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Abstract: In this work, calcined chitosan-supported layered double hydroxides (CSLDO) were
synthesized through a co-precipitation method that restrained the particles’ aggregation of LDHs and
exhibited huge specific surface areas, which can enhance the fluoride adsorption capacity. CSLDOs
were characterized by physical and chemical methods and used for fluoride adsorption in an aqueous
solution. The results indicated that the nanoparticles were constructed first and then assembled to
form a porous and layered structure, and chitosan-supported layered double hydroxides (CSLDHs)
calcined at 400 ◦C (CSLDO400) showed the highest specific surface area of 116.98 m2·g−1 and the
largest pore volume of 0.411 cm3·g−1. CSLDO400 exhibited excellent adsorption performance at
a wide pH range from 5 to 9 for fluoride. The adsorption kinetics indicated that the adsorption
reached equilibrium after 120 min, and followed a pseudo-first-order model. It agreed well with
the Langmuir isotherm with maximum adsorption amounts of 27.56 mg·g−1. The adsorption of
fluoride ions was spontaneous and endothermic. Furthermore, CSLDO400 showed a high stability
for fluoride removal; it could still achieve 68% removal for fluoride after repeating five times of
adsorption–desorption cycles. This study demonstrated that CSLDO400 is a promising functional
material to remove fluoride from surface/ground water.

Keywords: chitosan; layered double hydroxides; adsorption; fluoride removal; regeneration

1. Introduction

Excessive fluoride (F−) in groundwater is a serious problem worldwide [1]. Serious fluoride
poisoning occurs frequently in many parts of the world, particularly in north and northeast China,
Mexico, India, and Africa [2]. It is estimated that 200 million people still rely on groundwater with
fluoride concentrations above the World Health Organization (WHO) guideline value (1.5 mg·L−1) [3].
Thus, water treatment for fluoride removal is extremely important in water purification. In order
to remove fluoride from an aqueous solution, several processes such as adsorption, ion exchange,
precipitation, and membrane techniques have been established [4–7]. Among these technologies,
adsorption is a widely used technique for fluoride removal from water because the operating procedure
is simple. A wide variety of adsorbents have been used for the removal of fluoride from water,
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such as carbonaceous materials [8], or solid industrial wastes like red mud, fly ash [9], activated
and impregnated alumina [10], and layered double hydroxides (LDHs) [11]. However, traditional
adsorption materials showed low removal efficiency in actual drinking water treatment. This is because
the adsorption capacity of most absorbents was greatly influenced by the fluoride concentration; it will
significantly decrease with the decrease in fluoride concentration [12]. Contemplating all this, it is
necessary to develop novel and effective materials for fluoridated water treatment.

In recent years, layered double hydroxides (LDHs) have drawn attention for the removal of
various harmful anions and surfactants because they are eco-friendly materials [13–16]. They are
well known as a class of synthetic anionic clay consisting of positively charged hydroxy layers
of bivalent and trivalent metal ions [17]. The metal hydroxide can adsorb some anions through
electrostatic interactions because these hydroxides are always positively charged [18]. The general
formula representing LDHs is [Mx

2+My
3+(OH)2(x+y)]·Ay/n

n−·mH2O (M3+: trivalent metal ions, M2+:
bivalent metal ions, A: exchangeable anion) [19]. LDHs have been studied as potential adsorbents
(Zn–Al LDH and Mg–Al LDH) for removing fluoride ions from aqueous systems [11,20,21]. Most of
these LDHs focus on aluminum-based compounds, and treat water with high fluoride concentrations.
However, when using these materials in drinking water treatment, long-term exposure to Al has been
pointed out as a potential risk factor for human health and the environment, and simultaneously
results in a smaller adsorption capacity for low fluoride concentration. Considering that, LDHs are
required to be modified for practical application. As modified LDHs, the calcined chitosan-supported
Mg–Fe LDHs, which have never been studied, are environmentally friendly materials and may be
applied in the removal of both high- and low-fluoride concentration water.

Chitosan (CS) is a biopolymer with a linear polysaccharide based on a glucosamine unit. As a
cheap and environmentally friendly polymer material, CS has been widely used to adsorb a wide
variety of organic pollutants due to the presence of active amino (–NH2) and hydroxyl (–OH) functional
groups [22,23]. Taking into account the use in different forms, from powder or beads to film types,
CS-based adsorbents are versatile materials. Chitosan–Fe3+ has been reported to remove alkaline
dye from an aqueous solution as an adsorbent in the literature [24]. Thus, it is possible to make a
chitosan–Fe3+ precursor and then synthesize chitosan-supported layered double hydroxides by the
co-precipitation method. The calcined chitosan-supported layered double hydroxides may restrain
the aggregation of LDHs and exhibit huge specific surface areas, which probably contributes to more
adsorption sites and enhances the fluoride adsorption capacity.

Herein, we prepared a biodegradable, low-cost material that can act as a support for LDH and also
enhance its fluoride adsorption capacity. Batch adsorption experiments were carried out to optimize
the adsorption parameters; adsorption kinetics, isotherms and thermodynamics were also examined.
In addition, the reusability of CSLDO was performed and evaluated.

2. Results and Discussion

2.1. Characterization of the Adsorbent

2.1.1. Field Emission Scanning Electron Microscope (FEI-SEM) Analysis

FE-SEM was applied to observe the microstructure of the samples prepared by different methods.
Representative micrographs of CSLDHs, LDO400, CSLDO300, CSLDO400, and CSLDO500 are
presented in Figure 1a–e respectively. It can be seen from Figure 1a that the morphology of CSLDHs
was dominated by mutual cross-linked lamellar structures. This phenomenon was attributed to
the formation of LDHs crystal on the surface of chitosan–Fe3+. As shown in Figure 1b, the layered
structure of LDO400 was obvious, and its surface was smooth. The micrographs of the calcined
chitosan-supported LDHs are shown in Figure 1c–e. It can be seen that the CSLDOs had an irregular
layered structure. Compared to the micrographs of CSLDHs and LDO400, the layered structure of
CSLDO300, CSLDO400, and CSLDO500 was rougher; this might be because of the formation of holes
in chitosan carbonization. As seen from an EDS analysis of CSLDO400 (Figure 1f), it was composed
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of Fe, Mg, O, and C. The products contained magnesium oxide and iron oxide with atomic ratios of
around 3:1 for Mg/Fe, which was in accordance with the mole ratios for Mg(NO3)2/Fe(NO3)3 in the
synthesis of CSLDO. The presence of C was likely to be caused by chitosan carbonization. It should be
noted that the layer structure might play an important role in contaminant adsorption.
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Figure 1. Scanning electron microscopic image of CSLDHs (a); LDO400 (b); CSLDHO300 (c); CSLDO400
(d); CSLDO500 (e); and the EDS of CSLDO400 (f).

2.1.2. BET Analysis

The literature reported that the calcination of LDHs often produces very reactive mixed oxides [25,26].
Additionally, thermal activation at moderate temperatures can produce a high specific surface area and
a high degree of microporosity. The porous properties of CSLDHs, LDO400, CSLDO300, CSLDO400,
and CSLDO500 were analyzed by N2 adsorption–desorption isotherms at 77 K. As can be seen
in Figure 2a, a high uptake of nitrogen was observed at low relative pressures, representing the
microporous nature of the layered oxides and carbide networks. The isotherms were on a steep
upward-sloping trend at higher pressures (P/P0 > 0.9), which might be ascribed to the presence of
larger pores [27]. From the pore size distribution cures (Figure 2b), the five samples showed the
predominant presence of mesopores.
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Figure 2. (a) N2 adsorption–desorption isotherms of CSLDHs, LDO400, CSLDO300, CSLDO400, and
CSLDO500 at 77 K; and (b) pore size distribution.

Using the Barrett–Joyner–Halenda (BJH) and Brunauer–Emmett–Teller (BET) methods, the pore
size distribution and specific surface areas of the samples were determined, respectively. The detailed
results from the pore structure and surface area studies are summarized in Table 1. Obviously, the
pore volume and surface area of CSLDO400 were larger than those of CSLDHs, LDO400, CSLDO300,
and CSLDO500, while the pore size was smaller. This means that CSLDO400 has larger pore structure
than that of the other samples. This phenomenon might be due to the special pore structure of the
samples. During the calcination process, the carbonated chitosan support layer formed a carbonaceous
porous carrier; the layered structure of hydrotalcite will be destroyed through the breakup of the crystal
structure, resulting in the formation of a porous structure in the interlayer of CSLDO400. The total
pore volumes of CSLDHs, LDO400, CSLDO300, CSLDO400, and CSLDO500 were calculated as 0.056,
0.323, 0.155, 0.412, and 0.318 cm3·g−1, respectively, and the pore diameters were 13.28, 15.83, 12.01,
8.839, and 10.99 nm (the so-called “mesoporous” size). It is generally accepted that the microstructure
of adsorbents has an important effect on its water treatment performance, high specific surface area
and mesoporous pores were favorable for higher adsorption capacity, indicating that CSLDO400 might
be more effective for contaminant removal.

Table 1. Specific surface area and pore volume parameters of CSLDHs, LDO400, CSLDO300,
CSLDO400, and CSLDO500.

Materials SBET
a/m2·g−1 Smic

b/m2·g−1 Vmic
c/cm3·g−1 Vmeso

d/cm3·g−1 Vt
e/cm3·g−1 Dp

f/nm

CSLDHs 16.38 2.03 0.0003 0.0557 0.056 13.28
LDO400 80.73 7.59 0.0056 0.3174 0.323 15.83

CSLDO300 47.55 4.05 0.0012 0.1538 0.155 12.01
CSLDO400 116.98 4.37 0.0014 0.4106 0.412 8.84
CSLDO500 94.35 2.21 0.0005 0.3175 0.318 10.99

a Determined by N2 adsorption using the Brunauer–Emmett–Teller (BET) method; b Micropore area, determined
by DFT; c Micropore volume, calculated using the Dubinin–Astakhov method; d Mesopore volume, calculated by
Vt − Vmic; e Total pore volume, determined at P/P0 = 0.9923; f Adsorption average pore width (4 V/A by BET).

2.1.3. FT-IR Analysis

The FT-IR spectra of CSLDHs, LDO400, CSLDO300, CSLDO400, and CSLDO500 are displayed in
Figure 3. As shown in Figure 3a, the two adsorption peaks at 3700–3500 cm−1 were related to N–H
stretching vibration for the as-prepared sample (CSLDHs). This suggests that the LDHs are supported
by chitosan, which contains amino group. Bands of NO3

− stretching at ~1384 cm−1 were derived
from the interlayer ions of CSLDHs. The spectrum of the LDO400 (Figure 3b) was very similar to
the spectrum of CSLDHs, except for the bands at 3700–3500 cm−1 and 1000–500 cm−1. However, it
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is important to mention that the band at 1000–500 cm−1 is slightly broader than that of the CSLDHs.
This might be attributed to the peak overlapping of the interlayer anions and the carbonation of
chitosan. The spectra of the LDO400 (Figure 3b), CSLDO300 (Figure 3c), CSLDO400 (Figure 3d),
and CSLDO500 (Figure 3e) are very similar, and the bands at ~1440 and 1384 cm−1 derived from
the interlayer anions (CO3

2− and NO3
−) were not found. As is well known, those interlayer anions,

especially carbonate ions, take up the adsorption sites of hydrotalcite because they have a strong
affinity for hydrotalcite. It can be speculated that the calcination reduced interlayer anions, which may
have a significant influence on the fluoride removal efficiency [12].
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2.1.4. XRD Analysis

The X-ray diffraction (XRD) patterns of CSLDHs, LDO400, CSLDO300, CSLDO400, and CSLDO500
are shown in Figure 4. As seen from the synthesized products of CSLDHs in Figure 4a, symmetrical
and sharp peaks appeared, indicating the highly crystalline nature of the samples. Meanwhile, the
presence of 003, 006, and 009 diffraction peaks confirmed that synthesized products showed a typical
and well-ordered structure of layered double hydroxides [28]. The patterns of calcined samples
(Figure 4b–e) indicated that the diffraction peaks of layered double hydroxides have disappeared, the
layered structure was destroyed, the crystal structure was changed, and only magnesium and iron oxide
peaks were retained. As seen from the regenerated CSLDO400 in Figure 4f, the presence of 009 and
013 diffraction peaks indicated that its original layered hydrotalcite-like structure was reconstructed
by the intercalation of fluoride ions into the interlayer region after adsorption. Yet, compared to
CSLDHs, it can also be seen that the peaks of calcined products became broader and the intensity
of the peaks decreased. This may be attributed to the formation of amorphous mixed oxides. LDHs
may be changed into binary oxides after being calcined at a certain temperature, and restored to their
original layered structure after entering into the water environment. This process is called “memory
effect” [12], which is a significant characteristic of LDHs. Therefore, based on the “memory effect,”
the calcined chitosan-supported LDHs may be forced to adsorb anions from the water environment.
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2.2. Evaluation of Fluoride Removal Efficiency by the Prepared LDHs

2.2.1. Effect of Calcinations on F− Removal

As shown in Figure 5, the samples without calcination treatment (CSLDHs) showed very
limited adsorption capacity qe (mg·g−1) for fluoride; the fluoride removal efficiency was significantly
enhanced after calcination treatment. Moreover, the adsorption capacity of chitosan-supported double
hydroxides reached the maximum at the calcination temperature of 400 ◦C. Meanwhile, the adsorption
capacity of calcined chitosan-supported double hydroxides was higher than that of the unsupported
ones. Since the affinities of various anions toward interlayers of hydrotalcite (LDHs) follow the
order CO3

2− > SO4
2− > OH− > F− > Cl− > Br− > NO3

− > I− [21], carbonate and hydroxyl ions are
difficult to replace with fluoride ions toward interlayers of CSLDHs, which were not calcined. With the
calcination temperature increasing, interlayer anions (carbonate and hydroxyl ions) were released
gradually, and magnesium ion mixed oxides partially formed under calcination treatment at 400 ◦C.
CSLDHs calcined at 500 ◦C showed smaller pore volume and surface area, and led to the formation of
stable phases of MgFe2O4 spinel and MgO, so that the layered hydrotalcite-like structures could not be
reconstructed. As mentioned above, the pore volume and surface area of CSLDO400 were larger than
those of CSLDHs, LDO400, CSLDO300, and CSLDO500, which might contribute to more surface active
adsorption sites and consequently higher fluoride removal efficiency. The results indicated that the
BET surface area played an important role in the fluoride adsorption process. In summary, CSLDO400
was the optimal adsorbent for the following adsorption experiments.
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2.2.2. CSLDO400 Dosage

The effect of CSLDO400 dosage on fluoride removal is shown in Figure 6. It can be seen that
the equilibrium removal rates (R: %) increased but the equilibrium adsorption amounts qe (mg·g−1)
declined observably when the CSLDO400 dosage increased. The equilibrium removal rate (R: %)
was almost unhanged when the dosage increased to above 1.25 g·L−1. However, the equilibrium
adsorption amounts qe (mg·g−1) still decreased, maybe due to excessive CSLDO400 in aqueous solution.
The enhancement of removal efficiency can be attributed to the high number of unsaturated adsorption
sites, and an increase in the adsorption surface area and surface energy of CSLDO400. On the one
hand, an increase in the concentration of CSLDO400 particles improved the chance of collision and
agglomeration of CSLDO400 particles and the specific surface area decreased significantly. On the other
hand, the absorbents had extra surface active sites because of more CSLDO400. Lastly, the adsorption
capacity decreased because of the reduction of surface energy.
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2.2.3. Effect of pH

As shown in Figure 7, the adsorption equilibrium amounts of CSLDO400 for fluoride were almost
unchanged when the initial pH values of the solutions ranged from 5 to 9, indicating that CSLDO400
performed well at fluoride removal at typical water pH, while it sharply decreased when the initial
pH values ranged from 9 to 13. As shown in Figure 7, the zeta potential of CSLDO400 was reduced
from 23.3 mV at pH 3 to −7.1 mV at pH 13, and isoelectric points appeared. This phenomenon might
be due to the positive surplus charges, which were generated by the formation of an LDH structure
(replacing some of the divalent cations by trivalent cations) [18]. Normally, the anions were first
adsorbed on the surface and edge of the adsorbent by electrostatic effects and then exchanged with
the interlayer anions of hydrotalcite-like compounds [29]. As shown in Figure 7, at low pH (pH < 9),
CSLDO400 was always positively charged, which might be helpful for electrostatic interaction. It is
well known that the adsorbent surface was able to be protonated because of the hydroxyl group on the
adsorbent surface [30]; the surface charge was generated as follows [31]:

MO + H2O↔ MOH+
2 + OH− (1)

MOH + H2O↔ MO− + H3O+ (2)

MO + H2O↔ MOH+
2 + OH− Xm−

↔ MOH2 · · ·X + OH−+ Xm−
↔ MX + H2O + OH−. (3)
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M and Xm− represent the metal element and the fluoride or anions, respectively; m indicates
the valence of anions. At a low pH value, protonation promoted the formation of positively charged
MOH2+ groups. Meanwhile, anions are adsorbed on the surface and then enter into the interlayer of
the adsorbent due to the electrostatic attraction (Reaction 1©) and ion exchange interaction (Reaction 2©)
(Equation (9)). Moreover, at high pH levels, hydroxyl showed a strong competitive adsorption effect
on fluoride ions because hydroxyl has a similar radius of fluoride ion, resulting in a decrease in
fluoride [32]. However at low pH, HF and H2O are dissociation of H+ and F−. As HF is a weakly
ionized substance, the reaction of HF and double oxides caused damage to the double oxide structure.
Therefore, pH 7 (range from 5 to 9) was maintained in the adsorption experiments.

Materials 2017, 10, 1320  8 of 18 

 

the adsorbent due to the electrostatic attraction (Reaction ①) and ion exchange interaction (Reaction ②) (Equation (9)). Moreover, at high pH levels, hydroxyl showed a strong competitive adsorption 
effect on fluoride ions because hydroxyl has a similar radius of fluoride ion, resulting in a decrease 
in fluoride [32]. However at low pH, HF and H2O are dissociation of H+ and F−. As HF is a weakly 
ionized substance, the reaction of HF and double oxides caused damage to the double oxide 
structure. Therefore, pH 7 (range from 5 to 9) was maintained in the adsorption experiments. 

2 4 6 8 10 12 14
0

2

4

6

8

10

 

 qe

 Zeta potential

-10

0

10

20

30

Z
et

a 
p

ot
en

ti
al

(m
V

)

q e
(m

g 
g-

1 )

pH  
Figure 7. Adsorption capacities and zeta potential of CSLDO400 as a function of pH (Adsorption 
dose, 0.75 g·L−1; solutions concentration, 10 mg·L−1; adsorption time, 3 h; temperature: 298 K). 

2.2.4. Effect of Co-Anions 

The interference resulting from competitive anions on the sorption of fluoride in the actual 
sewage water is ubiquitous. Therefore, on the premise of equal ionic strengths of the competing 
anions, the effects of NO3−, Cl−, CO32−, SO42−, PO43−, and HCO3− on the sorption of fluoride on the 
adsorbent were comprehensively investigated. As shown in Figure 8, completely various competing 
anions patterns of fluoride were exhibited. Evidently, the presence of various competing anions had 
a different impact on the removal efficiency of fluoride, and the adsorption capacity qe of fluoride in 
the presence of anions decreased in the following order: 

PO43− > CO32− > SO42− > HCO3− > Cl− ≈ NO3−. 
Compared to monovalent anions, divalent and trivalent anions have a greater effect on the 

removal efficiency of fluoride; the published literature reported similar results [33]. This might be 
attributed to the high negative charge density of ions, which could create conditions more inviting 
for fluoride ions by the layered positive charge. The adsorption sites and capacity for fluoride 
tended to decrease, mostly because competitive anions were introduced on the surface of CSLDO400. 
Meanwhile, it indicated that monovalent anions had a limited effect on the removal of fluoride. 
Figure 8 showed that CSLDO400 performed well in fluoride removal in real water samples, 
indicating that it exhibited considerable potential for the removal of fluoride. 

Figure 7. Adsorption capacities and zeta potential of CSLDO400 as a function of pH (Adsorption dose,
0.75 g·L−1; solutions concentration, 10 mg·L−1; adsorption time, 3 h; temperature: 298 K).

2.2.4. Effect of Co-Anions

The interference resulting from competitive anions on the sorption of fluoride in the actual
sewage water is ubiquitous. Therefore, on the premise of equal ionic strengths of the competing
anions, the effects of NO3

−, Cl−, CO3
2−, SO4

2−, PO4
3−, and HCO3

− on the sorption of fluoride on the
adsorbent were comprehensively investigated. As shown in Figure 8, completely various competing
anions patterns of fluoride were exhibited. Evidently, the presence of various competing anions had a
different impact on the removal efficiency of fluoride, and the adsorption capacity qe of fluoride in the
presence of anions decreased in the following order:

PO4
3− > CO3

2− > SO4
2− > HCO3

− > Cl− ≈ NO3
−.

Compared to monovalent anions, divalent and trivalent anions have a greater effect on the
removal efficiency of fluoride; the published literature reported similar results [33]. This might be
attributed to the high negative charge density of ions, which could create conditions more inviting for
fluoride ions by the layered positive charge. The adsorption sites and capacity for fluoride tended to
decrease, mostly because competitive anions were introduced on the surface of CSLDO400. Meanwhile,
it indicated that monovalent anions had a limited effect on the removal of fluoride. Figure 8 showed
that CSLDO400 performed well in fluoride removal in real water samples, indicating that it exhibited
considerable potential for the removal of fluoride.
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2.3. Adsorption Theory Discussion

2.3.1. Adsorption Kinetics

The adsorption kinetics is presented in Figure 9a. It can be seen that the adsorption rate increased
rapidly up to 120 min and after that there was no further increase observed. This phenomenon can
be attributed to the adsorption and desorption equilibrium. Because of the abundant sorption pores
and sites, a fast adsorption rate was discovered in the early stages. Nevertheless, more and more
fluorine entering the interlayer of CSLDO400 might result in desorption of fluoride. Desorption rates
were almost equivalent to the adsorption rates when the adsorption of fluoride achieved saturation.
The adsorption behavior and potential rate-controlling steps were evaluated by pseudo-first-order and
pseudo-second-order kinetic models. The kinetic models’ linear forms were given by the following
equations [34]:

ln(qe − qt) = ln qe − k1t (4)

t
qt

=
t
qe

+
1

k2qe2 , (5)

where k1 and k2 are the pseudo-first-order and the pseudo-second-order rate constants, qt (mg·g−1) and
qe (mg·g−1) are the adsorption capacities at time (t) and at equilibrium, respectively. The model fittings
are shown in Figure 9b,c, and the kinetic parameters of pseudo-first-order and pseudo-second-order
were determined and listed in Table 2. It can be seen from Figure 9b,c that both the pseudo-first-order
model and pseudo-second-order model well described the fast adsorption stage. However, as shown
in Table 2, the pseudo-first-order model showed a higher correlation coefficient for fluoride compared
with the pseudo-second-order model. Evidently, the adsorption of fluoride can be described more
appropriately by the pseudo-first-order model.

Table 2. Parameters for fluoride adsorption by CSLDO400 according to different kinetic models.

qe(exp)
(mg·g−1)

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

k1 (min−1) qe1(cal) (mg·g−1) R2 k2 (×10−4) (g·mg−1·min−1) qe2(cal) (mg·g−1) R2

9.58 0.02 10.47 0.9514 9.99 12.97 0.9483
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Figure 9. (a) Effect of contact time on the adsorption of fluoride on to CSLDO400 (initial concentration,
10 mg·L−1; pH = 7; adsorption dose, 0.75 g·L−1; temperature, 298 K); (b) pseudo-first-order kinetic
plots for adsorption of fluoride; (c) pseudo-second-order kinetic plots for adsorption of fluoride.

2.3.2. Adsorption Isotherm

The effects of temperature and initial concentration of fluoride are shown in Figure 10a. For each
of the same initial concentrations, the increase of adsorption temperature led to an increase in fluoride
adsorption capacity due to the decrease of equilibrium concentration. Langmuir and Freundlich
are the most significant isotherm models of adsorption valuation and have been used widely. The
Langmuir model is based on the monolayer adsorption occurring on a homogeneous adsorbent surface
with identical adsorption sites. The Freundlich model describes the adsorption on an energetically
heterogeneous surface. The Langmuir and Freundlich models were represented as follows: [35]

Ce

qe
=

Ce

qm
+

1
bqm

(6)

ln qe =
1
n

ln Ce + ln K f , (7)
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where Ce (mg·L−1) is the adsorption concentration at equilibrium, qm (mg·g−1) is the maximum
adsorption amount, qe (mg·g−1) is the adsorption capacity at equilibrium, b is the Langmuir constant,
and Kf is the Freundlich constant. The isotherm fittings are shown in Figure 10b,c, and the parameters
of the Langmuir and Freundlich models are listed in Table 3. It can be seen that the experimental data
of fluoride have a better fit by the Langmuir isotherm model than the Freundlich isotherm model.
The results may indicate that the adsorbent type is monolayer and all adsorption sites are energetically
equivalent; calcination treatment would play a significant role in the adsorption of fluoride. From the
Langmuir isotherm model, the maximum sorption capacity (qm) of fluoride is 27.56 mg·g−1 at room
temperature. In addition, the Freundlich constants (n) were both greater than 1.0, indicating that
CSLDO400 was favorable for the removal of fluoride under the studied conditions.

Materials 2017, 10, 1320  11 of 18 

 

where Ce (mg·L−1) is the adsorption concentration at equilibrium, qm (mg·g−1) is the maximum 
adsorption amount, qe (mg·g−1) is the adsorption capacity at equilibrium, b is the Langmuir constant, 
and Kf is the Freundlich constant. The isotherm fittings are shown in Figure 10b,c, and the 
parameters of the Langmuir and Freundlich models are listed in Table 3. It can be seen that the 
experimental data of fluoride have a better fit by the Langmuir isotherm model than the Freundlich 
isotherm model. The results may indicate that the adsorbent type is monolayer and all adsorption 
sites are energetically equivalent; calcination treatment would play a significant role in the 
adsorption of fluoride. From the Langmuir isotherm model, the maximum sorption capacity (qm) of 
fluoride is 27.56 mg·g−1 at room temperature. In addition, the Freundlich constants (n) were both 
greater than 1.0, indicating that CSLDO400 was favorable for the removal of fluoride under the 
studied conditions.  

 
Figure 10. (a) Adsorption isotherms of fluoride ion adsorption onto CSLDO400 (Conditions: 
concentration was 5, 8, 10, 20, 50, 80, 100 mg·L−1, pH = 7, dose = 0.75 g·L−1, adsorption time = 3 h);  
(b) Langmuir plots of the isotherms for fluoride; (c) Freundlich plots of the isotherms for fluoride. 

0 10 20 30 40 50 60 70 80 90
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

 
 

 298K
 308K
 318K

C e
/q

e

Ce(mg L-1)

b

0.0 0.8 1.6 2.4 3.2 4.0 4.8
1.6

2.0

2.4

2.8

3.2

3.6

 

 

 298K
 308K
 318K

ln
q e

lnCe

c

0 10 20 30 40 50 60 70 80
0
5
10
15
20
25
30
35
40 a

 298K
 308K
 318K

q e
(m

g 
g-

1 )

Ce(mg L-1)

  

 

Figure 10. (a) Adsorption isotherms of fluoride ion adsorption onto CSLDO400 (Conditions: concentration
was 5, 8, 10, 20, 50, 80, 100 mg·L−1, pH = 7, dose = 0.75 g·L−1, adsorption time = 3 h); (b) Langmuir
plots of the isotherms for fluoride; (c) Freundlich plots of the isotherms for fluoride.
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Table 3. Isotherm model constants and correlation coefficients for adsorption of fluoride onto
CSLDO400 at different temperature.

T (K)
Langmuir Model Freundlich Model

b (L·mg−1) qmax (mg·g−1) R2 n Kf R2

298 0.1457 27.56 0.9930 2.740 5.6423 0.9724
308 0.1689 31.88 0.9909 2.797 6.9023 0.9735
318 0.1695 35.77 0.9842 2.7372 7.5334 0.9756

2.3.3. Adsorption Thermodynamics

In particular, the determination of thermodynamics parameters is widely used to evaluate
spontaneity and heat change of the adsorption reactions [36]. The values of entropy change (∆S)
and enthalpy change (∆H) were obtained from the following Van’t Hoff plot:

lnb =
4S
R
− 4H

RT
(8)

The Gibbs free energy changes (∆G) were given by the following equation:

4 G = 4H − T4 S (9)

where b is the Langmuir constant. The parameters ∆S, ∆H, ∆G and correlation coefficient (R2) were
described in the Table 4. The enthalpy change of fluoride was 5.706 kJ·mol−1, implying that the fluoride
adsorption process is endothermic and favored in high-temperature conditions. The positive entropy
changes of fluoride (60.52 J·mol−1·K−1) indicated an increase in the randomness of the irreversible
adsorption processes and hence a good affinity of fluoride towards the CSLDO400 particles. The Gibbs
free energy changes were also calculated at 298, 308, and 318 to be−12.33,−12.93, and−13.54 kJ·mol−1,
respectively. The negative values of those ∆G indicate the spontaneous nature of the adsorption process.

Table 4. Thermodynamic parameters for the adsorption of fluoride.

T (K) ∆S (J·mol−1·K−1) ∆H (kJ·mol−1) ∆G (kJ·mol−1) R2

298 60.52 5.706 −12.33 0.9576
308 - - −12.93 -
318 - - −13.54 -

2.3.4. Adsorption Mechanism

The adsorption process was likely controlled by the “memory effect.” F− could be adsorbed
onto CSLDO400 by physical adsorption, chemisorption, and surface coordination. The CSLDHs
will lose water molecules and interlayer anions, and generate pores after being calcined at a certain
temperature, which contributes to the increase of specific surface area and adsorption sites. CSLDO400
was restored to its original layered structure after entering into a water environment. Mg2+ of the
structure of CSLDO400 were replaced by Fe3+, which can result in a large number of positive charges
in the interlayer of CSLDO400. Therefore, the calcined chitosan supported LDHs may be forced to
adsorb fluoride ions from the water solution to maintain a balance between charges in the interlayer
of CSLDO400. In an aqueous solution, hydroxylate surfaces were created through the coordination
reaction between OH− and the uncoordinated metal ions of CSLDO400. After an exchange between
F− and OH− of ≡MeOH has taken place, the coordination reaction may ultimately be achieved.
The design of the synthetic and adsorption process is shown as Figure 11.
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Figure 11. Schematic diagram of the adsorption of fluoride on CSLDO400.

2.4. Regeneration and Reuse

It is of great importance to consider the regeneration performance of an adsorbent in practical
applications. During the adsorption of fluoride, the layer structure of CSLDO400 was not changed
because the F− were just loaded on the interlayer of CSLDO400, and the regeneration of CSLDO400
was achieved easily [37,38]. Considering the co-anions’ effect on the adsorption of fluoride in previous
studies, desorption was used in this paper.

The results of adsorption–desorption, which was repeated five times, are shown in Figure 12. It can
be seen from Figure 12a that the desorption rate increased rapidly up to 60 min and then no significant
change was observed. Comparing to the virgin CSLDO400 with the equilibrium adsorption capacity
(qe) equaling to 9.38 mg·g−1 (removal efficiency: 73.91%) for fluoride, the regenerated CSLDO400
showed a slight decrease in removal rate but still exhibited excellent reusability and consistency
(as shown in Figure 12b). CSLDO400 have both interconnecting pore channels and a layered structure,
which can reduce pore blockage by adsorbate molecules. The affinities of various anions toward
interlayers of hydrotalcite, electrostatic interaction between carbonate ions from Na2CO3 solution, and
fluoride ions adsorbed in interlayers of CSLDO400 made the materials achieve good regeneration.
The excellent reusability and stability indicate that large-scale and long-term water treatment will be a
strong possibility.
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Figure 12. Effect of recycling times on the concentration of fluoride in desorbing solution (a); and the
removal rate of fluoride (b).
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2.5. Comparison of Fluoride with Other Adsorbents

A comparison has been made between CSLDO400 and other previously reported adsorbents for
fluoride removal. Based on the maximum adsorption capacities qmax from the Langmuir isotherm
model, CSLDO400 as an adsorbent was calculated to be 27.56 mg·g−1 for fluoride at 298 K, and it
also showed a wider range of pH and better adsorption for fluoride than many of the adsorbents
reported (shown in Table 5). The high adsorption capacity obtained in this work might be attributed to
interconnecting pore channels, layered structure, and high affinity between Mg/Fe oxides and fluoride
ions. Therefore, it can be concluded that the CSLDO400 adsorbent has considerable potential for the
removal of fluoride pollutants from an aqueous solution.

Table 5. Comparison of adsorption capacity of CSLDO400 with different adsorbents.

Adsorbents qmax (mg·g−1) pH References

CSLDO400 27.56 5~9 Present study
Iron–aluminum mixed oxide 17.73 5.5~5.7 [39]

Quick lime 16.67 - [40]
CSLDH-75 13.8 - [13]

Granular ceramic 12.12 5~8 [41]
Ceramic adsorbent 2.16 5.8 ± 0.2 [42]

3. Experimental

3.1. Materials

Mg–Fe LDH was synthesized by the co-precipitation of the nitrate precursors, iron (III) nitrate
nonahydrate (Fe(NO3)3·9H2O) and magnesium nitrate hexahydrate (Mg(NO3)2·6H2O) (synthesis
grade, purchased all from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). The chitosan
support for the preparation of Mg–Fe LDH (CSLDHs) was prepared from a chitosan solution,
and chitosan was obtained from Aladdin. NaF solutions of different concentrations were obtained
by dissolving analytical reagent grade sodium fluoride (Shanghai Maikelin Biochemical Co., Ltd.,
Shanghai, China) in de-ionized water.

3.2. Synthesis of Calcined Chitosan Support Layered Double Hydroxides (CSLDO)

The alkali resistance and chelation capacity of transition metal of chitosan are strong, but acid
resistance is poor; the chitosan support layered double hydroxide was synthesized by the
co-precipitation method. Chitosan solution with a concentration of 4 wt % was prepared by dissolving
3 g chitosan in glacial acetic acid (5 wt %). Solution A was prepared by dissolving Mg(NO3)2·6H2O
(0.12 mol) and Fe(NO3)3·9H2O (0.04 mol) in 150 mL deionized water. Solution B was prepared by
dissolving NaOH (0.258 mol) and Na2CO3 (0.08 mol) in 100 mL deionized water. First, solution A
was mixed with chitosan solution with stirring for 1 h. Solution B was then slowly added dropwise to
the mixture above, stirring violently at 60 ◦C for 0.5 h, with the solution pH held in the range 11–12.
The precipitated mass was aged at 65 ◦C for 18 h, filtered, washed with distilled water until the filtrate
was neutral to litmus, and freeze-dried for 24 h, and chitosan support layered double hydroxides
(CSLDHs) were obtained. Three samples, CSLDO300, CSLDO400, and CSLDO500, were obtained
after CSLDHs were calcined at 300 ◦C, 400 ◦C, and 500 ◦C under N2 protection for 2 h, respectively.
Unsupported LDHs were calcined at 400 ◦C (LDO400) as a comparison.

3.3. Sample Characterization

The CSLDHs, unsupported LDO400, CSLDO300, CSLDO400, and CSLDO500, were characterized
for their crystallinity, mineralogical phases, morphology, and specific surface area. The morphology of
the microspheres was investigated by using a FEI Sirion 200 (FEI Co., Eindhoven, The Netherlands)
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field emission scanning electron microscope (FEI-SEM) with an accelerating vo ltage of 10 kV.
The BET surface area of these samples were determined by N2 adsorption–desorption technique on a
Micrometrics 2020HD88 (Micrometrics Instrument Co., Norcross, GA, USA) apparatus at 77 K, in which
the samples were degassed at 60 ◦C for 12 h before measurement. The Fourier transform infrared
(FT-IR) spectroscopy was measured using Vertex 70 (Bruker, Madison, WI, USA). The mineralogical
phases and crystallinity of samples were characterized by X-ray diffraction analyzer (X’Pert PRO MPD)
using Cu-Kα radiation.

3.4. Adsorption Experiments

A contrasting experiment on the effects of time was performed on the CSLDHs LDO400,
CSLDO300, CSLDO400, and CSLDO500. The adsorptions of fluoride were investigated for the effects
of adsorbent dosage, solution pH, co-anions, and the adsorption theory (adsorption kinetics, isotherms
thermodynamics). Fluoride solutions with different concentrations were obtained by dissolving NaF
in deionized water.

In order to decide the optimal adsorbent for the adsorption experiments, CSLDHs LDO400,
CSLDO300, CSLDO400, and CSLDO500 with a mass of 25 mg were weighed precisely and added to
40-mL aqueous solutions of fluoride (10 mg·L−1) and shaken at 170 rpm at 298 K for 3 h. The fluoride
concentration (Ct) in the solution was analyzed using a fluoride ion selective electrode (ISE, Ruosull
PF-1Q9, Shanghai Instrument Factory Co., Shanghai, China), every 20 min for 3 h. The adsorption
capacity (qt: mg·g−1) of CSLDHs LDO400, CSLDO300, CSLDO400, and CSLDO500 was calculated
using Equation (10):

qt =
(C0 − Ct)×V

m
(10)

The removal rates (R: %) were calculated using the following equation:

R(%) =
C0 − Ct

C0
× 100% (11)

where C0 and Ct (mg·L−1) are the initial concentrations and concentrations at time t, respectively; V (L)
is the volume of the solution and m (g) is the mass of the adsorbent.

In order to optimize CSLDO400 dosages, CSLDO400 with different dosage (0.375, 0.5, 0.625,
0.75, 0.875, and 1.0 g L−1) were investigated. The effect of pH was studied in the range of 3.0 to 13.0.
To study co-anions, adsorption experiments were carried out in the presence of various competing
anions such as NO3

−, Cl−, CO3
2−, SO42−, PO4

3−, and HCO3
− by taking equal ionic strengths to

that of the fluoride solution (0.526 mmol·L−1). Real fluoride-contaminated water samples were
obtained by dissolving a certain amount of NaF in river water (Beijing, China), groundwater (Beijing,
China), and surface drinking water (from the third drinking water treatment plant in Beijing, China),
respectively. The concentrations of fluoride in all the real water samples were obtained with 10 mg·L−1.
Major anion contents in real water are listed in Table 6. To study the kinetics, CSLDO400 (0.75 g·L−1)
was mixed with a fluoride solution (10 mg·L−1) and tested over a certain time interval. The adsorption
isotherms were finished with different initial concentrations (5, 8, 10, 20, 50, 80, and 100 mg·L−1).
The thermodynamic features were studied by using isothermal adsorption experiments that were
repeated at 298 K, 308 K, and 318 K. The adsorbed CSLDO400 was regenerated: the fluoride-adsorbed
CSLDO400 was eluted by sodium carbonate solution (0.5 mol·L−1), and then filtered, washed with
distilled water until the filtrate was neutral to litmus, and calcined at 400 ◦C for 2 h.
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Table 6. Major anion contents in real water samples.

Samples NO3
− (mg·L−1) SO4

2− (mg·L−1) HCO3
− (mg·L−1) PO4

3− (mg·L−1) Cl− (mg·L−1) CO3
2− (mg·L−1)

Lake water 110.97 62.65 312.78 detection limit 84.41 35.62
Tap water 5.87 53.71 225.37 detection limit 68.16 10.23

Groundwater 15.49 38.59 301.74 detection limit 71.36 27.38

Note: detection limit means that PO4
3− concentration was not detected because they were below the detection limit

of this detection method.

4. Conclusions

In this work, calcined chitosan-supported layered double hydroxides were successfully
synthesized by the co-precipitation method. The adsorption tests suggested that the optimal calcination
temperature was 400 ◦C. The as-prepared CSLDO400 exhibited a porous and layered structure and the
largest surface area, resulting in excellent adsorption performance towards fluoride (the maximum
adsorption capacity and the adsorption equilibrium times at 298 K are about 27.56 mg·g−1 and
120 min). The fluoride removal by CSLDO400 followed the pseudo-first-order model and Freundlich
isotherm; the adsorptions of fluoride ions were spontaneous and endothermic. In addition, excellent
regeneration performance was obtained in reuse experiments. Moreover, the fluoride removal rate of
the low concentration in fluoride solution (5 mg·L−1) reached 77%, and the equilibrium concentration
was 1.15 mg·L−1, which is below the WHO guidelines.

Acknowledgments: This work was supported by the National Nature Science Foundation of China (No.
5167082583), the Chinese Universities Scientific Fund (CUG160824), and the China Postdoctoral Science
Foundation (2016M590733).

Author Contributions: Hanjun Wu, Weijun Zhang and Xiaofang Yang actively worked on the research concept,
practical synthesis, and writing process. Huali Zhang and Qingxue Yang are experts in analytical chemistry
and actively worked on the characterization and data analysis. Dongsheng Wang contributed ideas and revised
the paper.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride removal from water by adsorption—A review. Chem. Eng. J.
2011, 171, 811–840. [CrossRef]

2. Jagtap, S.; Yenkie, M.K.; Labhsetwar, N.; Rayalu, S. Fluoride in drinking water and defluoridation of water.
Chem. Rev. 2012, 112, 2454–2466. [CrossRef] [PubMed]

3. WHO, G. Guidelines for drinking-water quality. World Health Organ. 2011, 216, 303–304.
4. Viswanathan, N.; Meenakshi, S. Selective fluoride adsorption by a hydrotalcite/chitosan composite.

Appl. Clay Sci. 2010, 48, 607–611. [CrossRef]
5. Batistella, L.; Venquiaruto, L.D.; Luccio, M.D.; Oliveira, J.V.; Pergher, S.B.; Mazutti, M.A.; Dallago, R.

Evaluation of acid activation under the adsorption capacity of double layered hydroxides of Mg–Al–CO3

type for fluoride removal from aqueous medium. Ind. Eng. Chem. Res. 2011, 50, 6871–6876. [CrossRef]
6. Pontié, M.; Dach, H.; Leparc, J.; Hafsi, M.; Lhassani, A. Novel approach combining physico-chemical

characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes
for brackish water desalination intensification. Desalination 2008, 221, 174–191. [CrossRef]

7. Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, D.E.; Singh, P. Review of fluoride removal from drinking
water. J. Environ. Manag. 2009, 91, 67–77. [CrossRef] [PubMed]

8. Abe, I.; Iwasaki, S.; Tokimoto, T.; Kawasaki, N.; Nakamura, T.; Tanada, S. Adsorption of fluoride ions onto
carbonaceous materials. J. Colloid Interface Sci. 2004, 275, 35–39. [CrossRef] [PubMed]
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