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Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled 

receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced 
from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three 
enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, 
LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling  
drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. 
Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. 
In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin 
activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these 
agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
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Introduction

As the simplest phospholipid, lysophosphatidate (LPA)  
is by no means a simple biological molecule. Extracellular  
LPA, via signaling through at least six G-protein-coupled  
receptors, mediates a plethora of physiological and 
pathological processes including embryogenesis, wound  
healing, chronic inflammatory diseases, and cancer pro-
gression and therapy resistance. LPA has an ester-linked  
fatty acid at the sn-1 or sn-2 position of the glycerol back-
bone and a hydroxyl group at the other position, and a phos-
phate head group at the sn-3 position (Fig. 1). Normally,  
LPA concentrations in plasma are about 100 nmol/L and  
this LPA is bound to albumin[1-2]. LPA can rise to about 1  
μmol/L in serum as a result of platelet activation[3-5]. The  
majority of extracellular LPA is generated from unsatu-

rated and polyunsaturated lysophosphatidylcholine (LPC)  
by the lysophospholipase D activity (lysoPLD) of auto-
taxin (ATX), which hydrolyzes choline from the phosphate  
head group (Fig. 1). LPC is the most abundant phospholi-
pid in human plasma where it reaches concentrations of  
greater than 200 μmol/L[6-7]. Historically, LPC was believed  
to be a bioactive molecule. However, more recent work has 
shown that ATX inhibition blocks the stimulatory effects of  
LPC on cell migration and survival[8-9], demonstrating that  
the biological actions of LPC are mediated through LPA  
via ATX activity. LPA signaling is terminated by its hydro-
lysis to inorganic phosphate and monoacylglycerol (MAG)  
by catalytic activity of three related proteins called the 
lipid phosphate phosphatases (LPP1-3) (Fig. 1)[10]. These  
enzymes were originally characterized by our group as type  
2 phosphatidate phosphatases because of their insensitivity  



to inhibition by N-ethylmaleimide and lack of Mg2+- 
requirement[11]. However, it became evident that they also  
hydrolyze a wide variety of lipid phosphates including 
LPA and sphingosine 1-phosphate (S1P) and so they were  
renamed LPPs[12]. All three LPPs are integral membrane  
proteins containing six transmembrane helices with the  
C- and N-termini facing the cytosolic side of the plasma 
membrane[13]. At the plasma membrane, the catalytic site  
of the LPPs faces the extracellular environment, enabling  
them to access and hydrolyze extracellular LPA and other  
phospholipids[10,13].

The prototypical pathology associated with ATX-
LPA-LPP axis is best illustrated in cancer. ATX protein 
expression is increased leading to higher LPA levels in 
many different tumors. Cancer cells also have increased 
expression of LPA receptors on their cell surface 

 compared to normal and benign cells, and downregu-
lated expression of LPPs[7,14]. Thus, a triad of increased 
LPA production by ATX, increased response to LPA by 
increased LPA receptor expression and decreased LPP  
activity to degrade LPA on the cell surface creates the  
per fect storm for cancer cell proliferation, migration, 
metas tasis and therapy resistance[7,10,14-15]. Other inflam-
matory diseases including asthma, rheumatoid arthritis, 
lung and liver fibrosis, and inflammatory bowel dis-
eases are also distinguished from normal physiology by 
increased ATX/LPA signaling. Hence, the importance of 
studying LPA signaling within the ATX-LPA-LPP axis 
is now gaining more recognition[16-17]. In this review, we 
will summarize current knowledge of the ATX-LPA-LPP 
axis in pathology and describe the approaches being taken 
to target this axis to improve therapeutic interventions.

Fig. 1 Overview of the ATX-LPA-LPP axis and points of therapeutic intervention within the axis. Extracellular LPA is generated 
from LPC by the enzymatic lysophospholipase D activity of ATX. LPA can signal through at least 6 G-protein-coupled receptors to 
mediate both physiological and pathological processes. Extracellular LPA is degraded by the ecto-activity of a family of three enzymes 
called the LPPs, which hydrolyzes the phosphate head group from LPA to produce MAG. LPPs expressed on the membranes of cellular 
organelles can also block LPA signaling downstream of receptor activation by endo-LPP activity. LPA signaling can be disrupted by 
blocking LPA production through ATX activity inhibition, treatment with monoclonal antibodies against LPA, blocking LPA binding to 
LPA receptors through LPA receptor antagonists, and by increasing expression of LPP1/3.
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Overview of the ATX-LPA-LPP axis

ATX - The predominant producer of 
extracellular LPA

Enzymatic generation of LPA in plasma by lysoPLD  
activity was first described in 1986[18]. ATX is a 125-
kDa secreted glycoprotein that was first isolated in 
1992 from A2058 melanoma cells and described as 
an "autocrine motility factor"[19]. At the time, its enzy-
matic activity and homology to other growth or moti-
lity factors were unknown. Two years later,  
sequencing the cDNA clone of ATX showed that it 
had significant homology to the plasma cell glycopro-
tein-1 (PC-1)[20], which was known to have nucleotide 
pyrophosphatase and phosphodiesterase (NPP) activ-
ity[21-22]. PC-1 was later named NPP1 and ATX as  
NPP2, the first two members of a family of seven 
enzymes that hydrolyze phosphodiester and pyropho-
sphate bonds to remove phosphates from ADP and 
ATP[6]. As a secreted enzyme, NPP2 was later referred  
to as ecto-NPP2 (ENPP2), which has since become the  
gene symbol for ATX[23]. However, it was not clear 
how this extracellular nucleotide activity could explain 
the motility-stimulating capability of ATX described in  
melanoma cell culture. This mystery remained until 
2002, when the plasma lysoPLD activity described in  
1986 was purified and found to be identical to  
ATX[24-26]. Subsequent work showed that ATX/ 
ENPP2 was unique among the NPPs/ENPPs because 
of its lysoPLD activity, which converts LPC to  
LPA[24]. The affinity of ATX for LPC was shown to 
be higher than for nucleotides, suggesting that LPC  
is the preferred physiological substrate for ATX [24]. The 
motility-stimulating function of ATX was enhanced by 
addition of LPC to cell culture experiments, and this 
action could be mimicked by direct addition of LPA[8,24]. 
Furthermore, deletion of LPA1 receptors in fibroblasts 
abolished the effects of ATX on cell migration[27]. 
Thus, LPA, the product of ATX, is the actual “motility  
factor”.

ATX is a vital enzyme that is needed for proper 
early embryological development. ATX knockout 
(KO) (ENPP2-/-) embryos die in utero on day 9.5 with 
vascular and neural tube defects[28-31]. In these mice, 
malformations in the allantois, neural tube and head-
fold are detected by day 8.5, and at day 10.5 embryos 
become necrotic and are reabsorbed[32]. Normally, 
extra-embryonic endothelial cells remodel from day 
8.5 to 9.5 to create a vascular network that connects 
with the embryo, allowing the yolk sac to function as  
the main nutrient source. ENPP2-/- embryos have 
increased expression of VEGF mRNA, consistent with 

hypoxic conditions in the absence of a functional vas-
cular system[28,33].

Neural tube closure typically begins at day 8.5. The 
neural tube closure defects in ENPP2-/- embryos have 
been attributed to a local deficiency in ATX expres-
sion[28]. In ENPP2-/- embryo explants, these folding 
abnormalities are abrogated by exogenous addition of  
LPA[34]. The role of ATX in vascular and neural develop-
ment has also been confirmed in zebrafish[32,35]. ATX reg-
ulates oligodendrocyte differentiation in the developing  
zebrafish hindbrain[36] and the correct left-right asymme-
try for normal organ morphogenesis through Wnt-depen-
dent pathways[37]. ENPP2+/- mice are viable, and express  
half the levels of both ATX and LPA compared to normal  
mice[38]. However, they are hyper-responsive to hypoxia-
induced vasoconstriction and remodeling, and they  
develop pulmonary hypertension[38].

One of the important roles of ATX after birth is in 
wound healing and tissue remodeling. LPA is a potent 
activator of platelet aggregation and it stimulates the 
division and migration of fibroblasts, vascular smooth 
muscle cells, endothelial cells and keratinocytes[39]. 
Increased ATX activity is found in blister fluid where 
local production of LPA promotes re-epithelialization[40].  
ATX expression and LPA production are also increased 
in rabbit aqueous humor following corneal freeze 
wounds[41]. Recently discovered physiological roles 
for ATX include hair follicle morphogenesis[42], bone 
mineralization[43] and myeloid differentiation in human 
bone marrow[44]. ATX/LPA signaling also remodels 
luteal tissue in regressing corpora lutea of cycling 
rats by recruiting phagocytes and proliferating fibro-
blasts[45]. ATX expression is also upregulated in micro-
glia in response to oxidative stress. This protects 
microglia cells against damage from H2O2, an effect 
which is partially reversed in the presence of the mixed  
LPA1/3 antagonist Ki16425[46]. A follow-up study 
showed that ATX overexpression in microglia limited 
the pro-inflammatory response to lipopolysaccharide  
exposure, mimicking Gram-negative infection[47].  
ATX is expressed in high endothelial venules 
(HEVs) in lymph nodes and other secondary lymphoid 
tissues[48] and mediates lymphocyte extravasation, 
which is crucial for maintaining immune homeosta-
sis[49-51]. However, in chronically inflamed tissues,  
ATX mediates lymphocyte trafficking and upregulates 
cytokine production in response to repeated microinju-
ries and incomplete tissue repair[52-54].

We recently showed that ATX expression is nega-
tively regulated by LPA signaling through increased 
phosphatidylinositol 3-kinase (PI3K); however, this  
inhibition is overcome by pro-inflammatory cyto-
kines[55]. The production of inflammatory cytokines,  
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such as in damaged and inflamed tissue, is a signal for 
increased ATX expression and LPA production to heal 
the wound[39,56]. If this process is successful and inflam-
mation subsides, then LPA produced by ATX feeds 
back and blocks further ATX production. However,  
if inflammation is unresolved, inflammatory cytokines 
stimulate further ATX production and consequent LPA 
formation stimulates more cytokine production in a 
vicious cycle[56].

The initial relation of ATX/LPA signaling with mel-
anoma cells resulted in much of the early research into 
ATX being concentrated in the cancer field[39,57-65]. LPA 
increases vascular endothelial growth factor (VEGF) 
production, which stimulates angiogenesis[66], a process 
necessary for tumor progression. LPA decreases the 
 expression of the tumor suppressor p53[67], thus increas-
ing cancer cell survival and division. We discovered 
that LPA produces resistance to the cytotoxic effects  
of paclitaxel, a first line treatment for breast can-
cer[9,15,68]. This was confirmed[69] and extended since  
LPA produces resistance to the apoptotic effects of car-
boplatin[70] and radiation-induced cell death[14-15,71]. LPA  
levels as high as 10 μmol/L have been reported in  
ascites fluid of advanced ovarian cancer patients[5]. 
Mice that overexpress ATX in mammary epithelium 
develop spontaneous metastatic mammary tumors[72]. 
Further, the ATX gene is among the top 40 most up-
regulated genes in metastatic cancers[73]. ATX/LPA sig-
naling is positively correlated with the invasive and 
metastatic potential of several cancers including mela-
noma, breast cancer, ovarian cancer, thyroid cancer, 
renal cell cancer, lung cancer, neuroblastoma, hepato-
cellular carcinoma and glioblastoma multiforme[15,74].

However, the tumor is a heterogeneous environ-
ment composed of many different cell types including 
fibroblasts, endothelial cells and leukocytes in addition 
to cancer cells. There are also a host of soluble mole-
cules in the tumor and this heterogeneity adds another 
layer of complexity to ATX/LPA signaling. Popnikolov 
et al. showed that immunohistochemical staining for 
ATX in stromal cells and LPA3 and cancer epithelial 
cells correlate positively with cancer aggressiveness[75]. 
This study highlights the role of ATX from tumor 
stroma as a producer of LPA for cancer progression. 
We have since shown that breast cancer cells are very 
poor expressers of ATX and instead breast tumors in 
mice induce ATX in adjacent mammary adipose tis-
sue[76]. More recent work has shown that metastasis  
of breast cancer cells to bone depends on the interac-
tion of platelet-derived ATX with αVβ3 integrins on 
cancer cells[77]. Hence, in tumors like neuroblastomas, 
melanomas and thyroid carcinomas, the cancer cells 
may be abundant producers of ATX whereas in other 

tumors like breast, the cancer cells may instead rely  
on ATX produced from other tissues such as adjacent 
adipose tissue or in platelets for metastatic cells. A 
more extensive overview of ATX production in cancer 
and other diseases has been previously reviewed[56,78,79].

LPA receptor diversity and signaling
To date, there are at least six known LPA receptors,  

all of which are G-protein-coupled (GPCRs)  
(Fig. 1)[80]. GPCRs are integral membrane proteins 
composed of a single polypeptide with seven trans-
membrane domains. GPCRs transmit the signals from 
extracellular stimuli to intracellular signals through  
activation of a heterotrimeric guanosine triphosphate-
binding protein (G-protein) by the receptor, which 
involves dissociation of the Gα subunit from the  
Gβγ subunits by exchange of a guanosine diphosphate 
(GDP) for a guanosine triphosphate (GTP). These sub-
units, particularly the Gα subunit, interact with a host  
of downstream effectors to elicit an intracellular 
response.

The first three of the LPA receptors, LPA1-3, belong 
to the Edg (endothelial differentiation gene) family[80]. 
These are the best understood and most studied of  
the LPA receptors. LPA1/EDG2 was the first to be dis-
covered in 1996, followed soon after by LPA2/EDG4 
and LPA3/EDG7[81-84]. These receptors have a ubiqui-
tous distribution, and the other five GPCRs in the  
Edg-subfamily are receptors for sphingosine-1-phos-
phate (S1P) (S1P1-5), which is the sphingolipid analog 
of LPA[80]. Knockout (KO) mice have been generated 
for all the known LPA receptors, as well as double  
KOs for combinations of LPA1-3 and the triple KO 
of LPA1-3, all of which are viable[6,85-86]. LPA1 deletion  
shows craniofacial deformity while LPA3 deletion 
leads to delayed implantation of embryos and impaired 
embryo spacing[87-88]. No obvious phenotypic defect has  
been found in LPA2 KO mice [89]. These findings  
underscore the redundancy of LPA-receptor signaling  
pathways and also suggest that there may be other 
receptors that can mediate LPA signaling.

LPA4-6 belong to the P2Y purinergic family of 
receptors and have specific tissue distributions unlike 
LPA1-3

[80-90]. LPA4/GPR23/p3y9 is found in the embry-
onically developing brain and in adults largely in the 
ovaries[91-92]. LPA5/GPR92 is highly expressed in the 
spleen, small intestine and dorsal root ganglion cells[93]. 
In mast cells, LPA5 is the main LPA receptor responsi-
ble for LPA-induced release of chemokine (C-C motif) 
ligand 4 (CCL4/MIP-1β)[94]. Genetic ablation of either 
LPA4 or LPA5 does not result in obvious phenotypic 
defects[95-96]. LPA6/p2y5 appears to be important for 
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hair growth since genetic truncations of the receptor 
leads to hypotrichosis simplex, a set of diseases invol-
ving familial hair loss[97]. In vitro, this receptor only 
responds to μM concentrations of LPA while LPA1-5  
will activate in response to nM concentrations[98]. 
Finally, there are at least three more proposed LPA 
receptors (GPR87, P2Y10 and GPR35), but their speci-
ficity for LPA requires further experimental valida-
tion[80].

Overall, LPA signaling through at least six known 
G-protein-coupled receptors (LPA1-6) stimulates cell 
survival and migration through the relative activations 
of (PI3K), ERK1/2, mTOR, Ca2+-transients, Rac, Rho 
and Ras, and these receptors are often overexpressed 
in cancer cells[15]. Like for ATX, mice that overexpress 
LPA1, LPA2 or LPA3 in mammary epithelium develop 
spontaneous metastatic mammary tumors[72]. LPA1  
and/or LPA2 receptors are overexpressed in many can-
cers, particularly gastric, ovarian, breast, colorectal and 
thyroid cancers compared to healthy tissues[99-104]. In  
melanoma, LPA3 is the dominant receptor subtype,  
and LPA3 overexpression in rat hepatoma cells 
enhances tumor growth and cell migration[7,105]. Little 
cancer research has focused on LPA4-6, however,  
one study showed an increase in the unmethylated  
state of LPA5-encoding DNA in lung and hepatic can-
cer cell lines compared to normal tissues[106]. KO mice  
for LPA1 and LPA5 have fewer lung metastatic  
nodules compared to wild-type mice following tail  
vein injection of cancer cells[107]. This finding suggests  
that LPA signaling in host tissue is important for  
establishing a permissible microenvironment for meta-
static cancer cells to form new tumors. Targeting LPA 
receptors as a means of treating disease is discussed 
later on in this review, and more extensive reviews  
on LPA receptors are found elsewhere[90,108-109].

LPPs as regulators of extracellular LPA  
signaling

In mammals, LPPs consist of three isoforms: LPP1, 
LPP2 and LPP3. They share highly conserved catalytic  
domains and catalyze the dephosphorylation of a vari-
ety of lipid phosphates, including phosphatidate, LPA,  
S1P, ceramide 1-phosphate and diacylglycerol pyro-
phosphate[110]. LPPs are integral membrane proteins, 
which are localized on plasma membranes with the 
active site on the outer leaflet. This enables the LPPs 
to degrade extracellular LPA and other signaling lipids, 
attenuating their effects on surface receptor activa-
tion[110]. The importance of this ecto-activity has been 
demonstrated in vivo where the half-life of circulating  
LPA increases from 3 minutes to 12 minutes in  

LPP1 hypomorph mice compared to normal control lit-
termates[111]. LPPs are also localized on the internal 
membranes including the endoplasmic reticulum[112] 
and Golgi network[113], where presumably the catalytic 
domains face the lumenal sides of these organelles. As 
such, intracellular LPPs could potentially regulate sig-
nal transduction through dephosphorylation of lipid 
phosphates inside cells as opposed to the degradation  
of extracellular LPA or S1P[110]. Evidence for this 
was first obtained from experiments in which increas-
ing the expression of LPP1, LPP1a (a spice variant)  
and LPP2 decreased thrombin-induced ERK activa-
tion[114]. Increasing LPP1 expression also attenuated 
fibroblast migration in response to an LPA1/2 agonist 
(wls-31), which cannot be dephosphorylated[115]. Later 
work with cancer cells showed that increasing LPP1 
expression decreased the activation of Ca2+-transients 
by wls-31 and a protease-activated receptor-1 pep-
tide[116]. These effects depend on the catalytic activity 
of LPP1, but the lipid phosphate which is degraded  
by LPP1 is not yet known. Since the substrates of 
LPPs also exist inside cells, degradation of unidentified 
intracellular substrates could be one of the explanations 
for the intracellular functions of LPPs.

The LPPs and their role in cancer biology are emer-
ging fields of study. Significantly, LPP1 expression is 
decreased in many cancers including ovarian, renal, 
leukemia, colorectal, melanoma and lung cancers com-
pared to normal tissues[116]. Increasing LPP1 expression  
in ovarian cancer cells increases extracellular LPA 
hydrolysis, deceases cell proliferation and colony-
forming activity, and increases apoptosis[117]. Virtually 
identical results in ovarian cancer cell lines have been  
obtained through overexpression of LPP3[118]. 
However, there is one report that LPP3 overexpres-
sion actually increases tumor growth in glioblastoma 
models by increasing β-catenin stability and cyclin 
D1 synthesis. LPP3 is highly expressed in human pri-
mary glioblastoma tumors[119]. Rather than targeting  
LPP signaling in cancer cells, Nakayama et al.  
recently examined the contribution of LPP1 expres-
sion in the tumor microenvironment to cancer cell 
seeding[120]. Intraperitoneal injection of syngeneic 
ovarian cancer cells into LPP1 knockout mice leads  
to enhanced cancer cell seeding compared to wildtype 
mice[120]. Presumably, higher systemic levels of LPA 
can explain this result as a consequence of decreased 
LPA turnover in LPP1 knockout mice compared to 
wildtype controls[111,120]. Other work on targeting LPP 
expression or investigations to its role in tumor biol-
ogy is presented later in this review.

Thus far, the relationship between LPP2 expression 
and cancer is unclear. Work in our laboratory showed  
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that overexpression of LPP2 in fibroblasts causes pre-
mature entry into S-phase of the cell cycle, whereas 
knockdown of LPP2 delays entry by 1.5 hours[121]. 
Similar effects could not be obtained with either over-
expression or knockdown of LPP1/3, suggesting that 
LPP2 might have a unique role among the LPPs in cell 
cycle regulation[121]. Genomic screens showed LPP2 
(PPAP2C) to be upregulated in transformed human 
adult mesenchymal stem cells. In the same study, 
knockdown of LPP2 impaired anchorage-dependent  
growth of cancers cells and mesenchymal stem  
cells[122]. This work replicated our S-phase cell cycle 
findings, and further showed LPP2 to be negatively 
regulated by p53, a major tumor suppressor[122]. More 
information on the LPPs and related proteins can be 
obtained by reference to other reviews[10,39,110,123].

Targeting the ATX/LPA/LPP axis in vivo

Currently, several strategies are being investigated to 
target ATX/LPA signaling at multiple levels: by mono-
clonal antibody therapy against LPA, antagonizing  
LPA receptor signaling, attenuating LPA signaling by 
increasing LPP1 or LPP3 activities and by blocking 
LPA production through inhibition of ATX activity 
(Fig. 1). We will now summarize current progress in 
each of these areas.

LPA monocolonal antibodies
Antibody-mediated therapy is advantageous over 

traditional therapeutics in that it is extremely selective 
in its targeting and is very stable once delivered intra-
venously[124]. Normal immunological processes  
usually only clear antibodies once they bind to their  
targets and thus have a long bioavailability. For 
LPA as a target, all published work thus far comes 
from Lpath Inc. in San Diego. Their first work deter-
mined the X-ray crystal structure of LPA bound to the  
humanized monoclonal anti-LPA antibody  
LT3015[125]. They found that both heavy and light  
chain loops of the antibody create eight  hydrogen 
bonds with the glycerophosphate headgroup of 
LPA[125]. Furthermore, the antibody had no binding 
affinity to S1P, LPC, PA or PC[125].

Blocking LPA signaling with another monoclonal 
antibody, called B3, improved spinal cord injury out-
comes in both zebrafish and mouse models[126]. When 
treated with B3, there was reduced glial inflammation 
and neuronal cell death, leading to increased neuronal 
survival upstream of the injury and consequently some 
improvement in function[126]. B3 was later renamed 
LpathomabTM, and in a follow up study, treatment with  
LpathomabTM reduced IL-6 expression and lesion  

volume, and improved functional outcomes in a mouse 
model of traumatic brain injury[127] (Table 1). The  
authors also quantified increases in LPA in the cere-
brospinal fluid of human patients and mice with trau-
matic brain injuries relative to controls. This led the 
authors to conclude that anti-LPA antibody  therapy  
could have neuroprotective effects following injury[127]. 
Lpath Inc. has begun the process of entering 
LpathomabTM into clinical trials[128].

LPA receptor antagonists
Thus far, there are dozens of known LPA receptor 

antagonists, but few are effective in vivo[54]. They can 
be broadly classified into lipid mimetics or small mole-
cule inhibitors. Virtually all research into LPA receptor  
antagonist therapy comes from studies of fibrotic mod-
els[54,108,129]. LPA accelerates lung fibrosis by differen-
tiating mesenchymal stem cells into myofibroblasts 
through LPA1 signaling in idiopathic pulmonary fibro-
sis (IPF). This is a disease of interstitial infiltrates in  
the lungs characterized by progressive shortness of 
breath and worsening pulmonary function[130-131]. This 
process is slowed in bleomycin-induced IPF mouse 
models with the LPA1 antagonist AM966[132]. To date, 
there are at least three LPA1 antagonists in phase I/II 
clinical trials for IPF[108,133-135] (Table 1).

Scleroderma is also a fibrotic disease characterized by  
hardening of the skin and is a chronic systemic autoim-
mune disease[136]. Significantly, C20:4-LPA levels are 
two-fold higher in the serum of scleroderma patients com-
pared to healthy controls[137]. Studies with LPA1 KO mice  
show protection against scleroderma[138], and phase II 
clinical trials of the LPA1/3 inhibitor SAR100842 are 
underway for systemic sclerosis[108]. We refer the reader 
to other reviews that discuss LPA antagonists in greater 
detail[90,108-109].

Most efforts from the pharmaceutical industry have 
been based on the development of LPA1-selective,  
LPA2-selective, and LPA1/3 dual antagonists, since 
LPA1 and LPA3-mediated signaling is overlapping[54]. 
However, to address the issue of signaling redun-
dancy among the LPA receptors, there is a debate  
as to whether a more effective approach would be  
to develop pan-LPA receptor antagonists[54]. 
Ultimately, drug design approaches need to balance 
efficacy with safety, and a hypothetical pan-antago-
nist is more likely to have cross-reactivity with other 
unintended G-protein-coupled receptors than an 
 antagonist designed specifically to interact with one 
or two receptors. Such antagonists would likely have  
to be delivered directly to the organ of treatment  
to limit otherwise increased systemic side effects  
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compared to simpler oral, subcutaneous and/or intra-
venous administration options[54].

Increasing LPP expression as a cancer  
therapy

To date little is known about how to increase the 
low expression of LPP1 and LPP3 in cancer cells. One 
early study showed gonadotropin-releasing hormone 
increased LPP activity in ovarian cancer cells expres-
sing the gonadotropin-releasing hormone receptor[139]. 
This work with cultured cancer cells was validated  
by measuring tumor growth from SKOV3 ovarian car-
cinoma cells in nude mice. Cells that over-expressed 
hLPP3 showed lower tumor growth[118] (Table 1).  
The authors ascribed this result to the ecto-phosphatase 
activities of LPP3 at a time when the effects that occur 
downstream of receptor activation were not widely 
appreciated.

In our laboratory, we showed that overexpression of 
LPP1 in breast and thyroid cancer cell lines decreases 
tumor growth and metastasis by up to 80﹪ compared 
with the expression of catalytically inactive LPP1 in  
both syngeneic and xenograft mouse models[116] 
(Table 1). We also demonstrated that these effects  
on the cancer cells cannot be explained by the increased 
ecto-activity, which degrades exogenous LPA or S1P. 
Instead, the main action of LPP1 is mediated down-
stream of receptor activation since LPP1  overexpression 
also decreased the stimulation of Ca2+-transients by the 
stable LPA1/2 receptor agonist wls-31[116]. LPP1 expres-
sion also decreased Ca2+-transients that resulted from 
activation by a protease-activated receptor-1 agonist 

peptide, which acts independently of LPA signaling.  
At present, we do not know what substrate LPP1 acts 
on intra-cellularly to modify cell signaling and slow 
tumor progression.

ATX inhibitors
ATX inhibitors hold great potential to treat a multi-

tude of diseases mediated by LPA signaling, particu-
larly cancer and other chronic inflammatory-mediated 
diseases[56,79]. Because LPA is rapidly turned over, 
plasma LPA levels fall by >95﹪ upon treatment with 
a potent ATX inhibitor[140]. There are numerous small 
non-lipid molecules that have been discovered and 
modified to inhibit ATX activity through screening 
large libraries of compounds[141-142]. Unlike classical 
lipid analogs, these inhibitors tend to have better oral  
bioavailability due to their decreased hydrophobi-
city and they are unlikely to be degraded rapidly by 
endogenous hydrolytic pathways[143]. A more thorough  
history of ATX inhibitor development has been  published  
previously[56,79,109,141,144], and here we will discuss work on  
ATX-specific inhibitors that have been used in vivo.

PF-8380, a piperazinylbenzoxazolone derivative, 
was developed by Pfizer from screening a compound 
library followed by optimization. PF-8380 has an  
IC50 of 2.8 nmol/L against recombinant human ATX 
and 101 nmol/L for whole human blood. It was the first 
reported ATX inhibitor to reduce plasma LPA levels in 
vivo for an extended period[140]. In rat air-pouch mod-
els, 30 mg/kg PF-8380 inhibited inflammatory hyperal-
gesia with the same efficacy as 30 mg/kg naproxen, a  
routinely used nonsteroidal anti-inflammatory drug 

Table 1 Overview of targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo.

Chemical/Technique Function Stage
Pharmacological/  

Dosing Parameters Applications [Refs]

PF-8380 Autotaxin activity inhibitor 
(competitive)

Preclinical IC50 101 nmol/L 
30 mg/kg

Inflammatory hyperalgesia[140]

Radiotherapy sensitizer in glioblastoma[146]

ONO-8430506 Autotaxin activity inhibitor 
(competitive)

Preclinical IC50 5 nmol/L 
10-30 mg/kg

Benign prostatic hyperplasia[147]

Reduces breast tumor growth and metastasis and 
increases sensitization to doxorubicin[76,148]

LpathomabTM LPA monoclonal antibody Preclinical 25 mg/kg Traumatic brain injury[127]

AM966 LPA1 antagonist Preclinical IC50 17 nmol/L 
10 mg/kg

Idiopathic pulmonary fibrosis[132]

BMS-986020 LPA1 antagonist Phase II 600 mg/day (patients) Idiopathic pulmonary fibrosis[133]

BMS-986202/AM152 LPA1 antagonist Phase I 20-40 mg/kg Idiopathic pulmonary fibrosis[134]

SAR100842 LPA1/3 antagonist Phase II 20-40 mg/kg Systemic sclerosis[135]

Gene overexpression Induced LPP gene expression Preclinical Overexpressed in 
cancer cells

LPP3 overexpression reduces ovarian cancer cell 
growth[118]

LPP1 overexpression reduces tumor growth and 
metastasis in breast and thyroid cancers[116]
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(NSAID)[140]. At this concentration, PF-8380 maxi-
mally reduced LPA levels in both plasma and at the 
site of inflammation. PF-8380 also had radio-sensitiz-
ing effects in heterotopic mouse models for glioblas-
toma multiforme, delaying tumor growth by at least  
20 days[145-146]. In this study, inhibition of ATX by 
PF-8380 abrogated radiationinduced activation of  
Akt and subsequently decreased tumor vascularity 
and tumor growth[145] (Table 1).

Another potent ATX inhibitor, ONO-8430506, cur-
rently in development by Ono Pharmaceuticals Ltd. 
(Osaka, Japan), is a tetrahydrocarboline derivative with  
an IC50 of 5 nmol/L for plasma ATX activity[147].  
Dosing rats orally with 30 mg/kg of this compound 
potently suppressed ATX plasma activity and LPA 
 concentrations for 24 hours and decreased intraurethral 
pressure in benign prostatic hyperplasia models[147] 
(Table 1).

We demonstrated that ONO-8430506 delays initial  
tumor growth by about 60﹪ in Balb/c mice with ortho-
topic 4T1 breast tumors for about 10 days. This growth  
reduction is synergic with doxorubicin and the com-
bined therapy decreases tumor growth by >70﹪ for 
about 17 days[76-148] (Table 1). Subsequent lung and 
liver metastases were also reduced by about 50﹪- 
60﹪ with ATX inhibition[76,148]. In the same studies, 
we showed for first time that activation of LPA1 recep-
tors increases the stabilization of the transcription fac-
tor, Nrf2, and induces its nuclear translocation[148]. 
Nrf2 increases the expression of anti-oxidant genes 
(for example, NADPH-quinone oxidoreductase-1 and 
hemoxygenase-1), which protects cancer cells against 
oxidative damage caused by chemotherapy[149]. Also, 
LPA through Nrf2 increases the expression of the  
multi-drug resistant transporters, ABCC1, ABCG2, 
ABCC2 and ABCC3, which export toxic oxidation pro-
ducts and many chemotherapeutic drugs from cancer 
cells[148]. We confirmed these results in vivo by  showing 
that ATX inhibition with ONO-8430506 decreased 
Nrf2 levels and the expression of anti-oxidant genes 
and multi-drug resistant transporters in the 4T1 model 
of breast cancer[148]. This explains why the doxorubicin 
treatment was more effective in mice that were simulta-
neously treated with an ATX inhibitor. These responses 
could also protect against cell death during chemother-
apy with a variety of different agents. Our findings  
prompt the need for further investigations into combina-
tion therapy with other common chemotherapies like 
paclitaxel, as well as with radiotherapy.

Given the physiological importance of ATX to pro-
cesses like smooth muscle contraction, platelet aggres-
sion and wound healing, we do not know yet if potent  

ATX inhibition adversely affects tissue repair and 
remodeling. So far, ATX inhibition studies do not  
show obvious side effects, but studies using  existing 
wound healing models are warranted[150]. While 
ATX inhibition is particularly effective at reducing  
unsaturated and polyunsaturated LPA species, satu-
rated species are decreased less since their produc-
tion is probably largely mediated by PLA2  
activity[7,151]. Hence, LPA generation by minor  
sources like PLA2 may be sufficient to maintain phy-
siological processes, whereas higher concentrations  
of unsaturated LPA species from induced ATX 
 expression drive pathological processes. Answers to  
questions like these are required to determine if 
ATX inhibitors (as by extension, LPA monoclonal 
 antibodies and LPA receptor antagonists) are con-
tra-indicated in patients with pre-existing wound  
healing problems, for example, in cases of diabetic 
neuropathy and autoimmune diseases[152].

Conclusion

Tremendous progress has been made in recent years 
by targeting the ATX-LPA-LPP axis and now this  
work is rapidly being translated into clinical trials.  
We are hopeful that LPA monoclonal antibodies, 
LPA receptor antagonists and ATX inhibitors will 
become viable therapeutic interventions within the next  
decade. With several different pharmacological 
options, anti-ATX/LPA therapeutics can target all the 
way from individual receptors with receptor antago-
nists to systemic voidance of LPA with antibodies  
and ATX inhibitors. These strategies should be applic-
able in cancer therapy by providing adjuvants to 
improve chemotherapy and radiotherapy. Blocking  
LPA signaling could also provide a novel treatment 
for several inflammatory diseases.
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