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Promoter-enhancer interactions identified from
Hi-C data using probabilistic models and
hierarchical topological domains
Gil Ron1, Yuval Globerson1, Dror Moran1 & Tommy Kaplan 1

Proximity-ligation methods such as Hi-C allow us to map physical DNA–DNA interactions

along the genome, and reveal its organization into topologically associating domains (TADs).

As the Hi-C data accumulate, computational methods were developed for identifying domain

borders in multiple cell types and organisms. Here, we present PSYCHIC, a computational

approach for analyzing Hi-C data and identifying promoter–enhancer interactions. We use a

unified probabilistic model to segment the genome into domains, which we then merge

hierarchically and fit using a local background model, allowing us to identify over-represented

DNA–DNA interactions across the genome. By analyzing the published Hi-C data sets in

human and mouse, we identify hundreds of thousands of putative enhancers and their target

genes, and compile an extensive genome-wide catalog of gene regulation in human and

mouse. As we show, our predictions are highly enriched for ChIP-seq and DNA accessibility

data, evolutionary conservation, eQTLs and other DNA–DNA interaction data.
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One of the key mechanisms of gene regulation in
eukaryotes involves promoter–enhancer interactions,
where distal regulatory regions along the DNA (enhan-

cers) come in close physical proximity to their target promoters
to further activate transcription. The human genome is estimated
to contain hundreds of thousands of enhancers, often with
multiple enhancers regulating a single gene. These act in a tissue-
specific manner and could be found up to 1Mb away from their
target genes1–6. The importance of enhancers for gene regulation
is further emphasized by a growing body of works that link
genetic variation in enhancer sequences to human diseases7–11.
Nonetheless, we still lack a deep understanding of the
following: (a) how enhancers work molecularly, (b) how their
tissue specificity is encoded in their sequence, and above
all, (c) how they recognize and physically interact with their target
genes.

In recent years, high-throughput molecular methods have been
developed to study the three-dimensional organization of the
genome, and its relation to various functions. For example,
proximity-ligation methods such as 4C, ChIA-PET and Hi-C
quantify the frequency of DNA–DNA interactions in living
cells and map the 3D organization of the genome in high
resolution12–23. To date, Hi-C experiments were performed in a
variety of organisms and cellular conditions, including many cell
types and tissues.

While the genomic resolution of these data is often low,
varying from few Kbs to 40Kb blocks, they were mainly used to
identify and delineate topologically associating domains (TADs).
These are continuous regions (hundreds of Kbs to few Mbs)
that were shown to be folded upon themselves into local
compartments and facilitate high number of DNA–DNA
interactions19,24–26.

In recent years, topological domains were studied extensively,
and were shown to be (a) related to replication domains27,28, (b)
largely conserved across evolution, and (c) play a crucial role in
chromosome function25,29–33.

TADs also play a key role in gene regulation, as they define the
regulatory scope of enhancers. The domains' boundaries were
shown to act as regulatory “insulators” that prevent targeting
genes outside of the enhancer domain34,35. Disruptions of the
chromosomal structure, either in human genetic disorders or by
artificially deleting boundary elements (e.g., using CRISPR-Cas9),
were shown to be associated with enhancer mis-regulation and
aberrant gene expression9–11,36–38. While we still lack a deep
understanding of the exact mechanisms by which topological
domains are defined and maintained, TAD borders were shown
to be enriched for highly transcribed genes25, as well as CTCF and
cohesin binding sites22,31,39–45.

As more and more 3D data accumulate, in a multitude of
tissues and cellular conditions, algorithms were developed to
analyze Hi-C data and partition the genome into a set of topo-
logical domains17,20,25,46–50. Most notable are the Directionality
Index method25 that scans the genome by analyzing the set of
DNA–DNA interactions for every locus, and identifies transitions
from loci with mostly backward interactions to adjacent loci with
mostly forward interactions; and the Insulation Square method23

that identifies TAD boundaries as genomic loci with very few
overhead interactions. Additional methods aim to construct a
more hierarchical structure of topological domains, a visible
feature of Hi-C maps, either by merging cross-connected sub-
domains into larger domains20 or by iteratively altering the
algorithm parameters to obtain an ensemble of multiple chro-
mosomal segmentations that could be interpreted as hierarchical
domains50. While these methods are generally fast and robust,
they are inherently biased towards short-range interactions that
form the vast majority of DNA–DNA interactions, thus shading

the less abundant long-range interactions (250 Kb and above),
that are more informative for calling hierarchical TADs.

Here, we present PSYCHIC (Fig. 1)—a three-step modular
algorithm to identify promoter–enhancer interactions. Briefly, we
use a unified probabilistic model and a Dynamic Programming
algorithm to find an optimal segmentation of each chromosome
into topological domains; we next iteratively merge neighboring
domains into hierarchical structures; and finally we fit each
domain using a local background model. This allows us to
identify over-represented DNA–DNA pairs, including enhancers
and their target genes. We have analyzed the Hi-C data from 15
conditions and cell types in mouse and human19,20,25, and
identified hundreds of thousands of over-represented interac-
tions. This comprehensive genome-wide tissue-specific database
of putative interactions between enhancers and their target genes
would be of great interest to the scientific community.

Results
A unified probabilistic mixture model for Hi-C data. Hi-C
interaction maps often show a clear distinction between two
different patterns—Rectangular regions along the diagonal of the
Hi-C map that correspond to topological domains, and present
high intensity of (intra-domain) DNA–DNA interactions. These
are often surrounded by regions with fewer (inter-domain)
DNA–DNA interactions. Due to symmetry, Hi-C maps are often
rotated in 45 degrees, with topological domains shown as iso-
sceles right triangles along the (now horizontal) diagonal of the
Hi-C map (Fig. 1a).

We begin by developing a simple two-component probabilistic
model, corresponding to the probability of intra- and inter-TAD
interactions. In brief, our algorithm analyzes the Hi-C interaction
matrix and infers for every cell (DNA–DNA pair) the log-
probability ratio (LPR) of these loci occurring within the same
topological domain or not. In the following stages, we will
combine these ratios into a unified score, and use Dynamic
Programming to optimally segment each chromosome into
domains.

Formally, let Pd(N) denote the probability of observing N Hi-C
interactions between two DNA loci d bases apart. This equals to
the weighted sum of the intra-domain and inter-domain sub-
models:

PdðNÞ ¼ PdðintraÞ � PdðN j intraÞ þ PdðinterÞ � PdðN j interÞ ð1Þ

where Pd(N | intra) and Pd(N | inter) correspond to the likelihood
of observing N interactions d bp apart in the intra-TAD and
inter-TAD sub-models, respectively. Pd(intra) and Pd(inter)
correspond to the a priori probability of observing two loci d
bp apart to be within or outside of the same TAD. For robustness,
we model N using a log-Normal distribution (Supplementary
Fig. 1a, b; Methods section). Additional probabilistic families
(log-Poisson and Negative Binomial) were considered and found
to be less accurate (Supplementary Fig. 1c, d). This parameter-
ization greatly reduces the number of free parameters, resulting in
a compact model θd with only six parameters for every distance d,
including μd

intra, σdintra, μdinter, and σd
inter (mean and standard

deviation parameters for intra-TAD and inter-TAD models); and
two prior parameters Pd(intra) and Pd(inter), while offering an
accurate approximation of the Hi-C data (Supplementary Fig. 1a,
b). For every distance d, we directly estimate the model
parameters from annotated Hi-C data: To estimate θd, we rely
on an initial (possible noisy) segmentation of the Hi-C map into
domains. These could be obtained using various methods,
including the directionality index (DI) HMM-based method of
Dixon et al25, Insulation Square23, or approximated iteratively
using the Expectation-Maximization (EM) algorithm51. Given
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such annotations, we consider all intra- and inter-TAD pairs and
use a maximum likelihood estimation of the mean and the
standard deviation parameters. As shown by comparing different
chromosomes of mouse ES cells, these estimations are very robust
(Supplementary Fig. 1e). The same approach is used to estimate
the prior probabilities, namely which percent of the DNA–DNA
interactions of distance d occur within, or across, topological
domains.

Identification of TAD boundaries using log-posterior ratios.
Using the above probabilistic model, we now wish to re-segment
the genome into domains. For this, we propose a score that will
integrate information from various distances of DNA–DNA
interactions across the entire Hi-C matrix, without being skewed
by the significantly higher number of interactions among nearby
DNA–DNA pairs.

For this, we define a local score that calculates for every cell in
the Hi-C matrix the log-posterior ratio (LPR) of the intra- and
inter-TAD sub-models. Assuming N interactions for two DNA
loci d bases apart, we could use Bayes’ law to derive the posterior
probability of being within Pd(intra |N) or between TADs
Pd(inter |N) (Methods section). This allows us to compute the
log-posterior ratio of the two sub-models:

LPRdðNÞ ¼ log
Pdðintra jNÞ
Pdðinter jNÞ ð2Þ

We are now ready to score a segmentation of the genome into
domains.

First, let us define the probabilistic score for a single topological
domain t, starting at position s and ending at position e. For this,
we sum the log-posterior ratios for all intra-TAD cells (pairs < i,j
> such that s≤ i≤ j≤ e), and subtract the log-posterior ratios for

all inter-TAD cells outside of TAD t. These are defined by the
remaining (non intra-TAD) pairs <k,l> whose centers lie within
the TAD t, such that s≤ (k+ l)/2≤ e.

SðtÞ ¼
X

<i;j>2t
LPR j�ij jðNi;jÞ �

X
<k;l>=2t

LPR l�kj jðNk;lÞ ð3Þ

These are shown as blue (intra-) and yellow (inter-TAD) regions
in Fig. 1c. For efficiency reasons, we only consider intra-TAD
pairs (<i,j>) or inter-TAD (<k,l>) up to a maximal distance h of
5Mb. Probabilistically speaking, we allow every Hi-C cell to
independently compare its likelihood given each of the two sub-
models. We then define a global score for a segmentation C of the
genome into a set of TADs, by summing over their respective
scores:

Score ðCÞ ¼
X
t2C

SðtÞ ð4Þ

As shown in Fig. 1c, the score of each TAD t is based on pairs
within t (blue) or directly above t (yellow), such that all Hi-C cells
are counted exactly once. Moreover, since the score is strictly
additive, breaking a single TAD into two TADs requires to only
change the sign of LPR scores for cells between those TADs
(Fig. 1c, striped region), as they are shifted from being considered
intra-TAD (thus positive, left-hand side of Eq. 3) to inter-TAD
(negative, right-hand side of Eq. 3).

Finally, we use a Dynamic Programming algorithm to find the
optimal segmentation of each chromosome into topological
domains, with respect to our two-component model. For this, we
use a Dynamic Programming algorithm that computes the
optimal score of each genomic interval Ci,j by comparing its score
as a single TAD from position i to position j, S(ti,j) as in Eq. 3, or
by recursively breaking it at each possible position k, into two
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Fig. 1 Overview of the PSYCHIC algorithm. a Example of Hi-C interaction map (rotated in 45°), from mouse cortex (chr16, 59–65Mb)25. Blue and yellow
horizontal lines correspond to DNA–DNA pairs, 650 Kb apart, within and across domains. b Histograms show the empirical abundance of these DNA–DNA
interactions, either within domains (blue) or across domains (yellow), and demonstrate the enrichment of intra-TAD interactions. Dotted lines show a log-
Normal distribution fitted to these empirical data. c. PSYCHIC first uses a two-component probabilistic mixture model to estimate the number of intra-TAD
(blue) and inter-TAD (yellow) DNA–DNA interactions. For example, shown is segmentation into three domains A–C (delineated by vertical lines). An
alternative segmentation, where A and B domains are unified now consider the striped rectangle as intra-TAD. PSYCHIC uses a log-posterior ratio score
with a Dynamic Programming algorithm to identify the optimal (Viterbi) segmentation of the chromosome into domains. d. PSYCHIC then iteratively
merges similar neighboring domains (here, A + B) into hierarchical structures. For example, dotted lines marks a possible 2nd–order merge between the
merged (A + B) domain and domain C. PSYCHIC then fits a bi-linear power-law model for each TAD or merge to reconstruct a domain-specific background
model (shown by different shades of red). This allows for the identification of over-represented DNA–DNA pairs, including putative promoter–enhancer
interactions
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distinct regions, one ranging from position i to k, and another
region from position k+ 1 to position j:

Score ðCi;jÞ ¼ max
i<k<j

Sðti;jÞ
Score ðCi;kÞ þ Score ðCkþ1;jÞ

�
ð5Þ

Our algorithm then extends the computed range <i,j> until the
entire chromosome is covered. This allows us to efficiently
enumerate over all possible configurations {C} for each chromo-
some and identity the optimal segmentation C, with respect to the
above probabilistic score.

Hierarchical model of topological domains. So far, we devel-
oped a probabilistic framework for modeling the Hi-C data
within and across topological domains, and presented an efficient
algorithm for identifying the optimal segmentation. For this, our
model assumed that all intra-TAD DNA–DNA pairs, located d
bases apart, distribute according to one set of log-Normal para-
meters, and all inter-TAD pairs use another set.

We now wish to alleviate this assumption, and allow each TAD
to fit a unique set of parameters fitting its intra-TAD Hi-C
interaction counts. In addition, we wish to fit additional sets of
parameters to selected inter-TAD regions (shown as tilted
rectangles in the Hi-C map, Fig. 1c).

Specifically, we wish to iteratively agglomerate neighboring
TADs into hierarchical structures of topological domains, where
each TAD or merged regions is assumed to have a different
tendency for Hi-C interactions (Fig. 1d). For this, we developed a
“merge score” that allows us to examine adjacent domains. A
naive scoring system for neighboring TADs would simply
quantify their connectivity, by directly counting the number of
inter-TAD interactions20. This score, however, might be biased by
the size of the two domains, as well as the overall interaction
intensity in each of the two domains.

Instead, our “merge score” preferentially chooses neighboring
TADs whose inter-TAD region is more similar to each of the
intra-TAD regions than to the overall inter-TAD Hi-C count
distributions. Specifically, we calculate for each domain the
average number of DNA–DNA interactions at any distance d
(Supplementary Fig. 1f), and compare these plots to the region
between the two TADs, and to the remaining inter-TAD regions
(“Sky” in Supplementary Fig. 1f). We then linearly regress these
plots, and find the optimal α satisfying:

IMergeðdÞ � α � ITADsðdÞ þ ð1� αÞ � ISkyðdÞ; ð6Þ

where IMerge, ITADs, and ISky denote the average intensities for
each d at the inter-TAD (“Merge”) area, the intra-TAD
interactions within the two TADs, and the inter-TAD back-
ground model (“Sky”). We do so iteratively, greedily merging
TAD pairs with the highest α value. Specifically, we merge two
adjacent TADs whose inter-TAD region is the most similar (in
terms of Hi-C interactions) and most dissimilar to inter-TAD
regions. As before, this is done iteratively up to a maximal merge
size of 5 Mb, to create a set (forest) of tree-like TAD merges,
visually corresponding to triangles (TADs) and rectangles (inter-
TAD merge regions). Supplementary Fig. 1g compares the
number of TADs and hierarchical merges (1st, 2nd order, etc)
for various Hi-C data sets.

TAD-specific background model using Bi-linear power-law fit.
Once we segmented the Hi-C map into topological domains and
TAD merges, we wish to specifically model the intensity of Hi-C
data in each region, thus fitting the Hi-C data with a series of
local background models. This will allow us to estimate the
expected number of interactions in each Hi-C cell, thus

identifying over-represented Hi-C cells enriched compared to
their specific TAD environment. Previous works used a power-
law scaling model15,52,53 to regress the expected number of
DNA–DNA interactions as a function of their distance d:

IðdÞ / da ð7Þ

This is often plotted in log–log scale, where the (log) number of
interactions scales linearly with the (log) distance:

log ðIÞ ¼ a � logðΔÞ þ b ð8Þ

with a being the power-law coefficient (slope of log–log plot) and
b is the intersection parameter.

Nonetheless, while we found the power-law model to be
generally accurate, it is clear that some domains show more Hi-C
interactions than others (Fig. 1a), suggesting they would be best
described by different power-law parameters (Supplementary
Fig 1f, e.g. TADs A vs. B). We therefore wish to fit a different
background model for each TAD and each merged region
(Fig. 1d). This allows us to estimate the expected number of
interactions at any distance within every topological domain/
merge and quantify the statistical significance of over-represented
interactions.

Next, we quantified the goodness-of-fit of each model to Hi-C
data (Supplementary Fig. 2). First, we tested the overall fit with a
single model for each chromosome, yielding an average RMSE of
1.45. We then tested the original segmentation of the genome into
domains, using the Directionality Index method by Dixon et al25

in mouse cortex Hi-C data (mean RMSE of 1.27). For each TAD,
we estimated the optimal power-law parameters ai and intersect
bi resulting with RMSE score of 1.20, an improvement of 7%
compared to a random segmentation of the genome (using TAD
shuffling, RMSE = 1.29). The hierarchical agglomeration of
neighboring domains did not further improve the fit noticeably
(RMSE = 1.19).

Finally, we considered a more sophisticated parametric family
for modeling Hi-C interaction data in each TAD or merge area.
As we noticed, many TADs do not follow a power-law
distribution (straight line in log–log plots), but instead show a
“broken” behavior, which could reflect one power-law fit for the
closer distances, and another at more distant ones (Supplemen-
tary Fig. 3). For this, we developed a piece-wise power-law
regression model for modeling the average number of interac-
tions (in log scale) for any distance (in log scale) (Methods
section). This richer model offers a much more accurate fit of the
Hi-C data (RMSE = 1.06), a 12% reduction in fit error compared
to the original power-law fit.

For comparison, RMSE for simulated data sampled (using
Poisson distribution with matching “read depth”) from the
background model itself, was only 3% lower at RMSE = 1.03. Put
together, hierarchical TAD models with bi-linear power-laws
allow us to model Hi-C interaction data with high accuracy, thus
forming a detailed background model against which we can
compare the data and identify over-represented DNA–DNA
interactions.

Identification of enriched interactions in the mouse cortex. We
now wish to use the hierarchical TAD-specific bi-linear model as
background model for Hi-C, and identify over-represented
DNA–DNA interactions that could correspond to
promoter–enhancer and other functional interactions in vivo.

For this, we aim to compute the “virtual 4C” plot for each
promoter, and compare it to the expected number of interactions
according to the background model. We consider a large genomic
region surrounding each promoter (±1Mb) and search for
regions showing enriched Hi-C interactions with the promoter.
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By subtracting the background model from the Hi-C data, we
obtain the “residual” over-representation map. Statistical sig-
nificance score (p values) are assigned using a log-Normal
distribution fitted to the residuals in a 2Mb window surrounding
each promoter, then corrected for multiple hypotheses (FDR)54

(Methods section).
We begin by focusing the Foxg1 locus (chr12, 50.3–51.2 Mb)

using Hi-C data from mouse cortex25. Figure 2a shows the
“residual” map for this locus. Prominent over-represented cells
match two Foxg1 enhancers (hs566 and hs1539) located 550 Kb
and 750 Kb downstream of the gene, with FDR values of 7e-12
and 1e-20, respectively. These two enhancers were discovered in
human by us and others, using ChIP-seq and conservation
data55–57. Comparison to published ChIP-seq data of H3K27ac,
CTCF, PolII, and DNaseI hypersensitivity data from the mouse
ENCODE project58, and evolutionary conservation data59 further
identifies the exact location of these Foxg1 enhancers (Fig. 2b).

Genome-wide validation of putative enhancers. To further test
our results on a genome-wide scale, we systematically char-
acterized the chromatin landscape surrounding all predicted
enhancers in mouse cortex25. For this, we aligned a 4Mb region

around each of the 17,788 putative enhancer regions (in Hi-C bin
resolution) using an FDR threshold of 1e-2, and tested various
enhancer-related chromatin marks. These include active enhancer
and promoter marks (H3K27ac, H3K4me1, PolII), CTCF, evo-
lutionary conservation, DNA accessibility, and chromHMM
predictions58–61 (Fig. 3, blue lines and heatmaps). For control, we
also computed the average signal at a random set of genomic
regions up to 1Mb away from promoters (Fig. 3, dotted black
lines). For all data types, the predicted enhancers were sig-
nificantly enriched compared to their surrounding flanking
regions (See Supplementary Fig. 4 for heatmaps of control
regions).

Similar analysis for predicted boundaries identifies enrichment
for CTCF and high DNA accessibility, as well as enrichment for
promoter-like marks of PolII and H3K27ac, without H3K4me1
enrichment (Supplementary Fig. 5).

Next, we wished to study the effect different initialization
methods have on the predicted promoter–enhancer interactions.
For this, we initialized two-component intra- /inter-TAD model
using three methods, including the Directionality Index25, the
Insulation Square method23 as well as a random initialization of
TADs. These changes had a limited effect on the predicted
enhancer Hi-C bins (Supplementary Fig. 6).
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Fig. 2 Analysis of mouse cortex Hi-C data by PSYCHIC. PSYCHIC analysis of the Foxg1 locus in adult mouse cortex Hi-C data25 identifies two putative
enhancer bins enriched with Foxg1. a Residual map for the Foxg1 locus (chr12, 50.3–51.2Mb) shows the measured Hi-C map after the subtraction of the
background model fitted by PSYCHIC, with two significantly enriched Hi-C cells, connecting Foxg1 with two putative enhancer bins. b ChIP-seq and
evolutionary conservation data matching active enhancers, within the two putative enhancer regions. c Virtual 4C plots centered at Foxg1 (left) and the two
enhancer loci (hs599 and hs1539), comparing measured Hi-C data (bars) vs. the fitted background model as reconstructed by PSYCHIC (black line).
Statistically significant DNA–DNA interactions (FDR< 0.01) are marked by orange bars. Arrows show significant interactions between Foxg1, hs566 and
the hs1539 orthologous regions. Inset images (hs566, hs1539) from the VISTA Enhancer Browser by Visel et al55
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We then turned to analyze the statistics of the predicted
promoter–enhancer interactions. Overall, 49% of the predicted
enhancers are located within 120 Kb of their target promoters,
with only about 15% regulating the nearest gene (56% regulate
one of the 5 nearest genes). About 87% of the predicted
interactions fall within a topological domain (compared to 60% at
random), and 92% comply are contained within the first
hierarchical merge of TADs. Similar statistics were obtained to
additional Hi-C data sets analyzed (see below) in human and
mouse—overall, 88% of predicted enhancers are within the same
TAD, compared to 45% in random shuffles (Fig. 4).

Next, we calculated the distribution over the number of
putative enhancers regulating each gene, and compared it to the
distribution of randomly selected regions (equivalent to a
“random set” of near promoter loci). As shown in Supplementary
Fig. 7, we observed a much greater number of genes predicted to
be regulated by multiple enhancer regions, compared to the
random set. Our results show some genes to be regulated by ten
or more enhancers. For example, 443 genes are predicted to have
five brain enhancer regions (FDR< 1e-2), compared to only two
in the randomized set, or three expected according to a binomial
distribution.

A comprehensive catalog of human and mouse enhancers. To
obtain a comprehensive list of putative enhancer regions, we
gathered Hi-C data in 15 conditions and cell types in human and
mouse, including mouse cortex and embryonic stem cells25,
mouse embryonic stem cells, neural progenitor cells (NPC), and
neurons20, and mouse B-lymphoblast (CH12LX) cells19, as well as
human embryonic stem cells and lung fibroblast IMR-90 cells25,
GM12878 B-lymphoblastoid cells, and HMEC, HUVEC, IMR-90,
K562, KBM7, and NHEK cells lines19. We then used PSYCHIC
(with hierarchical TAD merging and bi-linear power-law fit) to
identify over-represented interactions (up to 1Mb) from pro-
moter regions.

Globally, using an FDR threshold of 0.01, we predicted 267,938
putative enhancers (88,193 in mouse and 179,745 in human)
that regulate a total of 25,783 genes (20,471 in mouse and 20,264
in human). A more stringent FDR threshold of 1e-4, yields
136,448 putative enhancer regions (38,405 and 98,043) regulating
21,435 genes (14,698 and 17,298 for mouse and human,
respectively). These are summarized in Supplementary Table 1
(full lists in Supplementary Data 1, 2) or in our supplementary
webpage www.cs.huji.ac.il/~tommy/PSYCHIC.

Comparison to other algorithms for enriched interactions. To
test these predictions, we collected external ChIP-seq data in
matching conditions, using which we can compare our predictions
with their surrounding loci. In addition, we used previous sets of
predicted DNA–DNA interactions for the same Hi-C data, by Fit-
Hi-C62—that uses a chromosome-wide statistical model (with no
TAD resolution) to identify enriched Hi-C cells—and HiCCUPS19

—where the enrichment of each Hi-C cell is computed based on
its neighboring cells. For an unbiased and systematic comparison,
we identified all DNA–DNA interactions that involve promoter
loci, predicted by HiCCUPS (for human IMR-90, GM12878,
K562, HMEC, HUVEC and NHEK cell lines)19, or Fit-Hi-C
(human IMR-90 cells, and mouse cortex and ES cells)62 and
compared their ChIP-seq signal.

As shown in Fig. 5 and Supplementary Fig. 8, the
predictions by PSYCHIC are generally more enriched (both
in terms of absolute signal strength, and its genomic
localization, or “sharpness”) for H3K27ac, DNaseI, and
chromHMM’s “Strong Enhancer” class in matching cell types.
We do observe, however, stronger enrichments for HiCCUPS’
and Fit-Hi-C’s predictions for both CTCF and chromHMM’s
“Insulator” loci, suggesting that these methods, that are not TAD-
specific are possibly skewed by boundary elements, leading to
over-estimation of near-boundary interactions (Supplementary
Fig. 8).
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Enrichment of eQTLs and nuclei cryo-sectioning. To further
test the quality of our predicted promoter–enhancer interactions,
we computed their agreement with additional data sets. First, we
analyzed the data from the Genotype-Tissue Expression (GTEx)
Project (https://gtexportal.org), in which expression quantitative
trait loci (eQTLs) were collected in multiple different human tis-
sues by comparing the genotypes and expression level profiles in
hundreds of donors63. As we show in Fig. 6a, the majority of our
promoter–enhancer predictions are supported by GTEx eQTL
data. These include, for example, 55% of our GM12878 predic-
tions (at FDR< 1e-2) compared to only 20% of the random
interactions, or 29–35% of HiCCUPS promoter–enhancer inter-
actions. More stringent PSYCHIC thresholds further improve this
data set agreement: 58% of 1e-4 predictions, or 63% of the pre-
dictions at FDR< 1e-10. Similar numbers are obtained for all
other human data set analyzed. These numbers also outperform
Fit-Hi-C predictions—for example, GTEx data support 25% of the
human ESC Fit-Hi-C promoter–enhancer predictions (at q value
< 1e-10) compared with 46% for our 2075 predictions (at FDR<
1e-2), or 29% for their 866 (at q< 1e-20) predictions compared
with 48% for our 833 predicted interactions (at FDR< 1e-4).

In addition, we compared our prediction with DNA–DNA
interactions in mouse ESC, predicted using ultra-thin cryo-
sectioning slices through a single nucleus, followed by sequencing64.
Here, we compared the average number of slices in which both the
promoter and its predicted enhancer region are captured in the
same slice. As shown in Fig. 6b, the 9771 promoter–enhancer
interactions predicted by PSYCHIC for mouse ESC data (at FDR<

1e-2) are co-sequenced in an average of 41 slices (p< 5e-92 using
random shuffles), or 42 slices on average for the 3908 predictions at
a threshold of 1e-4, compared to an average of 30 slices for random
interactions, or 35 slices on average among the 7164
promoter–enhancer predictions of Fit-Hi-C (at a threshold of 1e-
10). These results further support our methodology and the
biological significance of our predicted enhancer regions and their
associated target genes.

Validation by capture Hi-C and ChIA-PET data. Finally, we
compared our promoter–enhancer interactions with other
proximity-ligation data sets, including Capture Hi-C (CHi-C)
data from mouse ES cells21 and ChIA-PET data from GM12878
cells22. The Capture Hi-C interactions show high support for the
predicted interactions by PSYCHIC, with coverage ranging from
69% of PSYCHIC predicted interactions (in mESC, called using
an FDR threshold of 1e-2) to 74% (threshold of 1e-4), compared
to 52–66% of Fit-Hi-C predictions for mESC Hi-C data (Sup-
plementary Fig. 9a). Next, we compared our predictions to ChIA-
PET data in GM12878 cells22. ChIA-PET interactions obtained
using PolII antibodies showed high support for our
promoter–enhancer predictions, covering 37% (PSYCHIC
GM12878 predictions with threshold of 1e-2) to 55% (threshold
of 1e-10); compared to 33–36% for HiCCUPS GM12878 calls
(Supplementary Fig. 9b). Intriguingly, a higher portion of HiC-
CUPS calls (73%) was supported by the ChIA-PET data using
CTCF antibodies, compared to ~34% for PSYCHIC. This is in
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line with the relative enrichment of CTCF ChIP-seq signal among
HiCCUPS predictions (Fig. 5).

Interaction with inactive enhancers. Notably, most—but not all
—putative enhancer regions show strong enrichment for active
chromatin marks. For example, ~70% of the enhancers predicted
with FDR< 1e-2 show increased accessibility compared to their
flanking DNA regions (Fig. 3, “DNaseI”). Almost half (46%) of
predicted enhancer regions show enrichment that is greater than
one standard deviation compared to their flanking regions (32%
> 2 SD). For comparison, only 43% of the randomly selected
regions show increased accessibility, with only 24% exceeding one

standard deviation (15%> 2 SD). Similar numbers are obtained
for H3K27ac or CTCF.

This suggests that over-represented DNA–DNA interactions
(in Hi-C) are not limited to active and accessible regions, and
raises the hypothesis that a non-trivial fraction of putative
enhancer regions are “silent” and inaccessible. A closer examina-
tion identified several known enhancers even within those. For
example, PSYCHIC identified the ZRS locus as interacting with
the Shh gene, even in adult mouse cortex (Fig. 7). In the mouse,
early developmental Shh expression is essential for autopod
formation, regulated in developing limbs by the distal ZRS
enhancer, located ~1Mb away8,65. Our results suggest that ZRS is
in close physical proximity to Shh even in adult brain. Analysis of
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Hi-C data in mouse and human identifies similar interactions
between Shh and ZRS in most mouse conditions (Supplementary
Fig. 10a). This was recently validated by DNA FISH showing ZRS
in the proximity of Shh throughout a variety of tissues and
developmental stages, while not being in active transcription66.
Similarly, a cross-condition analysis of the promoter–enhancer
interactions (predicted using PSYCHIC, GM12878, with a
stringent threshold of FDR< 1e-10) shows that >25% of these
putative interactions are predicted (by PSYCHIC) in at least three
additional human Hi-C data sets (compared to only 3% in
random; Supplementary Fig. 10b).

Discussion
In this work we presented PSYCHIC, a computational model for
analyzing the Hi-C data to identify enriched DNA–DNA inter-
actions. Using a probabilistic model and efficient algorithms,
PSYCHIC identifies the optimal segmentation of chromosomes
into topological domains, assembles them into hierarchical
structures, and fits a TAD-specific background model for the Hi-
C data. By considering a “virtual 4C” plot for every gene, and
using the background model for statistical assessments, our
algorithm identified 267,938 significant over-represented
enhancer–promoter interactions in 15 Hi-C experiments in
human and mouse.

To segment the genome into TADs, our algorithm uses a
probabilistic two-component model that independently computes
for every cell in the Hi-C matrix, the likelihood ratio between
intra-TAD and inter-TAD models. This score assigns similar
importance to near and far DNA–DNA interactions, and is less
affected by short-range interactions that dominate Hi-C data, but
are mostly invariant of topological domains. This additive score is
easily computed from nested TADs, allowing for fast and scalable
Dynamic Programming algorithm.

Our algorithm then computes for each TAD the average
number of contacts at any distance. This spectrum was previously
modeled using power-laws, which we replaced by two-segment
models, greatly improving the model accuracy. These results
suggest a transition between two packaging mechanisms, typically
at 100–300 Kb.

Currently, most Hi-C data are of 10–40 Kb resolution, hin-
dering our ability to pinpoint promoter–enhancer interactions.
Various methods (e.g., ChIP-seq, accessibility, evolutionary con-
servation) could be applied to further identify enhancers in higher
resolution. As more detailed Hi-C data are accumulated, PSY-
CHIC will offer more accurate predictions. While the running
time of PSYCHIC is quadratic, it is scalable. Various heuristic
assumptions (e.g., maximal size for sub-TADs) will dramatically
speed it up, allowing for higher resolution analysis using future
Hi-C data sets.
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Ground-truth data for promoter–enhancer interactions are still
limited, and we have taken multiple approaches to establish our
predictions. We showed that the predicted enhancer regions are
enriched for active marks (H3K27ac, H3K4me1, PolII), DNA
accessibility, or CTCF. This was shown initially for a single locus
(Foxg1) in the mouse cortex, and later supported in a genome-
wide manner over multiple tissues. Comparison to previous
methods, including HiCCUPS and Fit-Hi-C, generally showed
stronger and sharper enrichment for PSYCHIC, as well as a
general bias of other algorithms to near-boundary interactions.
Secondly, we used high-throughput eQTL data, linking genotypes
and gene expression profiles in hundreds of donors, and inter-
sected them with our predictions. As we show, about half of
PSYCHIC’s predictions are supported, in a variety of cell types.
Finally, we used recently published cryo-sections of nuclei,
showing that predicted promoter–enhancer pairs are co-sliced
more often then expected.

Intriguingly, a closer examination reveals that ~1/3 of pre-
dicted regions are inaccessible and bear no active chromatin
marks. These include the ZRS locus that acts as a limb-specific
distal enhancer for Shh, located nearly ~1Mb away. While the
ZRS locus shows no accessibility or ChIP peaks in the mouse
cortex, therefore predicted to be inactive, it presents a significant
number of interactions with Shh. Indeed, Williamson et al.66

recently used FISH and 5C to show that ZRS and Shh are located
in spatial proximity regardless of their activity.

These results suggest that the 3D structure of the genome may
be organized to support regulatory DNA–DNA interactions,
rather than merely reflect the set of accessible or active regions in

the genome. As more Hi-C data are collected and analyzed, we
hope to shed light on the causality of gene regulation and genome
packaging, as well as the plasticity of genome packaging in
general.

Put together, we demonstrated how Hi-C data—typically used
to identify TAD boundaries—can be used to identify enriched
DNA–DNA interactions, including thousands of putative
enhancer regions and associate them to their target genes.

Methods
Modeling Hi-C data. Intra-TAD Hi-C data are represented using log-Normal
distribution with two parameters (mean and standard deviation) for each distance d

PdðNjintraÞ ¼ log�Normalðμintrad ; σintrad Þ ð9Þ

where the log-Normal distribution with mean μ and standard deviation σ can be
written as:

PðxÞ ¼ 1

xσ
ffiffiffiffiffi
2π

p e�ðlog x�μÞ2 =2σ2 ð10Þ

Inter-TAD Hi-C data are represented similarly:

PdðN jinterÞ ¼ log�Normalðμinterd ; σinterd Þ ð11Þ

Bayes’ law could be used to derive the posterior probabilities of the intra-TAD:

PdðTADjNÞ ¼ PdðTADÞ
PdðNÞ ´ PdðNjTADÞ ð12Þ

and inter-TAD models:

PdðBGjNÞ ¼ PdðBGÞ
PdðNÞ ´PdðNjBGÞ ð13Þ
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given the number of interactions N at a given distance d, and the prior probabilities
Pd(intra) and Pd(intra).

Bi-linear regression of log-intensity and log-distance. We model the Hi-C
interaction intensity between two loci as a segmented power-law function of their
distance. In log–log scale this is modeled by a two-piece segmented linear
regression model. For this, we developed a computational algorithm (implemented
in MATLAB) to iterate over the optimal breaking point and estimates the two
parameters (intercept and slope) for each segment, while minimizing the squared
deviation of the data (in log–log scale). Similarly, a piece-wise linear model was
learned for the remaining inter-TAD regions (“Sky”).

TAD merges. Neighboring TADs are merged into a hierarchical structure,
according to a “merge score” that compares the mean Hi-C intensity per distance
within the two underlying TADs, their inter-TAD area, and the null inter-TAD
model (represented by α in Eq. 10). We then iteratively merge two
neighboring TADs whose merge area is the most similar, up to a maximal domain
size of 5Mb.

Random set of enhancers. A random set of genomic loci along the genome, while
maintaining a similar distribution around gene promoters, we considered for each
gene all genomic loci up to 1 Mb away (on either direction), and selected each with
a probability of 1e-2.

Statistical significance of ChIP-seq for putative enhancers. To estimate the
statistical significance for the average ChIP-seq signal (or others) at putative
enhancer regions (Fig. 3), we fitted a Normal distribution to the average ChIP-seq
signals at distances >500 Kb from the predicted enhancers, then approximated the
p value as the cumulative distribution function (CDF) given by the Normal dis-
tribution at the average ChIP-seq signal for predicted enhancer regions.

Simulated Hi-C data. Hi-C matrices were simulated by sampling considering the
hierarchical TAD-specific fit model (from PSYCHIC), then re-sampling each Hi-C
cell from a Poisson distributions with a parameter λ matching the expected mean
number of DNA–DNA interactions.

Statistical enrichment score. To assign a statistical significance score (p value) for
each putative enhancer (namely, an over-represented interaction between a
promoter region and some other locus), we assumed a Normal distribution of the
local residual map (i.e. Hi-C minus PSYCHIC background mode) at a 2 Mb
surrounding the promoter of each gene. We then fitted maximum likelihood
estimator for the mean value μi, and its standard deviation σi, and used these
statistics to translate the deviation of each Hi-C cell from its background model,
into z-scores. Finally, we assigned a p value for each z-score using a standard
Normal cumulative distribution function, and applied an FDR correction for
multiple hypotheses54.

Hi-C data sources and preprocessing. Normalized Hi-C maps were analyzed. For
Dixon et al25, normalized Hi-C data at 40 Kb resolution were obtained from the
Ren lab website (http://chromosome.sdsc.edu/mouse/hi-c). For Rao et al19, pro-
cessed data (intra-chromosomal, MAPQGE30, KR normalized) were downloaded
from GEO (GSE63525), and down-sampled from 5 Kb to 25 Kb resolution for
higher coverage and more robust analysis. For Fraser et al20, processed and nor-
malized Hi-C data were downloaded from GEO (GSE59027) in 50 Kb or 100Kb
resolution.

Statistical significance of SLICE data. To quantify the statistical significance of
the average number of promoter–enhancer co-occurrence in the cryo-sectioning
slices, we randomized our predictions 1000 times by shuffling the gene names
(stratified by chromosomes). We then computed the average slice co-occurrence in
each shuffle. PSYCHIC predictions outperformed all 1000 shuffles, and obtained a
Normal distribution p value of 5e-92.

Code availability. PSYCHIC is publicly available via GitHub (https://github.com/
dhkron/PSYCHIC).

Data availability. A full list of putative enhancer regions, as well as the genes they
regulate is available in Supplementary Table 1 and Supplementary Data 1, 2, and in
our supplemental website at www.cs.huji.ac.il/~tommy/PSYCHIC. Also available in
our website are saved UCSC Genome Browser sessions for mouse (mm9) and
human (hg19).
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