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a b s t r a c t

Obesity is characterized by a state of chronic, unresolved inflammation in insulin-targeted tissues.
Obesity-induced inflammation causes accumulation of proinflammatory macrophages in adipose tissue
and liver. Proinflammatory cytokines released from tissue macrophages inhibits insulin sensitivity.
Obesity also leads to inflammation-induced endoplasmic reticulum (ER) stress and insulin resistance.
In this scenario, based on the data (specifically patterns) generated by our in vivo experiments on both
diet-induced obese (DIO) and normal chow diet (NCD) mice, we developed an in silico state space model
to integrate ER stress and insulin signaling pathways. Computational results successfully followed the
experimental results for both DIO and NCD conditions. Chromogranin A (CgA) peptide catestatin (CST:
hCgA352�372) improves obesity-induced hepatic insulin resistance by reducing inflammation and inhibit-
ing proinflammatory macrophage infiltration. We reasoned that the anti-inflammatory effects of CST
would alleviate ER stress. CST decreased obesity-induced ER dilation in hepatocytes and macrophages.
On application of Proportional-Integral-Derivative (PID) controllers on the in silico model, we checked
whether the reduction of phosphorylated PERK resulting in attenuation of ER stress, resembling CST
effect, could enhance insulin sensitivity. The simulation results clearly pointed out that CST not only
decreased ER stress but also enhanced insulin sensitivity in mammalian cells. In vivo experiment vali-
dated the simulation results by depicting that CST caused decrease in phosphorylation of UPR signaling
molecules and increased phosphorylation of insulin signaling molecules. Besides simulation results pre-
dicted that enhancement of AKT phosphorylation helps in both overcoming ER stress and achieving insu-
lin sensitivity. These effects of CST were verified in hepatocyte culture model.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The liver maintains whole body homeostasis by regulating crit-
ical metabolic, secretory and excretory functions. Calcium storage,
protein and lipid synthesis along with protein folding are the key
functions of the endoplasmic reticulum (ER) [1]. Hepatocytes (rep-
resenting up to 70% of entire liver cells) contain both rough and
smooth ER, which perform the myriad of metabolic functions [2].
The smooth ER synthesizes not only the majority of the membrane
lipids but also their intermediates such as cholesterol, ceramides,
and glycerophospholipids [3,4]. Both rodents [5,6] and humans
[7–9] accumulate ceramides in tissues and plasma [10], which
inhibits insulin action by decreasing phosphorylation of AKT and
consequent inhibition of glucose uptake. Ceramide also activates
nuclear factor-j-B (NF-jB)-tumor necrosis factor-a (TNF-a) axis
and induces inflammation [5,6]. The rough ER controls the synthe-
sis and maturation of proteins, which comprises up to 40% of cells
proteome of the secretory pathway [11]. Ribosomes perform the
translation of proteins on the cytosolic surface of the ER [12],
and sec61 complex translocates the unfolded polypeptide into

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.02.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2020.02.005
http://creativecommons.org/licenses/by/4.0/
mailto:rajat@isical.ac.in
mailto:smahata@health.ucsd.edu
https://doi.org/10.1016/j.csbj.2020.02.005
http://www.elsevier.com/locate/csbj


Fig. 1. CST improves insulin sensitivity by suppressing ER stress. Black arrows
indicate flow of the pathway, Red arrows indicate increase and Green arrows
indicate decrease. In silico modelling will integrate these signaling features and
predict an outcome. Here, ‘X’ indicates inhibition. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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the ER lumen [13] where they undergo N-glycosylation and folding
into secondary or tertiary structures. The rough ER lumen is
enriched with high concentrations of calcium, molecular chaper-
ones and folding enzymes, which facilitates protein folding and
maturation [14]. Non-native proteins are recognized by the ER
associated degradation (ERAD) quality control system and are
degraded by the cytosolic ubiquitin-proteasome system [15,16].
ER stress is characterized by the accumulation of misfolded or
unfolded proteins in response to environmental insults, increased
protein synthesis and reduced secretory efficacy [17,18].
Homeostasis is restored by the ER stress-induced activation of
the adaptive unfolded protein response (UPR). The following three
ER localized proteins initiate UPR signaling in mammalian cells:
double-stranded RNA-dependent protein kinase-like ER kinase
(PERK) - eukaryotic translation initiation factor 2a (eIF2a),
inositol-requiring 1a (IRE1a) - X-box-binding protein (XBP1), and
activating transcription factor-6a (ATF6a) [19]. When physiologi-
cal UPR becomes chronically activated, ER stress occurs. Thus, the
chronic activation of the UPR has been reported in human obesity
and non-alcoholic fatty liver disease (NAFLD), and in the adipose
and/or liver tissue of dietary and genetic murine models of obesity
[20–26].

The levels of free fatty acids (FFA), insulin, glucose, proinflam-
matory cytokines and ceramides are increased in blood of obese
rodents and humans, which activates the innate immune system
resulting in a chronic low-grade inflammation of white adipose tis-
sue [10,27] and the subsequent development of insulin resistance
on other peripheral tissues, including the skeletal muscle, adipose
and liver [28–30]. Thus, obesity aggravates both inflammation and
ER stress.

We develop an in silico state space model corresponding to the
integrated ER stress and insulin signaling pathways. Subsequently,
we simulate the model by applying external inputs responsible for
both high ER stress (diet-induced obese (DIO) condition) and nor-
mal condition (normal chow diet (NCD) or control). Here we find
that the model follows the experimental cellular behavior of both
DIO and NCD mice.

A recent investigation has shown that the chromogranin A
(CgA) peptide catestatin (CST: human CgA352�372) [31,32] improves
hepatic insulin sensitivity in DIO mice as well as in insulin-
resistant CST knockout mice by reducing inflammation and inhibit-
ing infiltration of macrophages [33]. Since ER stress activates the
inflammatory response [34–36] and the inflammatory response
in turn also activates ER stress [37], we reasoned that one addi-
tional mechanism by which CST can improve insulin resistance
in DIO mice is by alleviating ER stress (Fig. 1).

We have tested the above hypothesis by applying two
Proportional-Integral-Derivative (PID) controllers on the in silico
state space model to control the signal level of probable drug tar-
gets/markers, such as tyrosine phosphorylated insulin receptor
(IRpY), tyrosine phosphorylated insulin receptor substrate (IRSpY),
and phosphorylated Protein Kinase B (pAKT) along with phospho-
rylated PERK (pPERK), to low/high values. The simulation results
clearly indicated that reduction of pPERK resulting in attenuation
of ER stress, which was achieved by applying CST as shown by
the experimental results, led to high insulin sensitivity. Besides,
IRpY and IRSpY could not be the significant markers to be targeted
for both reduced ER stress and higher insulin sensitivity. Thus,
computational results demonstrate that the reduction of ER stress
on application of CST is one of the potential factors to enhance
insulin sensitivity in mammalian cells. This computational hypoth-
esis is confirmed by in vivo experiments. Here phosphorylation of
JNK significantly decreases due to chronic treatment with CST. In
addition, increased phosphorylation of AKT and FoxO1 implies
improvement in insulin signaling by CST. Moreover, computational
model predicted that enhanced phosphorylation of AKT along with
reduction of pPERK can play an important role to enhance insulin
sensitivity by alleviating ER stress.

In summary, this article, at first, demonstrates some in vivo
experiments on NCD and DIO mice. Depending on the experimen-
tal patterns, a computational model based on state space equations
is developed to integrate ER stress and insulin signaling pathways.
Subsequently, we investigate whether simulation results follow
the in vivo experimental results for both DIO (high ER stress) and
NCD (normal) conditions. Next, the article shows the results on
ER stress due to further in vivo experiments on DIO mice with
CST treatment. Based on these experimental results, the computa-
tional model further explores the key markers to be targeted for
achieving both alleviated ER stress and enhanced insulin sensitiv-
ity. The computational results are validated through in vivo exper-
iments. In addition, in silico results predict the possible role of
enhanced phosphorylation of AKT to increase insulin sensitivity
overcoming high ER stress, which is verified in hepatocyte culture
model where ER stress was induced by tunicamycin treatment but
inhibited by AMG44. CST, like AMG44, inhibited PERK signaling
and enhanced insulin effects.
2. Materials and methods

Here, we describe the experimental (in vivo) methodology first.
Next, we elaborate how the computational model has been
developed.

2.1. Animals, diets and treatments

DIO mice were created by feeding male wild-type (WT) mice
(starting at 8 weeks of age) with a high-fat diet (HFD, Research
diets D12492, 60% of calories from fat) for 16 weeks. Mice were
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kept in a 12:12 h dark/light cycle; food and water was available at
all times. Control mice were fed an NCD (14% of calories from fat).
Mice were treated with CST (2.5 lg/g BW IP for 15 days) after
11 weeks of HFD feeding when weight gains practically leveled
off. In accordance with NIH animal care guidelines, all procedures
and animals were housed and handled with the approval of The
Institutional Animal Care and Utilization Committee. CST treat-
ment did not alter body weight (Fig. 2A), food intake (Fig. 2B)
but reduced plasma insulin levels (Fig. 2C). Oral glucose tolerance
tests (OGTT) showed that CST treatment of DIO mice significantly
reduced glucose intolerance (Fig. 3).
Fig. 3. Oral glucose tolerance test (OGTT). A group of 8 DIO mice were injected IP
with saline or CST (2.5 lg/g body weight/day) for 16 days. At zero minute, a drop of
blood was collected from all 16 mice by snipping the tips of the tails and glucose
concentration was measured by a monitor. Subsequently, glucose was gavaged into
mice and tail blood was collected at various time points indicated and glucose
concentration was measured.
2.2. Hepatocyte isolation, culture and treatments

Male mice (16-week-old) were fed chow diet and used for per-
fusion of liver. Mice were perfused for 5 min with a calcium free
buffer and followed by collagenase perfusion in a calcium contain-
ing buffer for another 5 min. Perfusion was carried out by inserting
a catheter through inferior vena cave (IVC) and passing buffer
through a tube and allowing buffer to come out through portal vein
which was cut for this purpose. The procedure has been described
in a published article [38]. Livers, after collagenase digestion, were
excised out, hepatocytes were squeezed out in a petri dish inside a
culture hood, filtered through 100-micron nylon filter, centrifuged
at 50 x g for 5 min, and pellets were collected. The suspensions of
cell pellets were then passed through 30% isotonic percoll by cen-
trifuging at 100 x g for 10 min. Pellets were washed in buffer and
suspended in culture medium (Williams E) containing glutamax,
10% FBS, 10 nM dexamethasone and antibiotics. Hepatocytes were
seeded on collagen I coated plates. After 4 h of attachment, cultures
were treated with tunicamycin (1lg/ml, Sigma), or CST (100 nM)
or AMD44 (5 lM, TOCRIS) alone or in combination. Next day, after
12 h of incubation, cultures were exposed to serum-free medium
for 4 h. Next, cultures were washed twice with Hepes-Krebs–Ring
er-bicarbonate (HKRB) buffer and then incubated with or without
insulin (10 nM) but containing the substrates, pyruvate (5 mM)
and lactate (10 mM) for another 4 h. At the end of final incubation,
culture media were collected for glucose assay using a commercial
kit, and cultures were washed with PBS. Attached cells were dis-
solved in 1 M NaOH and subjected to protein assay. For western
blotting, attached cells were dissolved in lysis buffer containing,
Fig. 2. Body weights (A) were measured everyday, food intake (B) was measured on eve
insulin concentration (C) was determined on 16th day after collecting blood by snippin
detergent, protease inhibitor and phosphatase inhibitor cocktails
(Sigma).
2.3. Transmission electron microscopy (TEM)

WT-NCD, WT-DIO and WT-DIO + CST livers were perfusion
fixed through the left ventricle under deep anaesthesia. A pre-
warmed (37 �C) calcium and magnesium free buffer consisting of
ry other day by accounting the difference between initial food weights, and plasma
g tail vein.
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DPBS (Life Technologies Inc. Carlsbad, CA), 10 mM HEPES, 0.2 mM
EGTA, 0.2% bovine serum albumin, 5 mM glucose and 10 mM KCl
was used to flush mice for 3 min (3 ml per min; Langer Instru-
ments Corp, Boonton, NJ). This is followed by perfusion with
freshly prepared pre-warmed (37 �C) fixative containing 2.5% glu-
taraldehyde, 2% paraformaldehyde in 0.15 M cacodylate buffer
for 3 min. After dissecting, liver slices (2 mm thick) were put in
the same fixative overnight (2 h at room temperature and 12 h at
4 �C), and postfixed in 1% OsO4 in 0.1 M cacodylate buffer for 1 h
on ice. Liver slices were stained en bloc with 2–3% uranyl acetate
for 1 h on ice followed by dehydration in graded series of ethanol
(20–100%) on ice, one wash with 100% ethanol and two washes
with acetone (15 min each) and embedded with Durcupan.
Approximately, 50 to 60 nm thick sections were cut on a Leica
UCT ultramicrotome. Sections were picked upon Formvar and
carbon-coated copper grids and stained with 2% uranyl acetate
for 5 min and Sato’s lead stain for 1 min. Livers (3 from each group)
were fixed and processed in two separate days. Stained grids were
looked under a JEOL 1200EXII (JEOL, Peabody, MA) TEM and pho-
tographed with a Gatan digital camera (Gatan, Pleasanton, CA).
Random micrographs were taken from 3 livers where samples
were blinded. Also, 2 people did measurements randomly from dif-
ferent tissues as described previously [39]. The width of the ER
lumen was determined by using the free-hand tool in NIH ImageJ
1.49 software as described by VLADENA KOUKALOVA (Mednet
2016, page722).

2.4. Immunoblotting

Homogenization of livers were made in a lysis buffer supple-
mented with phosphatase and protease inhibitors. Homogenates
were subjected to 10% SDS-PAGE and immunoblotted. The follow-
ing primary antibodies were obtained from Cell Signaling Technol-
ogy (Boston, MA): AKT and pS473 AKT (both rabbit polyclonal), IRE
(rabbit polyclonal 1:1000) and pS724-IRE (rabbit polyclonal
1:500), PERK (rabbit polyclonal 1:1000) and pT980-PERK (rabbit
polyclonal 1:1000), eIF (rabbit polyclonal 1:1000) and pS51-eIF
(rabbit polyclonal 1:500). Homogenates were immunoblotted for
phospho-tyrosine using monoclonal pY antibody from Cell Signal-
ing Technology, pY signals were identified as insulin receptor
(IRpY) or insulin-receptor-substrate-1(IRS-1pY) by blotting the
pY membranes with either anti-IR or anti-IRS-1 antibodies (also
from Cell Signaling Technology).

2.5. Real Time PCR

RNeasy Mini Kit (Qiagen) was used to isolate total RNA from
liver tissues. qScript cDNA synthesis kit (QuantaBio, Beverly, MA)
was used to make the cDNAs, which were amplified by using PER-
FECTA SYBR FASTMIX L-ROX1250 (QuantaBio). The amplified sam-
ples were run on an Applied Biosystems 7500 Fast Real-Time PCR
system (ABI). All PCRs were normalized to Gapdh, and relative
expression levels were determined by the DDCt method. Primer
sequences are provided in Table S1 of Supplementary File S1.

2.6. Computational analyses

The computational model involved formulation of state transi-
tion equations, input design, estimation of values for the kinetic
parameters through model validation, and finally, application of
PID controllers. In order to formulate state transition equations,
we integrated ER stress and insulin signaling pathways as depicted
in Fig. S1 of Supplementary File S1 using the method in one of our
previous investigations [40]. Using these state transition equations
together with estimated input and parameter values, the in silico
state space model was developed. In order to investigate the signif-
icant markers to be targeted for higher insulin sensitivity along
with alleviation of ER stress, we applied PID controllers on the state
space model as depicted in Fig. S2 of Supplementary File S1.

2.6.1. Formulation of state transition equations
Let us assume that the integrated biochemical pathway (Fig. S1

of Supplementary File S1) under investigation involves the state
components x1; x2; . . . ; xn representing different signaling mole-
cules/proteins. Here, u1 and u2 are external inputs representing
ER stress and insulin. Let x1 is triggered by u1. Here, x1 is decayed/-
consumed at the rate proportional to x1 � x2. Thus, we can write,

dx1=dt ¼ k1 � u1 � k2 � x1 � x2 ð1Þ
Here k1 and k2 are interaction rate and decay constants respectively.

Let us consider a situation as an example, where x20 is activated
by x19 under the influence of x1 and x2. This activation is acceler-
ated by x18. Besides, x20 is decayed/consumed at the rate propor-
tional to x20. Here, we can write,

dx20=dt ¼ k40 � x19 � ð1þ F2 � x18Þ � x1 � x2 � k41 � x20 ð2Þ
Here k40 and k41 are interaction rate and decay constants respec-
tively, whereas F2 is binding constant. Again, x26 is triggered by
u2, and decayed/consumed at the rate proportional to x26 along with
other feedback effects due to x30 and x32. Thus, we can write,

dx26=dt ¼ k53 � u2 � k52 � x26=ð1þ F3 � x30Þð1þ F4 � x32Þ ð3Þ
Here k53 and k52 are interaction rate and decay constants respec-
tively, whereas F3 and F4 are binding constants. Similarly, we devel-
oped state transition equations for all other state components
according to the biological phenomena. We have included all state
transition equations in Supplementary File S1 to restrict the length
of manuscript.

2.6.2. Inputs u1 and u2

In order to get the equations for external inputs, we considered
system equilibrium (steady state) condition. At this condition, we
can say dx1=dt ¼ 0 and dx26=dt ¼ 0. Thus, we have

u1 ¼ amplify1 � k2 � x1 � x2=k1 ð4Þ

u2 ¼ amplify2 � k52=ð1þ F3 � x30Þð1þ F4 � x32Þ � x26=k53 ð5Þ
Here, amplify1 and amplify2 are constant terms. They are used to

amplify the effect of external inputs to the system.

2.6.3. Estimation of the values of the constant parameters through
model validation

We solved the ordinary differential equations (ODEs), formu-
lated above, with random values for the constant parameters (in-
teraction rate, decay and binding constants) in [0, 5]. We
initialized all state components at 1.05 and restrict their values
in [1,5] as depicted in Supplementary File S1. This ODE system
was solved numerically (70000 iterations and in time span of [0
0.0002]) using ode23tb solver of Matlab software. As a result, the
computational model was able to capture the behavioral pattern
of different molecules (state components) under consideration at
continuous time points. This is the advantage of ODE based model
which is capable of calculating values of state components at con-
tinuous time points depending on the initial values provided in the
beginning of simulation. The computational results were validated
to check whether the model follows the experimental behavioral
patterns or not for both DIO and NCD situations. Although the
experimental western blot results provided molecular expression/-
concentration level (low/high) at single time point, they were quite
capable of providing information about the change of molecular
expression/concentration level during DIO and NCD situations.
Based on this experimental knowledge-base, if the result did not
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follow the experimental patterns, we changed the values of the
constant terms in an ad hoc manner to replicate the experimental
behavior. Whenever the model followed the experimental behav-
ioral patterns, we fixed the values of the constant parameters as
provided in Supplementary File S1. Here we considered two situa-
tions - one calculating the value of u1 (ER stress) using Eq. 4 resem-
bling stress (DIO) and the other depicting u1 (ER stress) = 0 as
control (NCD).
2.6.4. Application of PID controllers to investigate the significant
markers to be targeted for alleviation of ER stress and enhanced insulin
sensitivity

Here we applied two PID controllers on the ODE based model
(state space model) considering it as a plant to test if the attenua-
tion of ER stress resembling experimental CST effect and the
enhancement of insulin sensitivity can be achieved simultane-
ously. In order to accomplish that the PID controllers were
Fig. 4. (A & B) TEM photographs showing dilation of ER lumen in ultrathin (�60 nm) liver
mice. (D) Schematic diagram showing the ATF branch of the UPR. (E) Changes in ATF6am
behavior of ATF6a with the experimental results. The expression of ATF6a is higher dur
involved in controlling the signal levels of pPERK, IRpY, IRSpY
and pAKT. Here we used Simulink platform of Matlab software
for simulation. Depending on error functions, appropriately calcu-
lated control (external) inputs for ER stress and insulin were
applied on the state space model. The general form of the error
function can be defined as

eðtÞ ¼ jreference inputðrðtÞÞ � corresponding outputðoðtÞÞj ð6Þ
Finally we considered the tuned parameter values as kp = 0, ki =

0.0691 and kd = 0 for first PID controller. While for the second PID
controller, we tuned parameter values as kp = 0.2134, ki = 0.10329
and kd = �0.1082. Here kp; ki and kd represent proportional, integral
and derivative constants respectively. The general form of the con-
trol (external) input function (uðtÞ) can be defined as

uðtÞ ¼ kp � eðtÞ þ ki

Z t

0
eðt0Þdt0 þ kd � deðtÞ=dt ð7Þ
sections of DIO mice. (C) Morphometric analyses of ER lumen width in NCD and DIO
RNA levels in NCD and DIO mice (n = 6). (F) In silico state space model resembling the
ing stress (DIO) condition than that in control (NCD).
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3. Results

In this section, at first, we demonstrate how computational
model of integrated ER stress and insulin signaling pathway suc-
cessfully mimics the experimental (in vivo) behavior of DIO (with
high ER stress) and NCD mice. Thereafter, some more results from
computational model depict the effects of high ER stress on insulin
signaling pathway. Next, the in vivo results on DIO mice with CST
treatment are illustrated. Then, we computationally explore the
significant markers to be targeted for higher insulin sensitivity
with alleviation of ER stress using some ‘‘thought experiments”.
Finally, the computational results are validated through in vivo
experiments as well as in hepatocyte culture model.
3.1. Hepatocyte ER dilation and activation of ATF6 branch of UPR
pathway

The increased demand on the synthetic machinery during obe-
sity results in unfolded or misfolded proteins accumulation in the
ER lumen leading to ER stress, activating the UPR. Our ultrastruc-
tural studies show dilated ER lumen possibly to accommodate
increased unfolded/misfolded proteins (Fig. 4A–C). ATF6a is an
ER type-II transmembrane protein harbouring a bZIP transcription
factor on its cytosolic domain and a C-terminal luminal region that
senses ER stress (Fig. 4D). To counteract with the ER stress, ATF6a
transits to the Golgi apparatus for its cleavage by the proteases S1P
and S2P, which releases the cytosolic domain (ATF6f) [41]. ER’s
capacity for folding is increased as a result of ATF6f-induced
expression of protein chaperone genes including ER protein 57
(ERp57), binding immunoglobulin protein (BiP or GRP78) and
glucose-regulated protein (GRP) 74. ATF6f also decreases lipogen-
esis in liver by antagonizing SREBP2 [42] and inhibits gluconeoge-
nesis by interacting with CRTC2 [43] or inhibition of CREB [44].
Consistent with the existing literature, we found increased ATF6a
mRNA level in DIO liver [42,46] (Fig. 4E).

Depending on the aforesaid experimental results, we validated
the in silico state space model during stress (DIO) and control
(NCD) conditions. We found higher expression of ATF6a during
stress (DIO) than that in control (NCD) after 70000 iterations
(Fig. 4F), which corresponds to increased ATF6amRNA in DIO liver
(Fig. 4E).
3.2. Activation of IRE1a branch of UPR

The transmembrane protein IRE1a contains an N-terminal
luminal sensor domain, a C-terminal cytosolic effector, and a single
transmembrane domain harbouring a Ser/Thir kinase domain and
an endoribonuclease domain (Fig. 5A). ER stress induces dimeriza-
tion and trans-autophosphorylation of IRE1a, thereby causing an
induction of a conformational change and the subsequent activa-
tion of its RNAse domain to selectively cleave a 26-nucleotide
intron within the XBP1 mRNA [44,48]. This unconventional splic-
ing introduces a translational frameshift to generate a stable and
active transcription factor XBP1s. Active XBP1s regulate the
expression of genes that modulate protein folding, secretion,
translocation, ERAD into the ER, and synthesis of lipid [46,50]. To
alleviate the protein-folding load on the ER, the RNAse domain of
IRE1a also modulates the ‘‘regulated IRE1-dependent decay
(RIDD)” [51]. IRE1a also induces lipogenesis [49,53] and gluconeo-
genesis [54]. Consistent with the existing literature, we found
increased phosphorylation of IRE1a (pIRE1a) in DIO liver
(Fig. 5B). The state space model also showed higher signal of
pIRE1a during stress (DIO) than that in control (NCD) (Fig. 5C),
which corresponds to increased phosphorylated IRE1a in DIO liver
(Fig. 5B).
3.3. Activation of PERK branch of UPR

Phosphorylation at Thr980 activates PERK to alleviate the
protein-folding load on the ER. Phosphorylated PERK phosphory-
lates eIF2a at Ser51 to briefly halt the initiation of mRNA transla-
tion. This leads to the reduction of global protein synthesis
resulting in decreased workload of the ER (Fig. 6A) [52,56]. Para-
doxically phosphorylated eIF2a (peIF2a) also up regulates the tran-
scription and translation of many mRNAs, such as nuclear
erythroid 2 p45-related factor 2 (Nrf2), activating transcription
factor-4 (ATF4), and nuclear factor kappa b (NF-jB). ATF4, pro-
duced through alternative translation, influences gene expressions
involved in ER redox control (ERO1, ER oxidoreductin), apoptosis
(CHOP, C/EBP homologous protein), glucose metabolism (fructose
1,6-bisphosphate; glucokinase, and phosphoenolpyruvate car-
boxykinase), and the negative feedback release of eIF2a inhibition
(Gadd34, growth arrest, and DNA damage-inducible protein)
(Fig. 6A) [54,58]. Consistent with the above literature, we found
increased phosphorylation of PERK at Thr980 (Fig. 6B) and eIF2a
at Ser51 (Fig. 6C) as well as increased mRNA level of ATF4 (Fig. 6D).

The in silico state space model was quite effective to mimic the
aforesaid experimental results. The model showed higher signals of
pPERK (Fig. 6E) and peIF2a (Fig. 6F) during stress (DIO) than that in
control (NCD), which corresponds to increased phosphorylated
PERK (Fig. 6B) and phosphorylated eIF2a (Fig. 6C) in DIO liver.

3.4. Computational model showing stress (HFD)-changes in insulin
and inflammatory signaling

Previous investigations [59,60] showed that ER stress could lead
to insulin resistance through different ways including activation of
pJNK and pIjB kinase b (pIKKb). In line with the existing literature,
the in silico state space model yielded the following: enhanced
insulin sensitivity (represented by pAkt/total Akt signal ratio) in
control (NCD) compared to that under stress (DIO) (Fig. 7A);
increased levels of IRpY (Fig. 7B), IRSpY (Fig. 7C), phosphorylated
Forkhead box protein O1 (pFoxO1) (Fig. S3A of Supplementary File
S1) and increased concentration of phosphatidylinositol trisphos-
phate (PIP3) (Fig. 7D) in control (NCD) compared to that under
stress (DIO) condition. On the other hand, the signal levels of pJNK
(Fig. 7E), pIKKb (Fig. 7E), and pNF-jB (Fig. S3B of Supplementary
File S1) were higher during stress (DIO) than that in control
(NCD) scenario.

3.5. Decreased ER stress due to CST treatment

In lean state, adipose tissue macrophages (ATM) and resident
macrophages (Kupffer cells) in liver exhibit an anti-inflammatory
alternatively activated (M2) phenotype [56–65]. Complex molecu-
lar interactions between diet, environment and genetics at the
metabolic tissues (adipocytes, heaptocytes, and pancreatic islets)
and immune system (macrophages, neutrophils, and lymphocytes)
provoke a low-grade, chronic inflammatory response, which is
called metaflammation [66]. Obesity, characterized by metaflam-
mation [62–69], is allied with ER stress that disrupts glucose
homeostasis [2,20,70] and results in the development of
atherosclerotic plaques [66–73]. In obesity, ATMs and Kupffer cells
display a predominantly proinflammatory classically activated
(M1) phenotype, which is thought to promote insulin resistance
and type 2 diabetes [56,74–79]. It has been recently shown that
IRE1a mediates saturated fatty acid-induced activation of the
NLRp3 inflammasome in human and mouse macrophages [80]
and that macrophage-specific deletion of IRE1a conferred resis-
tance to high-fat diet-induced obesity, thereby linking macro-
phages to ER stress, metaflammation and insulin sensitivity [81].
We have recently shown that CST improves insulin sensitivity by



Fig. 5. (A) Schematic diagram showing the IREa branch of the UPR. (B) Western blots showing increased phosphorylation of IRE1a in DIO liver (n = 4). (C) In silico state space
model resembling the behavior of pIRE1a with the experimental results. The ratio (pIRE1a/IRE1a) is higher during stress (DIO) condition than that in control (NCD).
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inhibiting obesity-induced inflammation and macrophage infiltra-
tion in the liver and by suppressing glucose production in hepato-
cyte [33]. Therefore, we reasoned that CST would decrease obesity-
induced ER stress. Consistent with our hypothesis we found that
CST treatment exhibits ER stress lowering effects: (i) decrease of
obesity-induced ER dilation (Fig. 8A-C) decreased mRNA abun-
dance for ATF6 (Fig. 8D and ATF4 genes (Fig. 8E, (iii) decreased
abundance of (Fig. 8F) (iv) spliced Xbp1 mRNA decreased phospho-
rylation of PERK (Fig. 8G & I), eIF2a (Fig. 8G & J), and IRE1a (Fig. 8G
& H).
3.6. Application of PID controller exploring markers to be targeted for
higher insulin sensitivity with reduced ER stress

We observed that the state space model successfully mimicked
the cellular behavior during both DIO and NCD conditions in consis-
tent with the experimental results and existing literature. In addi-
tion, the aforesaid experimental results confirmed that CST
alleviated ER stress. Literature showed ER stress would contribute
to insulin resistance. Thus it indirectly implies that attenuation of
ER stress in hepaticmacrophages byCSTmaybe an additionalmech-



Fig. 6. (A) Schematic diagram showing the PERK branch of the UPR. (B) Western blots showing increased phosphorylation of PERK at Thr980 in DIO liver (n = 4). (C) Western
blots showing increased phosphorylation of elF2a at Ser51 in DIO liver (n = 4). (D) Changes in ATF4 mRNA level in NCD and DIO liver (n = 6). (E & F) In silico state space model
resembling the behavior of pPERK and peIF2awith the experimental results. The ratios (pPERK/PERK) and (pelF2a/elF2a) are higher during stress (DIO) condition than that in
control (NCD).
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anism to enhance insulin sensitivity. In order to test the hypothesis,
we applied two PID controllers on the state space model targeting
pPERK, IRpY, IRSpY and pAKT to a high or low value to explore a sig-
nificant marker or a combination of significant markers to be tar-
geted for enhancing insulin sensitivity with reduction of ER stress.
It was clear from our aforementioned in vivo experiments that
pPERK was a significant target-marker of CST to alleviate ER stress.
However, our in vivo experiments did not confirmwhether targeting
only pPERK was enough to enhance insulin sensitivity along with
alleviation of ER stress. In order to verify it, we considered following
three cases targeting (I) pPERK and IRpY, (II) pPERK and IRSpY and
(III) pPERK and pAKT as ‘‘thought experiments”.
3.6.1. Case I (Targeting pPERK and IRpY)
Here we checked all possible four conditions - (i) High pPERK

and low IRpY, (ii) High pPERK and high IRpY, (iii) Low pPERK and
high IRpY and (iv) low pPERK and low IRpY.

(i) High pPERK and low IRpY
Here we set a high signal value for pPERK and a low signal value
for IRpY (Fig. 9A and B). In this context, experimental results
demonstrated that ER stress increased pPERK (Fig. 6B), peIF2a
(Fig. 6C), and pIRE1a (Fig. 5B). In addition, the state space model
showed decreased insulin sensitivity (Fig. 7A) and IRpY signal
(Fig. 7B) in ER stress. Consistent with these results, this condi-



Fig. 7. In silico state space model depicting that (A) insulin sensitivity (represented by pAkt/total Akt signal ratio) is higher in control (NCD) than that in stress (DIO). Besides,
signals of phosphorylated forms of intermediate molecules (B) IRpY, (C) IRSpY and (D) concentration of PIP3 enhance in control (NCD) in comparison with stress (DIO)
condition. On the other hand, the expressions of (E) pJNK and (F) pIKKb become higher during stress (DIO) than in control (NCD) scenario.
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tion depicted high ER stress (represented by the flux of
unfolded proteins) and low insulin sensitivity (represented by
pAkt/total Akt signal ratio) along with high values for the ratios,
i.e., (pPERK/PERK), (pIRE1a/IRE1a) and (peIF2a/eIF2a) (Fig. 9C
and D).
(ii) High pPERK and high IRpY
In this condition, both signals of pPERK and IRpY were set to
high values (Fig. 9E and F). We observed that high signal of IRpY
was not able to raise insulin sensitivity as ER stress became high
(Fig. 9G). Subsequently, the other ratios (pPERK/PERK), (pIRE1a/
IRE1a) and (peIF2a/eIF2a) became high (Fig. 9H). It is clear that
when pPERK is high, i.e., the ratios are high, insulin sensitivity
cannot be high in spite of high IRpY signal. In this context, it
should be mentioned that this condition is naturally not possi-
ble because ER stress (PERK signaling) and Insulin signaling are
inversely related. Both cannot be high at the same time. How-
ever, an artificial situation can be created where DIO mice are
infected with virus expressing a mutant IR that mimics pY.
But such mice are not available.
(iii) Low pPERK and high IRpY
For this condition, the signal value of pPERK was targeted to be
low while IRpY to be high (Fig. 10A and B). In this context,
experimental results demonstrated CST alleviated ER stress
(Fig. 8A–C and 11A–G), which led to decreased pPERK (Fig. 8G
& I), peIF2a (Fig. 8G & J) and pIRE1a (Fig. 8G & H). Similarly, this
case depicted low ER stress (Fig. 10C) along with low values for
the ratios (pPERK/PERK), (pIRE1a/IRE1a) and (peIF2a/eIF2a)
(Fig. 10D). In addition, we noticed high insulin sensitivity
(Fig. 10C) here. The in vivo verification (Fig. 15) of this condition
will be discussed in following subsections.



Fig. 8. (A & B) TEM photographs showing attenuation of ER lumen in DIO liver sections after treatment with CST. (C) Morphometric analyses of TEM photographs showing
decreased ER lumen width after treatment with CST. qPCR analyses showing CST-induced decrease in mRNA levels of (D) ATF6a, (E) ATF4, and (F) ratio between spliced versus
unspliced Xbp1 in DIO liver. (G) Western blots showing decreased phosphorylation of UPR signaling molecules in DIO liver after treatment with CST: (I) phosphorylated
PERK/total PERK, (J) phosphorylated elF2a/total elF2a, and (H) phosphorylated IRE1a/total IRE1a.
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(iv) Low pPERK and low IRpY
Here, we set low signal values for both pPERK and IRpY (Fig. 10E
and F). Here, we observed very low ER stress (Fig. 10G) along
with low values for the ratios (pPERK/PERK), (pIRE1a/IRE1a)
and (peIF2a/eIF2a) (Fig. 10H). We also observed that insulin
sensitivity had been increasing slowly because of low IRpY sig-
nal, whereas ER stress output (the flux of unfolded proteins
caused by ER stress) dropped to almost zero after near time
6000 AU. (Fig. 10G). This condition may correspond to a situa-
tion where CST works in an insulin-independent way. Here
CST is suppressing JNK and NFkB signaling, macrophage-
induced inflammation and indirectly helping insulin signaling.
From the above four conditions, we clearly observed enhanced
insulin sensitivity by reducing pPERK which can be achieved
experimentally by applying CST on DIO mice. Besides, low ER stress
and low values of the ratios (pPERK/PERK), (pIRE1a/IRE1a) and
(peIF2a/eIF2a)) would result in high insulin sensitivity. Thus we
can conclude that CST not only reduces ER stress but also increases
insulin sensitivity.

3.6.2. Case II (Targeting pPERK and IRSpY)
Similar to case I, we checked all possible four conditions - (i)

High pPERK and low IRSpY, (ii) High pPERK and high IRSpY, (iii)
Low pPERK and high IRSpY and (iv) low pPERK and low IRSpY.



Fig. 9. High pPERK and low IRpY. Here (A) phosphorylated PERK output as well as (B) tyrosine phosphorylated IR output is controlled by the Proportional-Integral-
Derivative (PID) controller according to the reference input PERK target and IR target respectively. As a result, (C) shows high ER stress (flux of unfolded proteins) and low
insulin sensitivity (pAkt/total Akt signal ratio). Besides, (D) ratios (phosphorylated PERK/total-PERK), (phosphorylated IRE1a/total IRE1a) and (phosphorylated elF2a/total-
elF2a) are quite high around 0.8. High pPERK and high IRpY. Here (E) phosphorylated PERK output as well as (F) tyrosine phosphorylated IR output is controlled by
Proportional-Integral-Derivative (PID) controller according to the reference input PERK target and IR target respectively. As a result, (G) shows high ER stress (flux of unfolded
proteins) and low insulin sensitivity (pAkt/total Akt signal ratio). Besides, (H) ratios (phosphorylated PERK/total PERK), (phosphorylated IRE1a/total IRE1a) and
(phosphorylated eIF2a/total eIF2a) are quite high around 0.8.
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(i) High pPERK and low IRSpY
Here a high signal value for pPERK and a low signal value for
IRSpY (Fig. S4A-B of Supplementary File S1) led to high ER stress
and low insulin sensitivity along with high values for the ratios,
i.e., (pPERK/PERK), (pIRE1a/IRE1a) and (peIF2a/eIF2a) (Fig. S4C-
D of Supplementary File S1).
(ii) High pPERK and high IRSpY
High signal of IRSpY (Fig. S4G of Supplementary File S1) was not
able to raise insulin sensitivity (Fig. S4G of Supplementary File
S1) because of high pPERK (Fig. S4E of Supplementary File S1)
resulting in high ER stress (Fig. S4G of Supplementary File S1).
Subsequently, the other ratios (pPERK/PERK), (pIRE1a/IRE1a)
and (peIF2a/eIF2a) became high (Fig. S4H of Supplementary
File S1). As mentioned earlier, ER stress (PERK signaling) and
Insulin signaling are inversely related. Both cannot be high at
the same time. Thus, this condition is naturally not possible.
(iii) Low pPERK and high IRSpY
When the signal value of pPERK was targeted to be low while
IRSpY to be high (Fig. S5A-B of Supplementary File S1), we
noticed high insulin sensitivity (Fig. S5C of Supplementary File
S1). Besides, it depicted low ER stress (Fig. S5C of Supplemen-
tary File S1) along with low values for the ratios (pPERK/PERK),



Fig. 10. Low pPERK and high IRpY. Here (A) phosphorylated PERK output as well as (B) tyrosine phosphorylated IR output is controlled by the Proportional-Integral-
Derivative (PID) controller according to the reference input PERK target and IR target respectively. As a result, (C) shows low ER stress (flux of unfolded proteins) and high
insulin sensitivity (pAkt/total Akt signal ratio). Besides, (D) ratios (phosphorylated PERK/total PERK), (phosphorylated IRE1a/total IRE1a) and (phosphorylated eIF2a/total
eIF2a) are quite low around 0.5. Low pPERK and low IRpY. Here (E) phosphorylated PERK output as well as (F) tyrosine phosphorylated IR output is controlled by the
Proportional-Integral-Derivative (PID) controller according to the reference input PERK target and IR target respectively. As a result, (G) shows that ER stress (flux of unfolded
proteins) is very low, while insulin sensitivity (pAkt/total Akt signal ratio) is increasing. Besides, (H) ratios (phosphorylated PERK/total PERK), (phosphorylated IRE1a/total
IRE1a) and (phosphorylated eIF2a/Total eIF2a) are quite low around 0.5.
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(pIRE1a/IRE1a) and (peIF2a/eIF2a) (Fig. S5D of Supplementary
File S1). This situation arises when CST is applied as per our
experimental verification (Fig. 15) discussed later.
(iv) Low pPERK and low IRSpY Similarly, low signal value for
pPERK (Fig. S5E of Supplementary File S1) led to increasing
insulin sensitivity (Fig. S5G of Supplementary File S1). However,
insulin sensitivity had been increasing slowly because of low
IRSpY signal (Fig. S5F of Supplementary File S1). Besides, we
observed very low ER stress (Fig. S5G of Supplementary File
S1) compared to DIO situation along with low values for the
ratios (pPERK/PERK), (pIRE1a/IRE1a) and (peIF2a/eIF2a)
(Fig. S5H of Supplementary File S1). As mentioned earlier, this
condition may arise if CST works in an insulin-independent
way.

Thus, reduction of pPERK on application of CST is the main fac-
tor to enhance insulin sensitivity.
3.6.3. Case III (Targeting pPERK and pAKT)
Similar to previous two cases, we investigated all possible four

conditions – (i) High pPERK and low pAKT, (ii) High pPERK and
high pAKT, (iii) Low pPERK and high pAKT (iv) Low pPERK and
low pAKT.



Fig. 11. TEM photographs showing ER in infiltrated macrophages in DIO liver sections after treatment with CST. (A) Low magnification and (B & C) high magnification
micrographs showing ER dilation in DIO mice. (D) Low magnification and (E & F) high magnification micrographs showing ER dilation in DIO mice treated with CST. (G)
Morphometric analyses of ER lumen diameter in DIO and DIO + CST-treated mice. Western blots showing (H) decreased phosphorylation of NF-jB and (H) JNK coupled with
(H) increased phosphorylation of AKT and FoxO1 in DIO liver after treatment with CST. The corresponding densitometric values are shown as follows: (I) NF-jB, (J) JNK, (K)
AKT, and (L) FoxO1.
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(i) High pPERK and low pAKT
We found high ER stress and low insulin sensitivity along with
high values for the ratios, i.e., (pPERK/PERK), (pIRE1a/IRE1a)
and (peIF2a/eIF2a) (Fig. S6C-D of Supplementary File S1) due
to a high signal value for pPERK and a low signal value for pAKT
(Fig. S6A-B of Supplementary File S1).
(ii) High pPERK and high pAKT
High signal of pAKT (Fig. S6F of Supplementary File S1) was able
to enhance insulin sensitivity (Fig. S6G of Supplementary File
S1) in spite of high pPERK (Fig. S6E of Supplementary File S1)
resulting in high ER stress (Fig. S6G of Supplementary File S1).
Besides, the other ratios (pPERK/PERK), (pIRE1a/IRE1a) and
(peIF2a/eIF2a) remained high (Fig. S6H of Supplementary File
S1). Although, this condition is naturally not possible because
of inverse relationship between ER stress (PERK signaling) and
Insulin signaling, it clearly reveals that enhancement of pAKT
may play a significant role in higher insulin sensitivity over-
coming ER stress.
(iii) Low pPERK and high pAKT
Low signal value of pPERK and high signal value of pAKT
(Fig. S7A-B of Supplementary File S1), enhanced insulin sensi-
tivity (Fig. S7C of Supplementary File S1). Besides, ER stress



Fig. 13. Hepatocytes cultures were treated with saline (Control) and Tunicamycin
(Tunic) (1 lg/ml) for 12 h. Then control and tunicamycin treated cultures were
treated with CST (100 nM) or AMG44 (5 lM) for 6 h. Then some cultures were
treated with insulin (10 nM) for 10 min. At the end cultures were terminated and
protein extracts were subjected to western blotting for (A) pAkt(S473) and Akt
signals and (B) signal densities were plotted as bar graph. Average of three blots
were quantitated.
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became low (Fig. S7C of Supplementary File S1). This condition
also depicted low values for the ratios (pPERK/PERK), (pIRE1a/
IRE1a) and (peIF2a/eIF2a) (Fig. S7D of Supplementary File S1).
The ‘‘thought experiments” of previous cases already confirmed
that reduction of pPERK resulting in attenuation of ER stress,
resembling CST effect, could enhance insulin sensitivity. Subse-
quently, ‘‘high pPERK and high pAKT” condition (although
unnatural) discussed earlier gave a clue that enhancement of
pAKT may have an effective role in higher insulin sensitivity
overcoming ER stress. We will discuss its experimental verifica-
tion (Fig. 12–14) later.
(iv) Low pPERK and low pAKT
Here, low signal value for pPERK (Fig. S7E of Supplementary File
S1) led to improved insulin sensitivity (Fig. S7G of Supplemen-
tary File S1) in spite of low pAKT signal (Fig. S7F of Supplemen-
tary File S1). Besides, very low ER stress (Fig. S7G of
Supplementary File S1) compared to DIO situation along with
low values for the ratios (pPERK/PERK), (pIRE1a/IRE1a) and
(peIF2a/eIF2a) (Fig. S7H of Supplementary File S1) were found.
Although this condition may arise when CST works in an
insulin-independent way, it confirms that pAKT may be a signif-
icant marker to be targeted for higher insulin sensitivity by
attenuating ER stress because this condition showed lower
insulin sensitivity (steady value was near about 1.7 in
Fig. S7G of Supplementary File S1) compared to same (steady
value near was about 4.7 in Fig. S7C of Supplementary File S1)
in ‘‘low pPERK and high pAKT” condition mentioned earlier.
Experimental verification of such claim can be found in Figs. 12–
14 illustrated later.
Fig. 12. Hepatocyte cultures were exposed to tunicamycin (1 lg/ml) and CST (100
nM, or AMG44 (5 lM) alone or in combination for 12 h. Cultures were then washed
twice with glucose-free Krebs–Ringer bicarbonate buffer (HKRB) and incubated
with HKRB buffer or insulin (10 nM) in the presence of pyruvate (5 mM) and lactate
(10 mM) for another 4 h. At the end of incubation, glucose concentration in the
culture medium was measured. Culture plates were washed with PBS and attached
cells were extracted with NaOH for protein assay. Glucose values were normalized
with protein.

Fig. 14. Hepatocytes cultures were treated with saline (Control) and Tunicamycin
(Tunic) (1 lg/ml) for 12 h. Then control and tunicamycin treated cultures were
treated with CST (100 nM) or AMG44 (5 lM) for 6 h. Then some cultures were
treated with insulin (10 nM) for 10 min. At the end cultures were terminated and
protein extracts were subjected to western blotting for (A) pPERK and PERK signals,
and (B) signal densities were plotted as bar graphs. Average of three blots are
quantitated.
Finally, it can be concluded that although reduction of pPERK on
application of CST drives enhanced insulin sensitivity, pAKT can be
treated as another drug target during high ER stress. An experi-
mental condition can be created where the effects of overexpres-
sion of active Akt can be tested in an insulin-resistant model.
This will be discussed later.
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3.7. Decreased ER lumen dilation due to CST treatment

Since lipid loading creates a stress condition which might alter
ER morphology, we looked at the ER by TEM and found that the ER
lumen got dilated in infiltrated DIO liver macrophages (Fig. 11A–C
& G), which was reduced markedly by CST (Fig. 11D–G). Whether
this could be an independent marker for CST action is yet to be
established.

3.8. Alleviation of ER stress by CST results in attenuation of
inflammation and improvement in insulin signaling

Macrophage-specific deletion of IRE1a conferred resistance to
high-fat diet-induced obesity, thereby linking macrophages to ER
stress, inflammation and insulin sensitivity [81]. The transcription
factor NF-jB is normally suppressed by its inhibitor, IjBa. When
IKK (IjB kinase) is activated, it phosphorylates IjBa, which leads
to its degradation resulting in activation of NF-jB [77,83]. Acti-
vated NF-jB translocates to the nucleus and augments the expres-
sion of proinflammatory genes [79–86]. ER stress-induced IRE1
physically interacts with IKK, leading to an increase in phosphory-
lation of IjBa and the concomitant decrease in total levels of IjBa,
which results in activation of NF-jB [87]. It appears from the exist-
ing literature that during ER stress basal IKK activity, retained by
IRE1, and PERK-mediated translation inhibition act in concert to
activate NF-jB. Chronic treatment of DIO mice with CST resulted
in significant decrease in phosphorylation of NF-jB, indicating
attenuation of inflammation (Fig. 11H & I). While tyrosine phos-
phorylation activates, serine phosphorylation of insulin receptor
substrates (IRS) at specific serine residues inhibits insulin signal-
ing. ER stress induces insulin receptor signaling through increasing
the serine phosphorylation and decreasing the tyrosine phospho-
rylation of IRS-1 (IRSpY), leading to insulin resistance [88]. One
of the mechanisms by which ER stress could impair insulin action
is by the activation of JNK through double-stranded RNA-
dependent protein kinase (PKR) [68], via the IRE1/TRAF2/ASK1
[59] or the PERK/ERO1L/CHOP/IP3R/ASK1 [89] pathways, all of
which have been reported to impair insulin receptor signaling
[20,84,87,90]. We found significant decrease in phosphorylation
of JNK after chronic treatment with CST (Fig. 11H & J), which indi-
cates improvement in insulin signaling. The improvement in insu-
lin signaling by CST is further strengthened by increased
phosphorylation of AKT (Fig. 11H & K) and FoxO1 (Fig. 11H & L).

3.9. ER stress and insulin sensitivity in hepatocytes are modulated by
CST: An alternative model.

Understanding a mechanism in an in vivo model is always asso-
ciated with complications arising frommultiple interacting factors.
Therefore, interpretation of CST data in in vivo situation is expected
to have some limitations. In order to get more direct insight, we
used primary hepatocyte cultures and induced ER stress using
tunicamycin, a known stress inducer. We analysed both functional
effect by measuring glucose production as well as signaling effects
on Akt and PERK. In this model we tested the direct effects of CST.
Hepatocyte glucose production, mimicking hyperglycemia in ani-
mals, was induced by the treatment with tunicamycin along with
suppression of Akt signaling and enhancement of PERK signaling
(Fig. 12–14). AMG44, a known PERK inhibitor [97], blocked
tunicamycin-induced PERK phosphorylation (Fig. 14) and
tunicamycin-induced glucose production (Fig. 12). Insulin sup-
pressed hepatic glucose production but could not reverse tuni-
camycin effect suggesting insulin resistance induced by
tunicamycin through stimulation of ER stress in the hepatocytes.
As expected, tunicamycin inhibited Akt phosphorylation thus
explaining why insulin could not suppress tunicamycin-induced
glucose production (Figs. 12 & 13). CST partially suppressed tuni-
camycin effect but in combination with insulin, completely
reversed tunicamycin effect on glucose production (Fig. 12). In
other words, CST revived the suppressive effect of insulin which
insulin could not achieve alone. CST enhanced insulin-induced
Akt phosphorylation, and a combination of CST and insulin could
restore pAKT signals significantly, which was inhibited completely
by tunicamycin (Fig. 13). CST also demonstrated significant inhibi-
tion of tunicamycin-induced PERK phosphorylation (Fig. 14). Taken
together, the hepatocyte culture model demonstrated the pheno-
types of ER stress and its modulation by insulin and CST. It may
be noted that the increased Akt-phosphorylation achieved by a
combination of insulin and CST (Fig. 13), was able to reverse ER
stress mediated (induced by tunicamycin) suppression of insulin
sensitivity (suppression of glucose production by insulin
(Fig. 12)). This was one of the predictions of in silico modelling.
3.10. Tyrosine phosphorylation (pY) of insulin receptor (IR) and insulin
receptor substrate (IRS) and their relationship with phosphorylation of
the ER stress marker PERK

One of the goals of this study with in silico modelling of ER
stress pathway and insulin signaling pathway is to look at the sta-
tus of the markers of these pathways so that one can predict a phe-
notype or a physiological outcome. Another goal is to dissect out a
therapeutically important target molecule with the help of CST. We
analysed these two pathways both in ex vivo hepatocyte culture
model as well as in animal model. Using pAkt and pPERK as the
markers of insulin signaling pathway and ER stress pathway
respectively, we saw an inverse relationship in hepatocytes
(Figs. 12–14). Increased stress suppresses insulin-stimulated Akt
signaling but if Akt signaling is enhanced by CST treatment, it
can prevent stress effect significantly. Similar results were
obtained from the animal model of obesity. Obesity induced ER
stress, represented by the increased pPERK signals (Fig. 15C & F)
suppressed tyrosine phosphorylation of IR and IRS (Fig. 15A & D
and B & E), two markers of insulin signaling pathway. Again, CST
treatment enhanced tyrosine phosphorylation of IR and IRS con-
comitant with the suppression of pPERK signals. These results
match with some of the predictions from the in silico model.
4. Discussion

Experimental analyses revealed that chronic treatment of DIO
mice with CST results in attenuation of ER stress. Here we hypoth-
esized that ER stress could contribute to the development of insu-
lin resistance utilizing the following pathways: (i) UPR activated
transcription factors modulate expression of the gluconeogenic
enzymes PEPCK and G6Pase as well as lipogenic enzyme SREBP1c.
It has been reported that ER stress increases glucose-6-
phosphatase activity and glucose output in primary hepatocytes
[91]. This decreased insulin signaling was mediated by activated
IRE1, probably through TRAF2 recruitment and JNK activation
[59]. Furthermore, gluconeogenesis could be activated either by
ER stress-induced inhibition of IL-6/STAT3-dependent suppression
of hepatic gluconeogenic enzyme expression [93] or by activated
(by ER stress) CREBH-induced augmentation of transcription of
gluconeogenic genes [94]. We have reported recently that CST
decreased gluconeogenesis by inhibiting expression of PEPCK and
G6Pase genes [33] (ii) ER stress induced activation of IRE1 recruits
JNK and IKK by recruiting TRAF2 and ASK1 [84,60], which impair
insulin signaling by phosphorylating IRS1 on serine residues. Fur-
thermore, saturated fatty acids, ceramides and ER stress activate
PKR, which inhibits insulin signaling by inducing phosphorylation
of serine residues in IRS1 (direct regulation) as well as activating



Fig. 15. Western blotting of liver samples from, NCD, DIO and CST treated DIO mice. Mice were injected IP with saline or insulin (0.4 mU/g body weight) and sacrificed after
10 min, and tissues were frozen under liquid nitrogen. Liver protein samples were immunoblotted for insulin receptor-phosphotyrosine (IRpY) & insulin receptor (IR) (A & D),
insulin receptor substrate-phosphotyrosine (IRSpY) & insulin receptor substrate-1 (IRS-1) (B & E), phospho-PERK and PERK (C & F) signals.

A. Dasgupta et al. / Computational and Structural Biotechnology Journal 18 (2020) 464–481 479
JNK signaling pathway (indirect regulation) [63,95]. Finally, the
PERK-induced activation of TRB3, the ER stress-inducible tribbles
ortholog in humans also leads to the impairment of insulin signal-
ing by inhibiting AKT (PKB) [96]. Furthermore, NF-jB can also be
activated by ER stress-induced PERK pathway and ATF6 branches
[92]. (iii) UPR promotes accumulation of fat in hepatocytes by
inducing de novo lipogenesis (direct effect) and affecting VLDL
secretion (indirect effect) resulting in the development of insulin
resistance. Here, we found that CST decreased ER lumen diameter
in DIO liver, indicating decreased ER stress. Thus, attenuation of ER
stress in liver by CST may also contribute to improved insulin sen-
sitivity in addition to inhibition of Ly6C + macrophage infiltration
and inflammation as well as suppression of hepatic glucose pro-
duction [33].

In order to test the above hypothesis, we developed a PID con-
troller based state space model. Firstly, an in silico state space
model was designed by integrating ER stress and insulin signaling
pathways, and validated with the experimental results for both
DIO and NCD conditions. The present state space model resembled
the experimental behavioral pattern including high ratios of
(pPERK/PERK), (pIRE1a/IRE1a) and (peIF2a/eIF2a) during ER stress
(DIO). In addition, in consistent with existing literature, the state
space model showed decreased insulin sensitivity (represented
by pAkt/total Akt signal ratio) along with decreased IRpY, IRSpY,
and pFoxO1 signals along with concentration of PIP3 due to the
activation of pJNK and pIKKbb during ER stress (DIO). Secondly,
we applied two PID controllers on the present state space model
to explore a significant marker or a combination of significant
markers to be targeted for higher insulin sensitivity overcoming
ER stress. Simulation results showed that reduction of pPERk,
which can be achieved by applying CST on DIO mice, not only alle-
viated ER stress but also enhanced insulin sensitivity. Experimental
findings validated the computationally derived hypothesis. On the
other hand, according to in silico studies, high level of phosphory-
lated AKT played a significant role to enhance insulin sensitivity in
spite of high ER stress. This prediction generated by our in silico
model, validated in hepatocyte culture model using different stres-
sor, opens up a scope of succeeding in vivo experiment to verify the
effectiveness of enhanced AKT phosphorylation to increase insulin
sensitivity overcoming high ER stress. However, on application of
CST, reduced pPERK, resulting in low ER stress, can increase insulin
sensitivity independent of pAKT signal. Thus, we can conclude that
CST reduces not only inflammation but also the ER stress and, as a
result, increases the insulin sensitivity in obese model. Addition-
ally, we can treat AKT as another drug target to enhance insulin
sensitivity during high ER stress.
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