
Profi ling the human immune system
Th e immune system plays a central role not only in health 
maintenance but also in pathogenesis: excess immunity is 
associated, for instance, with auto-immune diseases (for 
example, multiple sclerosis, type 1 diabetes, psoriasis, 
lupus, rheumatoid arthritis), infl ammation (sepsis, infl am-
matory bowel disease) and allergy, as well as cell and 
organ rejection; defi cient immunity is, on the other hand, 
linked to cancer or susceptibility to infection.

When investigating immune-mediated diseases in 
humans, restricted access to relevant tissue(s) for samp-
ling, such as the brain in multiple sclerosis or the joints in 
rheumatoid arthritis, constitutes a major limitation. Cells 
of the immune system, however, become educated and 
implement their functions by recirculating between 
central and peripheral lymphoid organs as well as by 
migrating to and from sites of injury via the blood 
(Figure 1). As blood fl ows throughout the body, carrying 
naïve and educated immune cells from one site to 
another, it acts as a pipeline for the immune system. 
Indeed, it is the preferred route for immune cells to reach 
the lymph nodes where antigen-specifi c immune 
responses develop. After exiting these nodes through 

outgoing lymphatic vessels, the cells again reach the 
bloodstream to be transported to tissues throughout the 
body. Upon patrolling these tissues, they gradually drift 
back into the lymphatic system to re-enter the blood and 
begin the cycle all over again. Th e complex patterns of 
recirculation depend on the state of cell activation, the 
adhesion molecules expressed by immune and endo-
thelial cells, and the presence of chemotactic molecules 
that selectively attract particular populations of blood 
cells. Circulating immune cells are, in addition, exposed 
to factors that are released systemically.

A wide range of molecular and cellular profi ling assays 
is currently available for the study of the human immune 
system (Figure 2). Th e level of sophistication of instru-
ments such as polychromatic fl ow cytometers, one of the 
immunologist’s favorite tools, has increased over the past 
few years. Major technological breakthroughs have also 
occurred in the fi elds of genomics and proteomics, thus 
creating today a unique opportunity for the study of 
human beings in health and disease where inherent 
heterogeneity dictates that large collections of samples be 
analyzed. Among the high-throughput molecular profi l-
ing technologies available today, genomic approaches are 
the most scalable, have the most breadth and robustness, 
and therefore are best suited for the study of human 
populations.

Th e human genome can be investigated from two 
diff erent angles that consist of either determining its 
make up or measuring its output. Sequence variation can 
be detected using, for instance, single nucleotide poly-
morphism (SNP) chips, which permit the identifi cation 
of common polymorphisms or rare mutations associated 
with diseases. Hundreds of thousands of SNPs can be 
typed using these platforms, yielding a genome-wide, 
hypothesis-free scan of genetic associations for a given 
phenotype of interest. Many such genome-wide associa-
tion studies (often referred to as GWAS) have been 
published in recent years, a number of them investigating 
the genetic underpinning of immune-related diseases [1]. 
Notably, such studies have been useful to pinpoint genes 
and pathways that may be involved in the pathogenesis of 
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Figure 1. Blood is the pipeline of the immune system. Transcriptional profi ling in the blood consists of measuring RNA abundance in circulating 
nucleated cells. Changes in transcript abundance can result from exposure to host or pathogen-derived immunogenic factors (for example, 
pathogen-derived molecular patterns activating specialized pattern recognition receptors expressed at the surface of leukocytes) and/or changes 
in relative cellular composition (for example, infl ux of immature neutrophils occurring in response to bacterial infection). The main blood leukocyte 
populations circulating in the blood are represented in this fi gure. Each cell type has a specialized function. Eosinophils, basophils and neutrophils 
are innate immune eff ectors playing a key role in defense against pathogens. T lymphocytes are the mediators of the adaptive cellular immune 
response. Antibody producing B lymphocytes (plasma cells) are key eff ectors of the humoral immune response. Monocytes, dendritic cells and 
B lymphocytes present antigens to T lymphocytes and play a central role in the development of the adaptive immune response. Blood leukocytes 
can be exposed in the circulation to factors released systemically from tissues where pathogenic processes take place. In addition, leukocytes will 
cross the endothelial barrier to reach local sites of infl ammation. Dendritic cells exposed to infl ammatory factors in tissues will be transported 
via the lymphatic system and reach lymph nodes via the aff erent lymphatic vessels. These dendritic cells will encounter naïve T cells that are 
transported to the lymph node via high endothelial venules. ‘Educated’ T cells will then exit the lymph node via eff erent lymph vessels that collect 
in the thoracic lymph duct, which in turn connects to the subclavian vein, at which point these T cells rejoin the blood circulation.
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autoimmune diseases [2]. Associations between common 
genetic variants and resistance to infection have also 
been reported [3,4]. However, parameters measured by 
this approach are determined by heredity and will not 
change throughout the life of an individual. Th is is in 
contrast to transcript abundance, which is the parameter 
measured by the second genome-wide profi ling approach. 
Transcriptional activity is largely dependent on environ-
mental factors and, as a result, RNA abundance will 
change dynamically over time. For instance, sets of trans-
cripts may be induced in response to an infectious 
challenge and return to baseline levels following pathogen 

clearance. Dynamic changes in the cellular make up of a 
tissue will also eff ect changes in transcript abundance that 
will be measured on a genome-wide scale.

Transcriptional profi les have been obtained from many 
human tissues -including, for instance, the skin [5,6], 
muscle [7], liver [8,9], kidney [10,11] or brain [12] - but 
the status of the immune system can be best monitored 
by profi ling transcript abundance in blood. Indeed, 
profi ling transcript abundance in blood provides a ‘snap 
shot’ of the complex immune networks that operate 
throughout the entire body. However, while this has 
proven to be a valid approach to fi nding clues about 

Figure 2. The immune profi ling armamentarium. The number of high-throughput molecular and cellular profi ling tools that can be used to 
profi le the human immune system is increasing rapidly. Proteomic assays are used to determine antibody specifi city or measure changes in serum 
levels of cytokines or chemokines using multiplex assays. Cellular profi ling assays are used to phenotype immune cells based on intracellular or 
extracellular markers using polychromatic fl ow cytometry. In vitro cellular assays can measure innate or antigen-specifi c responsiveness in cells 
exposed to immunogenic factors. Genomic approaches consist of measuring abundance of cellular RNA and also microRNAs that are present in 
cells or in the serum. Other genomic approaches consist of determining gene sequence and function (for example, genome-wide association 
studies, RNA interference screens, exome sequencing).
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patho genesis as well as to identifying potential bio-
markers [13-16], a number of challenges and limitations 
exist. Data interpretation is one of them. Firstly, the 
volume of data generated from such studies can be over-
whelming, and it is necessary to integrate information 
from a multitude of sources (study design, quality control 
data, sample information, and importantly clinical infor-
mation) in order for the results to be interpretable. 
Secondly, the changes in transcript abundance observed 
in complex tissues such as blood can be caused not only 
by regulation of gene transcriptional activity but also by 
relative changes in abundance of cell populations expres-
sing transcripts at constant levels. Th irdly, in addition to 
pathogenic processes, a number of factors may aff ect 
blood transcript abundance and confound the analysis. 
Medications and co-morbidities are two such factors that 
often restrict patient selection and complicate data 
interpretation. Th is review will discuss some of the 
strategies recently developed that will address some of 
these limitations.

Transcriptome profi ling: a technology primer
Real-time PCR technology is currently considered the 
gold standard for the analysis of gene expression. 
However, it can be used to measure abundance of only a 
limited number of transcripts. Introduced over 10 years 
ago, DNA microarrays are now in routine use and can 
measure transcript abundance on a genome-wide scale. 
Th is technology relies on dense arrays of oligonucleotide 
probes that will capture complementary sequences 
present in biological samples at various concentrations. 
Th e probes can be deposited on a solid surface (printed 
microarrays), synthesized in situ (Aff ymetrix GeneChips), 
or bound to glass beads lodged into wells etched in the 
surface of a glass slide (Illumina BeadArrays). Th e labeled 
material captured by the microarray is imaged and 
relative abundance determined based on the strength of 
the signal produced by each oligonucleotide feature. It 
should be noted that, while they provide a means to 
survey transcript abundance on a genome-wide scale, the 
sensitivity of microarray assays is low compared to other 
approaches such as real-time PCR. A microarray is not a 
fully quantitative assay and changes in transcript abun-
dance must be measured in reference to control samples 
that need to be included in each study. However, some of 
these limitations may be lifted by methods relying on 
high-throughput sequencing for the genome-wide 
measurement of RNA abundance [17]. Building on the 
legacy of the SAGE (serial analysis of gene expression) 
technology introduced in the 1990s, RNA sequencing 
(RNA-seq) [18] uses either total or fractionated RNA, for 
example poly(A)+, as a starting point. Th is material is 
converted to a library of cDNA fragments. High through-
put sequencing of such fragments yields short sequences 

or reads that are typically 30 to 400 bp in length, depend-
ing on the technology platform used. For a given sample, 
tens of millions of such sequences will then be uniquely 
mapped against a reference genome. Th e higher the level 
of expression of a given gene, the higher the number of 
reads that will be aligned against it (Figure 3). Th us, this 
approach does not rely on probe design and provides 
several types of information, including not only transcript 
abundance but also transcriptome structure (splice vari-
ants), profi les of non-coding RNA species, and genetic 
polymorphisms. RNA-seq is expected to become suffi  -
ciently cost-eff ective and practical that it will eventually 
supersede microarray technologies.

Other technologies should be considered for the 
profi ling of focused sets of genes. Nanostring technology 
can, for instance, detect the abundance of up to 500 
transcripts with high sensitivity [19]. Th e approach is 
‘digital’ since it counts individual RNA molecules using 
strings of fl uorochromes as reporters to identify the 
diff erent RNA species. Other technology platforms 
developed by, among others, Luminex, High Th roughput 
Genomics or Fluidigm round up the off ering for ‘sub-
genome’ transcript profi ling.

Profi ling autoimmune diseases
Th e fi eld of autoimmunity has proven a fertile ground for 
blood transcriptional studies. Alterations in transcript 
abundance in the blood of patients refl ect the sustained 
response against self-antigens and, more generally, un-
con trolled infl ammatory processes. Such diseases often 
present with recurring-remitting patterns of activity, with 
episodes of fl aring that may be refl ected by fl uctuations 
in transcript abundance. Th e work has initially focused 
on diseases with clear systemic involvement such as 
systemic lupus erythematosus (SLE) [20,21]. Multiple cell 
types and soluble mediators, including IL10 [22,23] and 
IFNγ [24-26], have been proposed to be at the center of 
lupus pathogenesis. While some scattered evidence 
indicated the potential role of type I interferon in lupus, 
several observations did not support the hypothesis: fi rst, 
not every SLE patient has detectable serum type I IFN 
levels [27]; second, dysregulation of type-I IFN produc-
tion is not found in most murine SLE-models [28]; and 
third, genetic linkage and association studies had not 
identifi ed candidate lupus susceptibility genes within the 
IFN pathway [29]. However, in one of our earliest micro-
array studies we demonstrated that all but one of the 
pediatric patients exhibited upregulation of IFN-
inducible genes, and the only patient lacking this signa-
ture had been in remission for over 2 years [20]. In 
addition, it was found that treating SLE patients with 
high dose IV steroids, which are used to control disease 
fl ares, results in the silencing of the IFN signature. A 
surprise from these initial studies was the absence of type 
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I IFN gene transcripts in the face of an abundance of 
IFN-inducible ones in the blood cells of SLE patients. A 
likely explanation is that the cells producing type I IFN, 
and therefore transcribing these genes, migrate to sites of 
injury. Altogether, results from microarray studies played 
a key role in convincing the community of the potential 
importance of type I IFN in SLE pathogenesis [15,30-34]. 
A phase Ia trial to evaluate the safety, pharmacokinetics, 
and immunogenicity of anti-IFNα monoclonal antibody 
(mAb) therapy in adult SLE patients was recently con-
ducted [35]. Th e antibody elicited a specifi c and dose-
dependent inhibition of overexpression of type I IFN-
inducible genes in both whole blood and skin lesions 

from SLE patients, at both the transcript and protein 
levels. As expected, overexpression of BLyS/BAFF, a 
type I IFN-inducible gene, also decreased with treatment. 
Th us, this fi rst trial supports the proposed central role of 
type I IFN in human SLE.

Systemic onset juvenile arthritis (SoJIA) is another 
disease with systemic involvement that greatly benefi ted 
from the study of blood transcriptional profi les with the 
development of both therapeutic and diagnostic modali-
ties [14,16,36,37]. Diseases with specifi c organ involve-
ment have also been the subject of signifi cant, yet not 
always extensive, blood profi ling eff orts. Blood signatures 
have, for instance, been obtained from patients with 

Figure 3. RNA profi ling technologies. Several technology platforms are available for measuring RNA abundance on large scales. Microarray 
technologies rely on dense arrays of oligonucleotide probes used to capture complementary sequences present in biological samples at 
various concentrations. Following extraction, RNA is used as a template and amplifi ed in a labeling reaction. The labeled material captured by 
the microarray is imaged and relative abundance determined based on the strength of the signal produced by the fl uorochromes that serve as 
reporters in this assay. The Nanostring technology measures RNA abundance at the single molecule level. RNA serves as starting material for this 
assay, which does not involve the use of enzymes for amplifi cation or labeling. Capture and reporter probes form complexes in solution with 
RNA molecules. These complexes are captured on a solid surface and imaged. Molecule counts are generated based on the number of reporter 
probes detected on the image. The reporter consists of a string of seven fl uorochromes, with four diff erent colors available to fi ll each position. 
Up to 500 diff erent transcripts can be detected in a single reaction on this platform. For RNA sequencing (RNA-seq) the starting RNA population 
must fi rst be converted into a library of cDNA fragments. High throughput sequencing of such fragments yields short sequences or reads that 
are typically 30 to 400 bp in length. For a given sample tens of millions of such sequences will then be uniquely mapped against a reference 
genome. The density of coverage for a given gene determines its relative level of expression. Similarities and diff erences between these technology 
platforms should be noted. For instance, microarrays and Nanostring technologies rely on oligonucleotide probes to capture complementary target 
sequences. Nanostring and RNA-seq technologies measure abundance at the single molecule level, with results expressed as molecule counts and 
sequence coverage, respectively. Microarray and RNA-seq technologies require extensive sample processing, which include amplifi cation steps. 
dsDNA, double-stranded DNA.
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multiple sclerosis [38,39]. Given the inaccessibility of the 
brain, blood constitutes a particularly attractive source of 
surrogate molecular markers for this disease. Th ese 
eff orts have yielded a systemic signature and identifi ed 
potential predictive markers of clinical relapse and 
response to treatment [40-42]. Transcriptional signatures 
have also been generated in the context of dermatologic 
diseases. In this case, the target organ being readily 
accessible, eff orts have been focusing on profi ling 
transcript abundance in skin tissues [43,44]. However, 
systemic involvement has been recognized in recent 
years to be an important component of autoimmune skin 
diseases and unique blood transcriptional profi les have 
also been identifi ed in patients with, for example, 
psoriasis [45-47].

Blood transcriptional profi les have been generated in 
the context of many other autoimmune diseases. Indeed, 
the range of autoimmune/autoinfl ammatory diseases that 
have been investigated encompasses SLE [20,21,48,49], 
juvenile idiopathic arthritis [16,50-53], multiple sclerosis 
[54,55], rheumatoid arthritis [56-59], Sjogren’s syndrome 
[60], diabetes [61,62], infl ammatory bowel disease [63], 
psoriasis and psoriatic arthritis [45,47], infl ammatory 
myopathies [64,65], scleroderma [66,67], vasculitis [68] 
and anti-phospholipid syndrome [69]. Th e body of work 
produced that focuses on blood transcript profi ling in the 
context of autoimmune diseases has been covered at 
length in a recent review [70].

Profi ling infectious diseases
Global changes in transcript abundance have also been 
measured in the blood of patients with infectious 
diseases. In this context, alterations of blood transcrip-
tional profi les are a refl ection of the immunological 
response mounted by the host against pathogens. Th is 
response is initiated by specialized receptors expressed at 
the surface of host cells recognizing pathogen-associated 
molecular patterns [71]. Diff erent classes of pathogens 
signal through diff erent combinations of receptors, elicit-
ing in turn diff erent types of immune responses [72]. Th is 
translates experimentally into distinct transcriptional 
programs being induced upon exposure of immune cells 
in vitro to distinct classes of infectious agents [73-75]. 
Similarly, patterns of transcript abundance measured in 
the blood of patients with infections caused by diff erent 
etiological agents were found to be distinct [13].

Predictably, dramatic changes were observed in the 
blood of patients with systemic infections (for example, 
sepsis) [76,77]. However, profound alterations in patterns 
of transcript abundance were also found in patients with 
localized infections (for example, upper respiratory tract 
infection, urinary tract infections, pulmonary tubercu lo sis, 
skin abscesses) [13,16,78]. Measuring changes in host 
transcriptional profi les may therefore prove of diagnostic 

value even in situations where the causative pathogenic 
agent is not present in the test sample. Importantly, it 
may also help ascertain the severity of the infection and 
monitor its course.

Infections often present as acute clinical events; thus, it 
is important to capture dynamic changes in transcript 
abundance that occur during the course of the infection 
from the time of initial exposure. Blood signatures have 
been described in the context of acute infections caused 
by a wide range of pathogenic parasites, viruses and 
bacteria, including Plasmodium [79,80], respiratory 
viruses (infl uenza, rhinovirus, respiratory syncytial virus) 
[13,81-84], dengue virus [85,86], and adenovirus [82], as 
well as Salmonella [87], Mycobacterium tuberculosis [78], 
Staphylococcus aureus [88], Burkholderia pseudomallei 
[76] and the general context of bacterial sepsis [77,89-91]. 
Some of those pathogens will persist and establish 
chronic infections (for example, human immuno defi -
ciency virus and Plasmodium) that may lead to a state of 
latency (for example, tuberculosis), and transcript profi l-
ing may be used in those situations as a surveillance tool 
for monitoring disease progression or reactivation.

Blood profi ling of infectious diseases remains limited in 
scale. In particular, additional studies will be necessary to 
ascertain dynamic changes occurring over time.

Profi ling other diseases
In addition to autoimmune and infectious diseases, blood 
transcript profi ling studies have been carried out in the 
cancer research fi eld. While hematological malignancies 
have led the way (reviewed in [92]), blood profi les have 
also been obtained more recently from patients with solid 
organ tumors [93]. Notably, these signatures can refl ect 
not only the immunological or physiological changes 
eff ected by cancers but also the presence of rare tumor 
cells in the circulation [94-96].

Blood signatures have also been obtained from solid 
organ transplant recipients in the context of both toler-
ance [97-99] and graft rejection [10,100,101]. While such 
signatures can also be detected in biopsy material [102-
104], blood off ers the distinct advantage of being acces-
sible for safely monitoring molecular changes on a 
routine basis.

Some work has also been done in the context of cardio-
vascular diseases where infl ammation is known to play 
an important role. Hence, profi les have been identifi ed in 
a wide range of conditions, including stroke, chronic 
heart failure or acute coronary syndrome [105-108].

Th e body of published work is too large to be cited in 
this review - and it is likely to be only the tip of the 
iceberg, with a lot more unpublished data scattered 
through out public and private repositories. Other eff orts 
have yielded, for instance, blood transcriptional signa-
tures in patients with neurodegenerative diseases 
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[109-111], and those associated with disease exacerbation 
or responsiveness to glucocorticoids in patients with 
asthma [112, 113], and with responses to environmental 
exposure [114-116], exercise [117,118] or even laughter 
[119]. Unfortunately, too many published studies are 
underpowered and sometimes lack even the most 
rudimentary validation steps. All too often primary data 
are not available for reanalysis either, refl ecting a lack of 
enforcement of editorial policies, or the absence thereof 
in some journals. Hence, one of the main challenges for 
this fi eld is to move beyond the proof of principle stage 
and consolidate the wealth of data being generated.

Collectively, studies published thus far demonstrate 
that alterations in transcript abundance can be detected 
on a genome-wide scale in the blood of patients with a 
wide range of diseases. Th is statement is far from trivial 
given the skepticism that initially met studies 
investigating the blood transcriptome of patients. We 
have also learned that: 1) multiple diseases can share 
components of the blood transcriptional profi le - for 
instance, the case for infl ammation or interferon signa-
tures; 2) while no single element of the profi le may be 
specifi c to any given disease it is the combination of those 
elements that makes a signature unique; and fi nally, 3) 
the work accomplished to date highlights the importance 
of carrying out analyses aiming at directly comparing 
transcriptional profi les across diseases. Indeed, much can 
be learned, for instance, about autoimmunity from 
studying responses to infection, and vice versa. Further-
more, such eff orts may eventually lead us closer to a 
molecular classifi cation of diseases. First, however, 
technological and methodological advances are necessary 
for the blood transcriptome research fi eld to move 
beyond the proof of principle stage.

Moving forward
Recent progress in blood transcriptome research has 
been possible thanks to the development of robust 
sample collection techniques and the introduction of 
high throughput gene expression microarray platforms. 
Such advances have been necessary but the margin for 
progression in the fi eld is still very signifi cant. We 
describe here some of the current hurdles and discuss 
potential solutions for overcoming them.

Data management
For years the scale of blood transcriptional studies has 
been constrained by the cost of the technology. With the 
price tag on a commercial whole genome microarray 
below the $100 US mark, this is not the case anymore. 
Th us, data management has now become the fi rst essen-
tial step to making large scale molecular profi ling a viable 
proposition. Beyond storing the output of microarray 
instruments, data management must capture and 

organize information that is essential for the 
interpretation of the results (Figure  4). Th is includes 
sample information, data quality metrics, clinical 
information collected at the time of sampling, details 
about the experimental design, and materials and 
methods. Capturing such information ensures that the 
large volumes of data generated, which are often not 
published immediately, will remain exploitable for years 
to come. Th is point has become critical given the fact 
that results from genome-wide profi ling studies can 
never be exploited to their fullest extent and possess 
considerable cumulative value when re-analyzed 
collectively. Notably, the results generated by other 
cellular and molecular profi ling platforms will also need 
to be integrated in order to complete the picture. Th ere-
fore, implementing eff ective data management solu tions 
and practices is essential to sustain the necessary increase 
in the scale of blood transcriptional studies (Figure  3) 
[120]. Unfortunately, implementing data management 
solutions in the laboratory is often an expensive 
proposition, requiring customization of off -the-shelf pro-
ducts or development of custom software adapted to 
handle specifi c workfl ows. Managing data also takes time 
and requires dedicated personnel. Th us, while the need is 
widely perceived, the commitment and steps necessary to 
implement eff ective data management solutions and 
practices are rarely adopted.

Data mining
A myriad of approaches have been developed for the 
analysis of genome-wide transcriptional profi ling data 
[121-124]. However, there is no silver bullet when it 
comes to microarray data analysis. Th e challenges en-
countered are several fold: 1) dimensionality, or how to 
cope with the fact that the number of parameters 
measured exceeds by several orders of magnitude the 
number of conditions included in most experiments; 2) 
noise - a direct consequence of the fi rst point is that results 
from microarray analyses are particularly permissive to 
noise (false discovery); 3) ‘seeing’ the data - data visual-
ization is critical as it helps promote insight and supports 
data interpretation; 4) biological context - it is important 
to keep the biology in sight at all times. Indeed, while it is 
easy to become absorbed by the data, it is essential to use 
biological knowledge when designing analysis strategies. 
Finally, there is hardly a one-size-fi ts-all approach to 
micro array data analysis and what works in one situation 
may not be universally applicable. Indeed, the most 
common response from experts when questioned on the 
best way to analyze a given dataset is that ’it depends…’: it 
depends, for instance, on the extent of the diff erences 
being observed or on the variability inherent to a given 
disease or study population; it depends on what questions 
are being asked; or it can depend on whether follow-up 
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confi rmatory experiments are planned. In Table 1 we 
provide a data mining primer that explains the basic steps 
involved in microarray data analysis and the considera-
tions that arise [125-129]. Ad hoc data mining approaches 
can be developed to meet specifi c needs. For instance, we 
have developed a data mining strategy for the specifi c 

purpose of analyzing blood transcriptional profi les [15]. 
Th is approach simply consists of a priori grouping of sets 
of genes with similar transcriptional patterns. Th is is 
repeated for several diff erent datasets and subsequently, 
when comparing the cluster membership of all the genes 
across those datasets, the genes with similar membership 

Figure 4. Data management is key to progress. Extensive cellular and molecular profi ling of human subjects generates vast amounts of 
disparate data. Eff ective data management and integration solutions are essential to the preservation of this information in an interpretable 
form. Thus, data management eff orts occurring ‘behind the scenes’ have an essential role to play in realizing the full potential of high throughput 
profi ling approaches in human subjects.
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are grouped together to form what we have termed a 
transcriptional module. Structuring the data permits 
focusing downstream statistical testing on these sets of 
transcripts that form coherent transcriptional and 
functional modular units. Th is is in contrast with more 
traditional approaches that rely on iterative statistical 
testing for thousands of individual transcripts that are 
treated as independent variables. Th e modular trans-
criptional framework that we have developed reduces the 
number of variables by collapsing sets of coordinately 
expressed genes into a new entity, the module. Reducing 
data dimensionality as such can: 1) facilitate functional 
inter pretation; 2) enable comparative analyses across 
multiple datasets and diseases; 3) minimize noise and 
improve robustness of biomarker signatures; and 4) yield 
multivariate metrics that can be used at the bedside [15]. 
Data visualization is also of critical importance for the 
interpretation of large-scale datasets. We have devised a 

straightforward visualization scheme for mapping global 
transcriptional changes for individual diseases on a 
modular basis (Figure 5).Briefl y, diff erences in expression 
levels between study groups are displayed for each 
module on a grid. Each position on the grid is assigned to 
a given module; a red spot indicates an increase and a 
blue spot a decrease in transcript abundance. Th e spot 
intensity is determined by the proportion of transcripts 
reaching signifi cance for a given module. A posteriori, 
biological interpretation has linked several modules to 
immune cells or pathways (see legend of Figure 5). Hence, 
in the example provided in Figure 5, patients with S. aureus 
infection demonstrate signifi cant over-expression of genes 
in modules related to innate immunity, including myeloid 
(M1.5, M2.6), neutrophil (M2.2), and infl ammation 
(M3.2, M3.3) modules, and under-expression of genes 
regulating adaptive immunity such as those in B cell 
(M1.3), cytotoxic cell (M2.1), and T-cell-specifi c (M2.8) 

Table 1. A data mining primer: basic steps used for analysing microarray data

Here we provide basic analysis steps and important considerations for microarray data analysis:

- Per-chip normalization: This step controls for array-wide variations in intensity across multiple samples that form a given dataset. Arrays, as with all 
fl uorescence based assays, are subject to signal variation for a variety of reasons, including the effi  ciency of the labeling and hybridization reactions and 
possibly other, less well defi ned variables, such as reagent quality and sample handling. To control for this, samples are normalized by fi rst subtracting 
background and then employing a normalization algorithm to rescale the diff erence in overall intensity to a fi xed intensity level for all samples across 
multiple arrays.

- Data fi ltering: Typically more than half of the oligonucleotide probes present on a microarray do not detect a signal for any of the samples in a given 
analysis. Thus, a detection fi lter is applied to exclude these transcripts from the original dataset. This step avoids the introduction of unnecessary noise in 
downstream analyses.

- Unsupervised analysis: The aim of this analysis is to group samples on the basis of their molecular profi les without a priori knowledge of their phenotypic 
classifi cation. The fi rst step, which functions as a second detection fi lter, consists of selecting transcripts that are expressed in the dataset and display 
some degree of variability, which will facilitate sample clustering. For instance, this fi lter could select transcripts with expression levels that deviate by at 
least two-fold from the median intensity calculated across all samples. Importantly, this additional fi lter is applied independently of any knowledge of 
sample grouping or phenotype, which makes this type of analysis ‘unsupervised’. Next, pattern discovery algorithms are often applied to identify ‘molecular 
phenotypes’ or trends in the data.

- Clustering: Clustering is commonly used for the discovery of expression patterns in large datasets. Hierarchical clustering is an iterative agglomerative 
clustering method that can be used to produce gene trees and condition trees. Condition tree clustering groups samples based on the similarity of their 
expression profi les across a specifi ed gene list. Other commonly employed clustering algorithms include k-means clustering and self-organizing maps.

- Class comparison: Such analyses identify genes that are diff erentially expressed among study groups (‘classes’) and/or time points. The methods for analysis 
are chosen based on the study design. For studies with independent observations and two or more groups, t-tests, ANOVA, Mann-Whitney U tests, or 
Kruskal-Wallis tests are used. Linear mixed model analyses are chosen for longitudinal studies.

- Multiple testing correction: Multiple testing correction (MTC) methods provide a means to mitigate the level of noise in sets of transcripts identifi ed by 
class comparison (in order to lower permissiveness of false positives). While it reduces noise, MTC promotes a higher false negative rate as a result of 
dampening the signal. The methods available are characterized by varying degrees of stringency, and therefore they produce gene lists with diff erent 
levels of robustness.

  • Bonferroni correction is the most stringent method used to control the familywise error rate (probability of making one or more type I errors) and 
   can drastically reduce false positive rates. Conversely, it increases the probability of having false negatives.

  • Benjamini and Hochberg false discovery rate [125] is a less stringent MTC method and provides a good balance between discovery of statistically 
   signifi cant genes while limiting false positives. By using this procedure with a value of 0.01, 1% of the statistically signifi cant transcripts might be 
   identifi ed as signifi cant by chance alone (false positives).

- Class prediction: Class prediction analyses assess the ability of gene expression data to correctly classify a study subject or sample. K-nearest neighbors is 
a commonly used technique for this task. Other available class prediction procedures include, but are not limited to, discriminant analysis, general linear 
model selection, logistic regression, distance scoring, partial least squares, partition trees, and radial basis machine.

- Sample size: The number of samples necessary for the identifi cation of a robust signature is variable. Indeed, sample size requirements will depend on the 
amplitude of the diff erence between, and the variability within, study groups.

A number of approaches have been devised for the calculation of sample size for microarray experiments, but to date little consensus exists [126-129]. Hence, 
best practices in the fi eld consist of the utilization of independent sets of samples for the purpose of validating candidate signatures. Thus, the robustness of 
the signature identifi ed will rely on a statistically signifi cant association between the predicted and true phenotypic class in the fi rst and the second test sets.
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modules. It should also be noted that no changes were 
observed for other modules, such as module M3.1, which 
includes interferon-inducible genes, abundance of which 
would be increased in the context of a viral infection.

Beyond mRNA: profi ling microRNAs
MicroRNA (miRNA) control has emerged as a critical 
regu latory circuit of the immune system. Measuring 
changes in miRNA abundance in the blood of human 
subjects in health and disease is therefore a promising 
new fi eld of investigation. Th ese short non-coding single-
stranded RNAs about 22 nucleotides in length have been 
found to play essential regulatory roles [130-132]. Th ese 
molecules exhibit highly specifi c, regulated patterns of 
expression and control protein expression by trans la-
tional repression, mRNA cleavage, or promotion of 
mRNA decay. Interestingly, thanks to their small size, 
miRNA molecules are stable and can be measured not 
only in blood cells but also in circulation in the serum 
[133]. Th ey are thus not only potentially important 
contributors to immune function, but also potential 
sources of biomarkers.

Deconvoluting blood transcriptional signatures
Blood transcriptome research will also benefi t from 
concep tual advances that may help address shortcomings 
inherent to whole blood profi ling.

First, blood is a complex tissue and changes in trans-
cript abundance can be attributed to either transcrip-
tional regulation or relative changes in composition of 
leukocyte populations. Two approaches exist for 

‘deconvoluting’ these two phenomena. First, one can 
isolate and individually profi le diff erent cell populations 
present in the blood. Th is approach may also permit the 
identifi cation of transcripts expressed at low levels or the 
detection of diff erences in expression that would 
otherwise be drowned in whole blood [134,135]. How-
ever, isolation methods may introduce technical bias, and 
require extensive sample processing. A second approach 
consists of deconvoluting whole blood transcriptional 
profi les ‘in silico’. Th is type of analysis attempts to deduce 
cellular composition or cell-specifi c levels of gene expres-
sion using statistical methodologies [136-141].

Finally, we must also keep in mind that the immune 
status of a human subject is not entirely refl ected by its 
blood profi le obtained at the steady state. Indeed, an 
individual’s capacity to respond to innate as well as 
antigen-specifi c immune signals may also provide useful 
and complementary information.

In conclusion, blood transcript profi ling has earned its 
place in the molecular and cellular profi ling armamen-
tarium used to study the human immune system. Changes 
in transcript abundance recapitulate the infl uence of 
genetic, epigenetic, cellular and environ mental factors. 
Initially considered to belong to the ‘cutting edge’, this 
approach has become both robust and practical.  As 
discussed in this review, it has become a mainstay for the 
study of immune function in patients with a wide range 
of diseases. Furthermore, recent studies have demon-
strated the utility of blood transcriptome profi ling for 
monitoring immune responses to drugs or vaccines 
[35,142,143]. Th us, blood transcript profi ling is developing 

Figure 5. Blood transcriptional fi ngerprints of patients with Staphylococcus aureus infection. Relative changes in transcript abundance in the 
blood of patients with S. aureus infection compared to that of healthy controls are recorded for a set of 28 transcriptional modules. Colored spots 
represent relative increase (red) or decrease (blue) in transcript abundance (P < 0.05, Mann Whitney) within a module. The legend shows functional 
interpretation for this set of modules. Fingerprints have been generated for two independent cohorts of subjects (divided into a training set used in 
the discovery phase, n = 30, and an independent test set used in the validation phase, n = 32).
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into a mainstream tool for the assessment of the status of 
the human immune system.
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