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Abstract: Diurnal fluctuations in power output have been well established with power loss typically
occurring in morning (AM) times. Beetroot juice (BRJ) is a source of dietary nitrate that possess
ergogenic properties, but it is unknown if ingestion can mitigate performance decrements in the
morning. The purpose of this study was to examine the effects of acute BRJ supplementation on
diurnal fluctuations in anaerobic performance in trained sprinters. Male Division 1 National Col-
legiate Athletic Association (NCAA) sprinters (n = 10) participated. In a double-blinded crossover
study design, participants completed three counterbalanced exercise trials under different condi-
tions: Morning–placebo (8:00 HR, AM-PL), Morning–BRJ (8:00 HR, AM-BRJ), and Afternoon–no
supplement (15:00 HR, PM). For each trial, participants completed 3 × 15 s Wingate anaerobic tests
separated by 2 min of rest. Each trial was separated by a 72 h washout period. Mean power output
(p = 0.043), anaerobic capacity (p = 0.023), and total work (p = 0.026) were significantly lower with the
AM-PL condition compared to PM. However, BRJ supplementation prevented AM losses of mean
power output (p = 0.994), anaerobic capacity (p = 0.941), and total work (p = 0.933) in the AM-BRJ
compared to the PM condition. Rate of perceived exertion was not significantly different between any
conditions (p = 0.516). Heart rate was significantly lower during the AM-BRJ condition compared to
AM-PL (p = 0.030) and PM (p < 0.001). Findings suggest anaerobic capacity suffers during AM versus
PM times in trained sprinters, but BRJ ingestion abolishes AM-associated decrements in performance.

Keywords: nitrite; wingate; sprint; anaerobic capacity

1. Introduction

Circadian rhythms are psychological, physiological, and physical oscillations that fol-
low a 24 h pattern [1–3]. Although circadian rhythms are endogenously self-sustained, they
may be influenced by various external factors including light–dark cycle, environment,
ambient temperature, and feeding state/dietary intake [4,5]. Although some dispari-
ties exist, physical performance has been repeatedly shown to have diurnal fluctuations
with peak performance typically associated with afternoon (PM) times versus morning
(AM) [6,7]. Because of performance decrements during AM times, athletes and competitors
commonly use behavioral and dietary modifications to optimize training and performance
during various times of day [8]. These interventions may potentiate performance during
peak performance times or prevent the loss of performance during non-optimal times
of day [9,10].

Time-of-day dependent changes in exercise performance and power output have been
well described, albeit some conflicting evidence exists [6,9,11–13]. Chtourou et al. showed
higher power output and performance in short-term supramaximal cycling performance
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during PM versus AM times [11]. Higher performance levels were concomitant with im-
proved neuromuscular efficiency and mean power frequency. Zarrouk et al. reported that
peak power and total work during repeated sprints suffered in AM versus PM times [12].
Power and barbell velocity during explosive resistance exercise have also been reported
to be lower during AM times by multiple investigations [6,9,10,14]. While mechanisms
for changes in performance due to time of day are not fully understood, most evidence
suggests underlying changes in core body temperature, muscular ionic movement, and
substrate utilization [3]. However, others have shown limited changes in performance
with time of day. Deschenes et al. showed no changes in exercise performance across
various times of the day although variations in sympathoadrenal activity existed [15].
Lack of differences in anaerobic exercise recovery in AM versus PM times have similarly
been shown [16]. Interestingly, Lericollais et al. showed lower power output during AM
times, but fatigue was unaffected in elite trained cyclists [13]. These conflicts suggest
the need for further study on diurnal fluctuations and exercise performance especially in
well-trained athletes.

Beetroot juice (BRJ) is an abundant source of inorganic dietary NO3
− [17]. Once

ingested, the NO3
− is reduced by oral microbiota into nitrite (NO2

−), which then increases
in the systemic circulation [18]. The circulating NO2

− then gives rise to nitric oxide (NO−)
that has been shown to increase vasodilation, improve blood flow, increase ATP synthesis,
and increase lactate clearance [19,20]. A myriad of evidence exists supporting ergogenic
benefits of BRJ supplementation [20–23]. Wylie et al. reported increases in power output
during repeated short sprints with 5 days of BRJ intake [20]. Furthermore, Coggan showed
increased contraction velocity during knee extensor exercise with acute BRJ ingestion [22].
Others have similarly shown improvements in explosive resistance exercise performance
with BRJ supplementation [21,23]. Recently, Williams et al. reported increases in explosive
bench press power and barbell velocity with acute BRJ ingestion [21]. Improvements in
power output and exercise performance may be due to increased neuromuscular efficiency,
reduced ATP cost for contraction, and increases in calcium sensitivity [20,24]. To date, less
is known on whether dietary enrichment with BRJ influences AM dependent changes to
exercise responses.

Given that the ability to develop power during intense exercise appears to be al-
tered by the time of day in which the exercise is performed, most previous investiga-
tions on BRJ supplementation strictly control for the time in which exercise sessions
are performed [21–23,25]. Although there is little variation in endogenous NO2

− produc-
tion from day to day, NO2

− levels appear to be lowest during early morning hours [26].
Furthermore, phosphocreatine (ATP-PC) and glycolytic flux have been suggested to be
lower during AM times possibly due to fluctuations in core body temperature, which
may negatively impact repeated exercise performance [27]. Taken together, exogenous
NO3

− ingestion in the morning through BRJ may aid to increase lower AM NO2
− lev-

els, thereby improving skeletal muscle blood flow, ATP-PC resynthesis, and attenuate
AM-dependent losses in power output. While previous investigations have shown NO3

−

supplementation improves performance when times of day is standardized, no studies to
date have determined if NO3

− supplementation can prevent diurnal changes in anaerobic
performance. Thus, the purpose of the following study was to investigate if acute BRJ
supplementation could attenuate AM-associated losses in anaerobic performance during
supramaximal anaerobic sprint performance in trained sprinters. We hypothesized that
exercise performance would suffer during AM versus PM times but that BRJ ingestion
would attenuate AM decrements in anaerobic capacity and performance and result in
similar to peak performance times in the PM.

2. Materials and Methods
2.1. Study Design

The following investigation used a double-blinded, counterbalanced, crossover study
design to investigate the effects of acute BRJ ingestion on supramaximal WAnT sprint
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performance. Division I National Collegiate Athletic Association (NCAA) male sprinters
completed three randomized exercise trials: (1) Morning (8:00 HR) with placebo (AM-
PL), (2) Morning (8:00 HR) with BRJ (AM-BRJ), and (3) Afternoon (15:00 HR) with no
supplementation. For each trial, participants completed 3 × 15 second Wingate anaerobic
tests (WAnT) separated by 2 min of rest. All trials were separated by a 72 h washout period.

2.2. Participants

An a priori power analysis was used to determine adequate sample size using G-
power 3.1.9.6 software. A previous investigation on acute BRJ ingestion and power output
during resistance exercise performance showed estimated effect sizes for power output
improvements at f = 0.36 and correlation of repeated measures = 0.91 [21]. Accordingly,
the following parameters were used: test = repeated measures ANOVA, f = 0.36, α = 0.05,
β = 0.8, correlation among repeated measures = 0.91. This yielded a minimum sample size
of n = 6. To be consistent with participant numbers of previous investigations on BRJ and ex-
ercise performance, a sample size of n = 10 was selected [20,21,28]. Thus, ten male Division
I NCAA sprinters (age = 20.3 yrs ± 1.9, height = 182.5 cm ± 5.2, body mass = 76.1 kg ± 6.1)
were recruited for this study. All the sprinters were on the same collegiate team and
followed similar practice and training protocols. To participate, individuals had to be
currently active on a Division I collegiate track and field roster. Participants were excluded
if they had a history of lower body injuries within 6 months prior to the initial testing date
or allergies to beetroot juice or any of its constituents. Screening for exercise safety was com-
pleted using a physical activity readiness questionnaire (PAR-Q). All individuals refrained
from vigorous lower body exercise 24 h prior to each trial. Additionally, participants were
asked to refrain from consuming caffeine, nicotine, preworkout supplements, alcohol, and
antibacterial mouthwash at least 12 h prior to testing. Written and informed consent was
obtained from each participant prior to data collection. All experimental procedures were
conducted in accordance with the Declaration of Helsinki and approved by the Samford
University Institutional Review Board (EXPD-HP-20-SUM-17).

2.3. Supplementation

For each AM trial, participants ingested a single dose of 70 mL of concentrated BRJ
(Sport shot, Beet It, United Kingdom) or PL (black currant juice; Suntory, Tokyo, Japan) 2 h
before each exercise trial [21,29]. The NO3

− content of the BRJ was standardized to provide
approximately 400 mg while the PL provided negligible to no NO3

−. Participants were
instructed to consume the entirety of the supplement within a 5 min period. Additionally,
participants were asked to replicate their diet for each of the exercise sessions and maintain
normal sleep routines [21]. Participant were not aware of any experimental hypotheses
or reasons for exercising at different times of day. Supplements were distributed by an
independent researcher not involved in data collection, and distribution order was only
divulged to researchers at the completion of all data analyses. All participants were asked
to abstain from any beet or beet-derivative products during their involvement in the study.

2.4. Protocol

Upon arrival to the laboratory, participants were fitted with a heart rate monitor (Polar
H10, Polar Electro, Bethpage, NY, USA). Following this, participants completed a 3 min
warm-up on a cycle ergometer (Monark, Varberg, Sweden) at 50 watts. Pedaling rate was
standardized to 60 bpm on a metronome. Next, participants completed 3 × 15 second
supramaximal WAnTs [30]. All tests were completed on an electronically braker cycle
ergometer (Velotron, Racermate Inc., Seattle, WA, USA). Seat height was adjusted, recorded
for subsequent visits, and situated to where the knee had approximately 5 degrees of
flexion with the crank at the bottom and the foot secured to the pedal with toe straps [31].
To begin the test, participants pedaled slowly for 20 s at unloaded resistance. A 10 second
countdown phase was given to allow for participants to reach maximal pedaling rate.
After the countdown phase had elapsed, resistance was immediately added at a load of
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7.5% of the participant’s body mass. Participants pedaled as fast and as hard as possible
following the addition of resistance for a total of 15 s. The test was repeated 2 additional
times with 2 min of active recovery separating WAnTs [32]. After each WAnT completion,
rate of perceived exertion (RPE) was measured on a 1–10 scale where 1 was “extremely
easy” and 10 was “completely exhausted” [32]. All anaerobic performance measures were
calculated over each 15 s WAnT period via Velotron Software (v4 1.0.6 Velotron, Racermate
Inc., Seattle, WA, USA). Specifically, for fatigue index, the following calculation was used:
((Wpeak − Wminimum)/15 s WAnT duration).

2.5. Data Analysis

All data were analyzed using Jamovi software (Version 0.9, Jamovi, Sydney, Australia).
Test-to-test comparisons were drawn for anaerobic performance outcomes, heart rate, and
rate perceived exertion (RPE) between each of the three conditions. Additionally, average
performance over all WAnTs was also analyzed. To compare test-to-test performance,
a 3 × 3 (Condition × Test) repeated measures ANOVA was used. For average performance
over all three WAnTs, a 1 × 3 (Test average × Condition) repeated measures ANOVA was
used. A Tukey post hoc analysis was used to detect differences in pairwise comparisons.
Estimates of effect sizes for main effects were calculated using eta-squared (η2). All data
are presented as mean ± standard deviation (SD). Significance was set at p ≤ 0.05 a priori.

3. Results
3.1. Anaerobic Performance

Test-to-test (WAnT1, WAnT2, WAnT3) anaerobic performance variables can be seen in
Figure 1. For mean power (W) (Figure 1a), there was no interaction between test × condition
(p = 0.947; η2 = 0.001). There was a significant main effect for test (p = 0.0.26; η2 = 0.225) and
condition (p = 0.002; η2 = 0.127). Power output during WAnT3 was significantly lower than
WAnT1 (p = 0.007). Mean power during the AM-PL was lower than AM-BRJ (p = 0.035)
and PM (p = 0.043). For anaerobic capacity (W kg −1) (Figure 1b), there was no interaction
between test × condition (p = 0.833; η2 = 0.003). A main effect for test (p < 0.001; η2 = 0.391)
and condition (p = 0.008; η2 = 0.251) existed. Specifically, anaerobic capacity for WAnT3
was significantly lower than WAnT1 (p < 0.001), as well as lower in the AM-PL condition
versus AM-BRJ (p = 0.011) and PM (p = 0.023). For total work (joules) (Figure 1c), there
was no interaction between test × condition (p = 0.709; η2 = 0.008). There was a significant
main effect for test (p < 0.001; η2 = 0.385) and condition (p = 0.035; η2 = 0.089). Total work
for the AM-PL condition was lower versus PM (p = 0.026) and AM-BRJ (p = 0.022). WAnT1
was significantly higher than WAnT2 (p < 0.001) and WAnT3 (p < 0.001). Furthermore, total
work for WAnT3 was significantly lower than WAnT2 (p = 0.047).

Average anaerobic performance variables (AVG) over all three WAnTs can also be seen
in Figure 1. For mean power, there was a main effect for condition (p = 0.002; η2 = 0.127)
(Figure 1a). AM-PL power output was significantly lower than PM (p = 0.043) and AM-BRJ
(p = 0.035). No differences existed between PM and AM-BRJ conditions (p = 0.994). For
anaerobic capacity, there was a main effect for condition (p = 0.008; η2 = 0.251) (Figure 1b).
Anaerobic capacity was significantly lower in the AM-PL condition versus PM (p = 0.023)
and AM-BRJ (p = 0.011). There were no differences between AM-BRJ and PM conditions
(p = 0.941). A main effect for total work was observed (p = 0.035; η2 = 0.089) (Figure 1c).
Total work was significantly lower in the PL-AM condition versus PM (p = 0.026) and AM-
BRJ (p = 0.022). There were no differences between AM-BRJ and PM conditions (p = 0.933).
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Figure 1. Anaerobic performance measures for Wingate 1 (WAnT1), Wingate 2 (WAnT2), Wingate 3 (WAnT3), and the
average over all three WAnTs (AVG). (a) Mean power (watts); (b) anaerobic capacity (watts kilogram −1); (c) total work
(joules) over the duration of the test. Data are presented as mean ± SD; * indicates significantly different from WAnT 1
(p ≤ 0.05); # indicates significantly different from WAnT 2 (p ≤ 0.05); † indicates significantly different from PM (p ≤ 0.05);
‡ indicates significantly different from AM-BRJ (p ≤ 0.05).

3.2. Heart Rate (HR) and Rate of Perceived Exertion (RPE)

Test-to-test (WAnT1, WAnT2, WAnT3) HR and RPE are shown in Figure 2. For HR
(bpm) (Figure 2a), there was no main effect for test (p = 0.656; η2 = 0.028) or interaction
for test × condition (p = 0.981; η2 < 0.001). However, a main effect for condition was
observed (p < 0.001; η2 = 0.030). Both AM-PL (p = 0.002) and AM-BRJ (p < 0.001) HR values
were significantly lower than PM. Furthermore, HR during the AM-BRJ condition was
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significantly lower than the AM-PL condition (p = 0.030). There was no main effect for RPE
for condition (p = 0.538; η2 = 0.001) or interaction for test × condition (p = 0.780; η2 = 0.002)
(Figure 2b). However, there was a main effect for test (p = 0.002; η2 = 0.366). RPE was
significantly lower during WAnT1 than for WAnT2 (p = 0.002) and WAnT3 (p < 0.001). No
differences in RPE existed between WAnT2 and WAnT3 (p = 0.114).
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Figure 2. Heart rate (HR) and rate of perceived exertion (RPE) measures for Wingate 1 (WAnT1), Wingate 2 (WAnT2),
Wingate 3 (WAnT3), and the average over all three WAnTs (AVG). (a) HR (bpm); (b) RPE (1–10 scale). Data are presented
as mean ± SD; * indicates significantly different from WAnT 1 (p ≤ 0.05); # indicates significantly different from WAnT 2
(p ≤ 0.05); † indicates significantly different from PM (p ≤ 0.05); ¥ indicates significantly different from AM-PL (p ≤ 0.05).

Average (AVG) HR and RPE over all three WAnTs can also be seen in Figure 2. There
was a main effect for condition (p < 0.001; η2 = 0.030) for HR (Figure 2a). In particular, both
AM-PL (p = 0.002) and (p < 0.001) average HR values were significantly lower than PM.
Furthermore, average HR during the AM-BRJ condition was significantly lower than the
AM-PL condition (p = 0.030). For average RPE (Figure 2b), there was no main effect for
condition (p = 0.516; η2 = 0.001).

4. Discussion

Recent evidence has accumulated showing that NO3
− supplementation via BRJ may

be beneficial to explosive exercise performance [21–23], but it is unknown if it can combat
performance decrements in the AM. Thus, the purpose of the present investigation was
to elucidate if acute BRJ ingestion could attenuate decrements of supramaximal exercise
performance in the AM versus PM. Findings reveal that power output, anaerobic capacity,
and total work suffer during AM-PL versus PM conditions. However, BRJ ingestion
prior to supramaximal exercise in the morning (AM-BRJ) attenuated performance losses
associated with the AM and restored performance to similar levels as PM. Furthermore,
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HR was lower during the AM trials compared to PM but BRJ potentiated HR decreases
further, but no difference in RPE existed. Physiological mechanisms for which BRJ alters
diurnal fluctuations in performance remain largely unclear. However, these findings
have important implications for optimizing training and attenuating decreases in exercise
performance during the AM.

Currently, average power output, anaerobic capacity, and total work were lower dur-
ing the AM-PL condition versus PM. This is well supported by previous investigations
on time of day and WAnT performance [33,34]. Peak power during WAnTs has been
reported to be lower during AM times with acrophases occurring during PM times [34].
Furthermore, Souissi et al. reported lower mean power and total work during a 30 s
supramaximal WAnT in the AM versus PM, which further bolsters AM-associated decre-
ments in performance [33]. Often, these changes in performance occur concomitantly
with fluctuating body temperature. Body temperature has been shown to follow circadian
patterns with temperatures being at trough levels in the morning [35]. In relation to exercise
performance, increasing body and muscle temperatures lead to improved ATP-PC and
glycolytic ATP turnover, muscle activation, and greater muscle force output [36,37]. While
speculative, improvements in anaerobic performance with BRJ ingestion may be due to
increases in body temperature, thereby leading to increased muscular force. Kuennen et al.
reported that short-term BRJ supplementation led to increased core body temperature dur-
ing rucksack marches in soldiers which was unexpectedly paired with improved metabolic
efficiency [38]. Present improvements in performance with BRJ supplementation may be
due to increases in body temperature and contractile efficiency. Supporting this, BRJ has
been previously shown to reduce ATP cost of muscle force production and preserves mus-
cle ATP-PC levels [24]. Thus, these metabolic benefits that have been previously observed
with BRJ supplementation may have been responsible for attenuating decrements in perfor-
mance. Previous investigations have also suggested diurnal fluctuations in intramuscular
calcium handling [36,37,39]. Specifically, it has been postulated that sarcoplasmic reticulum
calcium release and calcium sensitivity may be lower during AM times contributing to
diurnal decreases in muscle force output [39]. Our findings of decreased power output
and anaerobic capacity during the AM-PL condition versus PM support this. Decreases
in calcium release and reuptake in muscle have been associated with impaired exercise
performance [40]. However, dietary NO3

− has been shown to improve calcium handling
and sensitivity [41,42]. Hernandez et al. showed that NO3

− enrichment resulted in higher
muscle force output with increased cytosolic calcium concentrations and improved calcium
handling in mice [42]. These effects were most pronounced in type II fast twitch fibers
that are important for explosive exercise performance. Current data of BRJ-mediated
attenuation of AM losses in anaerobic performance bolster these findings. Taken together,
improvements in performance during the AM with BRJ ingestion may be due to alterations
of muscle calcium handling in fast twitch fibers, thus negating AM decreases in calcium
sensitivity. However, it should be cautioned that the area of time-of-day changes in skeletal
muscle calcium release, especially in the context of NO3

− supplementation, remains largely
understudied. The current study design alone cannot be conclusive in this regard and
future studies of how BRJ influences possible diurnal changes in muscle calcium handling
are a dire need in clarifying physiological mechanisms for performance enhancement.
Practically speaking, these physiologic alterations may prevent decreases of muscle force
output and contractile velocity during AM times. Athletic competitions often occur at vary-
ing times of day, especially in sprinters and track and field athletes, which may influence
performance [43]. Current data suggest that acute BRJ intake may aid athletes in preventing
performance loss during AM times which may benefit competition. Furthermore, previous
evidence has shown that training at higher contractile velocities is beneficial for sprint
performance and muscular adaptation while lower velocities may be less efficacious [44,45].
By eliminating power output loss during AM times with BRJ, this may allow athletes to
train at higher velocities and power in the AM, ultimately leading to superior adaptations if
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BRJ is used chronically. However, the reader is cautioned that it is still unclear how chronic
BRJ supplementation influences long-term adaptations, necessitating more investigation.

Circadian rhythms of heart rate (HR) have been well described in a variety of pop-
ulations [46,47]. In general, trough HR levels appear before and within 1–2 h of waking
while peak levels appear in mid-late afternoon times [46]. While diurnal fluctuations in
HR are dependent on numerous psychological and physiological factors, increases in HR
during PM times may be due to increased body temperature, dietary habits, limbic system
activation, and higher sympathetic neural output [48–50]. Present findings showed higher
HR during PM conditions versus AM. Although only a small magnitude of change was
observed, higher HR during PM times is in accordance with previous data [46]. However,
it is not fully known if lower HR during the AM-PL condition is due to chronobiological
factors or lower quantities of work performed during the AM-PL condition. Intriguingly,
HR during the AM-BRJ condition was significantly lower than both PM and AM-PL despite
similar or superior anaerobic capacity and total work. Although physiological mecha-
nisms were not able to be elucidated with the current study design, lower HR with BRJ
supplementation may be due to alterations in sympathetic activity and skeletal muscle
blood flow [51]. Notay et al. demonstrated that acute BRJ supplementation decreases
sympathetic nerve outflow and heart rate both at rest and during exercise [51]. Importantly,
this investigation used the same BRJ dosing strategy as the current study. While BRJ may
cause central sympathoinhibition [52], evidence has also suggested peripheral effects with
lower muscle sympathetic nerve activity (MSNA) during exercise [51]. Decreases in MSNA
suggest greater vasodilation and skeletal muscle blood flow. Thomas et al. showed that
nitric oxide inhibits sympathetic vasoconstrictor responses to muscle during exercise thus
resulting in vasodilation [53]. NO3

− supplementation through BRJ has been shown to
increase local blood flow at the active muscle, preferentially to fast twitch fibers [19]. In
addition to this, short-term BRJ supplementation reduces oxygen cost of contraction [24].
Thus, lower HR with BRJ may be due to increases in skeletal muscle blood flow paired
with reduced oxygen cost, effectively reducing cardiovascular demand during exercise.
Increases in vasodilation are important in regulating cardiac output, which is largely de-
pendent on oxygen delivery [54]. Further study on what mechanisms control HR with
BRJ supplementation and how this may be different depending on the time of day are
warranted. Lastly, RPE remained unchanged between conditions. Lack of changes in
RPE between AM and PM times have been reported previously in explosive resistance
exercise [6]. Recently, Jorda et al. reported no changes in general RPE with BRJ supple-
mentation prior to a 30 s WAnT [25]. However, muscle RPE was significantly lower with
BRJ supplementation, indicating that changes in perceived exertion may be localized to
the working muscle rather than overall perception. BRJ ingestion has been previously
linked to increased lactate clearance that could be a contributing factor to localized RPE
reductions [20]. Overall, BRJ supplementation may be useful for altering physical fatigue in
athletes but may not be applicable to those seeking to decrease perceptive fatigue. Future
investigations are required to delineate physiological and subjective changes with BRJ
ingestion at varying times of day.

5. Conclusions

While current findings provide novel insight into how BRJ alters diurnal fluctuations
in exercise performance, there were several limitations. First, blood NO2

− was not directly
measured. While other investigations have used the same approach [21], it is unknown
what plasma concentration of NO2

− is necessary for attenuation of diurnal losses in
performance. However, it should be mentioned that this exact same dosing strategy has
been repeatedly shown to result in increased plasma NO2

− [28,55]. Most of the previously
discussed physiological mechanisms for improvements in AM performance with BRJ
ingestion remain largely unclear. To identify specific mechanisms responsible for changes in
performance, a more in-depth study measuring neuromuscular and metabolic changes with
AM BRJ supplementation is warranted. Only trained male sprinters were studied currently.
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Previous evidence has suggested NO3
− metabolism may be different in females and other

populations [56]. Thus, current findings may not be generalizable to other populations or
athletes. Lastly, the current study design did not include a BRJ-PM group, leaving it unclear
to what degree BRJ might improve performance in trained sprinters during afternoon times
and if magnitudes of change are similar between AM and PM. However, the central aim of
this investigation was to identify if BRJ could specifically prevent AM-associated losses
in power output, and there is a multitude of investigations showing similar magnitudes
in performance increases when time of day is standardized [21–23,25]. This same study
design approach has been used successfully in previous work on caffeine supplementation
and diurnal fluctuations in power output [10]. Lastly, sleep and overall dietary intake
were not strictly controlled for, although participants were encouraged to maintain similar
routines throughout participation. We cannot rule out the possibility of these factors
influencing the results to a degree.

In conclusion, supramaximal exercise performance suffers during AM versus PM
times of day in trained male sprinters. However, acute BRJ ingestion attenuates decreases
in AM exercise performance and results in similar performance levels to PM times. While
RPE remained unchanged, BRJ ingestion resulted in lower HR compared to PM and AM-PL
conditions despite similar or higher total work and power output. Athletes and coaches
looking to optimize training during AM times may utilize BRJ in efforts to prevent worsen-
ing performance. Future investigation on whether performance changes affect adaptations
chronically are needed and may provide a safe and effective dietary intervention to improve
AM training.
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