimulated or key genes of reproductive stem cells are overex-
pressed in vitro. After induction, UCMSCs highly expressed the
germ line cell-related genes Ssee4, Oct4, and Ddx4 and the oocyte-
related gene GDF9 and had the potential to differentiate into female
germ line cells [89]. Huc-MSCs can differentiate into oocyte-like
structures, express the reproductive-like cell-specific markers
Oct4, Vasa, DAZL, ZP2, ZP3 and Stra8, and secrete oestradiol [90]. It
is suggested that UCMSCs themselves have the potential to differ-
entiate into oocytes and can stimulate reproductive stem cells
through the remote paracrine pathway.

3.5. Perspectives

According to the current research progress of stem cell therapy,
UCMSCs are different from traditional drugs. UCMSCs are a per-
manent cure, while traditional medicine is a palliative strategy. The
essence of UCMSC therapy involves solving the problem of injury in
terms of tissue structure and function. It is a newmethod of ovarian
ageing treatment that may completely change the current clinical
medical model.

Stem cell technology will develop by leaps and bounds in the
next few years, and there will be a trend towards new industries
and clinical applications. In terms of stem cell sources, adult stem
cells such as UCMSCs were initially used as standardized products,
and many stem cell resource banks have been built. The next step is
to establish standardized cell preparations to improve safety and
efficacy for clinical research and treatment and to create new stem
cell products and technologies that are more efficient, accurate,
targeted, safe and reliable. In preclinical research on stem cells, cell
imaging and tracer techniques will be further used to reveal the
dynamic changes in UCMSCs in vivo and clarify their cellular and
molecular regulatorymechanisms to further solve the key technical
and scientific theoretical problems in the clinical transformation of
new stem cells. In terms of clinical transformation and application,
there are thousands of stem cell clinical research programmes in
the world. Some clinical studies have entered the third phase of
clinical trials, and stem cell treatments for many diseases are being
confirmed by clinical trials. Some clinical research results will be
popularized and used in the clinic in the next few years. With the
development of stem cell technology, knowledge of UCMSCs is
being popularized. The bottlenecks restricting the clinical applica-
tion of UCMSC technology will be solved, and new stem cell
products and technologies will continue to emerge, as will clinical
transformation and application, new cells, tissues and organs and
secretory products derived from stem cells; moreover, stem cell
application technology management will be gradually standard-
ized. Generally, stem cell therapy is likely to become a new tech-
nology that is widely used in the clinic, and many incurable
diseases will be treated effectively.
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4. Conclusions

i. UCMSC therapy improves ovarian structure and restores
ovarian function. Appropriate adjuvant therapy for patients
is helpful for ensuring and improving the efficacy of UCMSCs,
while cytotoxic drugs are not suitable for use in combination
with UCMSCs.

ii. In clinical practice, the appropriate treatment time should be
chosen according to the specific disease, different stages of
ovarian ageing and the degree of tissue injury. A dose of
1 � 106e1 � 107 cells/kg is recommended, and the course of
UCMSC treatment depends on the severity of the disease.

iii. The fate of UCMSCs that are injected intravenously in vivo
involves internal circulation, migration, distribution, coloni-
zation, survival, differentiation, integration, secretion of cy-
tokines and exocrine processes, which promote injury repair
through paracrine effects and direct participation.
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