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Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated

as training devices for neurorehabilitation, when active movements are no longer

possible. When the hand is paralyzed following a stroke for example, a robotic orthosis,

functional electrical stimulation (FES) or their combination may provide movement

assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is

given contingent to the movement intention or imagination, thereby closing the

sensorimotor loop. Controlling these devices may be challenging or even frustrating.

Direct comparisons between these two feedback modalities (robotics vs. FES) with

regard to the workload they pose for the user are, however, missing. Twenty healthy

subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor

imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17–

21Hz) was turned into passive opening of the contralateral hand by a robotic orthosis

or FES in a randomized, cross-over block design. Mental demand, physical demand,

temporal demand, performance, effort, and frustration level were captured with the NASA

Task Load Index (NASA-TLX) questionnaire by comparing these workload components to

each other (weights), evaluating them individually (ratings), and estimating the respective

combinations (adjusted workload ratings). The findings were compared to the task-

related aspects of active hand movement with EMG feedback. Furthermore, both

feedback modalities were compared with regard to their BMI performance. Robotic

and FES feedback had similar workloads when weighting and rating the different

components. For both robotics and FES, mental demand was the most relevant

component, and higher than during active movement with EMG feedback. The FES task

led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403)

than the robotic task in the adjusted workload ratings. Notably, the FES task showed a

physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times

closer to the robotic task. On average, significantly more onsets were reached during the

robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94

out of 20 opportunities; p = 0.016), even though there were no significant differences

between the BMI classification accuracies of the conditions (p = 0.806; CI = −0.027 to

−0.034). These findings may inform the design of neurorehabilitation interfaces toward

human-centered hardware for a more natural bidirectional interaction and acceptance by

the user.

Keywords: neuromuscular electrical stimulation, brain-robot interface, brain-computer interface, state-dependent

stimulation, closed-loop stimulation, robotic rehabilitation
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INTRODUCTION

About half of all severely affected stroke survivors remain
with persistent motor deficits in the chronic disease stage
despite therapeutic interventions on the basis of the current
standard of care (Winters et al., 2015). Since these patients
cannot use the affected hand for activities of daily living, novel
interventions investigate different neurotechnological devices to
facilitate upper limb motor rehabilitation, such as brain-machine
interfaces (BMI), robotic orthoses, neuromuscular functional
electrical stimulation (FES), and brain stimulation (Coscia et al.,
2019). BMI approaches, for example, aim at closing the impaired
sensorimotor loop in severe chronic stroke patients. They use
robotic orthoses (Ang et al., 2015; Kasashima-Shindo et al.,
2015; Belardinelli et al., 2017), FES devices (Kim et al., 2016;
Biasiucci et al., 2018), and their combination (Grimm et al.,
2016c; Resquín et al., 2017) to provide natural sensory and
proprioceptive neurofeedback during movement intention or
imagery. It is hypothesized that this approach will lead to
reorganization of the corticospinal network through repetitive
practice, and might ultimately restore the lost motor function
(Naros and Gharabaghi, 2015, 2017; Belardinelli et al., 2017;
Guggenberger et al., 2018).

However, these novel approaches often result in no relevant
clinical improvements in severe chronic stroke patients yet
(Coscia et al., 2019). Therefore, recent research has taken a
refined and rather mechanistic approach, e.g., by targeting
physiologically grounded and clinically relevant biomarkers
with BMI neurofeedback; this has led to the conceptional
differentiation between restorative therapeutic BMIs on the one
side (as those applied in this study) and classical assistive BMIs
on the other side like those applied to control devices such as
wheel-chairs (Gharabaghi, 2016): While assistive BMIs intend
to maximize the decoding accuracy, restorative BMIs want to
enhance behaviorally relevant biomarkers. Specifically, brain
oscillations in the beta frequency band have been suggested
as potential candidate markers and therapeutic targets for
technology-assisted stroke rehabilitation with restorative BMIs
(Naros and Gharabaghi, 2015, 2017; Belardinelli et al., 2017),
since they are known to enhance signal propagation in the motor
system and to determine the input-output ratio of corticospinal
excitability in a frequency- and phase-specific way (Raco et al.,
2016; Khademi et al., 2018, 2019; Naros et al., 2019).

However, these restorative BMI devices differ from their
predecessors, i.e., assistive BMIs, by an intentionally regularized
and restricted feature space, e.g., by using the beta frequency
band as a feedback signal for BMI control (Gharabaghi, 2016;
Bauer and Gharabaghi, 2017). Such a more specific approach
is inherently different from previous more flexible algorithms
that select and weight brain signal features to maximize
the decoding accuracy of the applied technology; restorative
BMIs like the those applied in this study have, therefore,
relevantly less classification accuracy than classical assistive BMIs
(Vidaurre et al., 2011; Bryan et al., 2013). As the regularized
and restricted feature space of such restorative BMI devices
leads to a lower classification accuracy in comparison to more
flexible approaches, it may be frustrating even for healthy

participants (Fels et al., 2015). IN the context of the present
study, we conjectured that such challenging tasks will increase
the relevance of extraneous load aspects like the workload
(Schnotz and Kürschner, 2007). Furthermore, the modulation
range of the oscillatory beta frequency band is compromised
in stroke patients, proportionally to their motor impairment
level (Rossiter et al., 2014; Shiner et al., 2015). That means
that more severely affected patients show less oscillatory event-
related desynchronization (ERD) and synchronization (ERS)
during motor execution or imagery (Pfurtscheller and Lopes
da Silva, 1999). To our understanding, this underlines the
relevance of beta oscillations as a therapeutic target for post-
stroke rehabilitation. At the same time, however, this poses
a major challenge for the affected patients and may, thereby,
compromise their therapeutic benefit (Gomez-Rodriguez et al.,
2011a,b; Brauchle et al., 2015).

To overcome these hurdles that are inherent to restorative
BMI devices, we have investigated different approaches in the
past: (i) Reducing the brain signal attenuation by the skull
via the application of epidural interfaces (Gharabaghi et al.,
2014b,c; Spüler et al., 2014), (ii) Augmenting the afferent
feedback of the robotic orthosis by providing concurrent
virtual reality input (Grimm et al., 2016a,b), (iii) combining
the orthosis-assisted movements with neuromuscular (Grimm
and Gharabaghi, 2016; Grimm et al., 2016c) or transcranial
electrical stimulation (Naros et al., 2016a) to enhance the
cortical modulation range (Reynolds et al., 2015), and
(iv) optimizing the mental workload related to the use of
BMI devices.

In this study, we focus on the latter approach, i.e., optimizing
the mental workload related to the use of BMI devices. For
the latter approach it would be necessary to better understand
the workloads related to different technologies applied in the
context of BMI feedback (robotics vs. FES). We, therefore,
investigated the mental demand, physical demand, temporal
demand, performance, effort, and frustration of healthy subjects
controlling a BMI by motor imagery of finger extension.
Motor imagery-related sensorimotor desynchronization in the
beta frequency-band was turned into passive opening of the
contralateral hand by a robotic exoskeleton or FES in a
randomized, cross-over block design. The respective workloads
were compared to the task-related aspects of active hand
movement with EMG feedback. We conjectured a feedback-
specific workload profile that would be informative for more
personalized future BMI approaches.

METHODS

Subjects
We recruited 20 healthy subjects (age = 23.5 ± 1.08 yeas [mean
± SD], range 19–27, 15 female) for this study. Subjects were
not naive to the tasks. All were right-handed and reached a
score equal or above 60 in the Edinburgh Handedness Inventory
(Oldfield, 1971). The subjects gave their written informed
consent before participation and the study protocol was approved
by the Ethics Committee of the Medical Faculty of the University
of Tübingen. They received monetary compensation.
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FIGURE 1 | Experimental set-up. (Left) Robotic hand orthosis as feedback device (Amadeo, Tyromotion GmbH, Graz). (Middle) Neuromuscular forearm stimulation

as feedback device (RehaMove 2, Hasomed GmbH, Magdeburg). In both cases, a brain-machine interface (BMI) detected motor imagery-related oscillations in the

beta frequency band by an electroencephalogram (EEG) and provided via a BCI2000-system contingent feedback by moving the hand with either the robot or the

electrical stimulation. (Right) The EEG montage used in this study.

Subject Preparation
We used Ag/AgCl electrodes in a 32 channel setup according
to the international 10-20 system (Fp1, Fp2, F3, Fz, F4, FC5,
FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6,
TP9, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, Pz, P4, O1, O2
with TP10 as Reference and AFz as Ground) to examine the
cortical activation pattern during the training session. Electrode
impedances were set below 10 k�. All signals are digitalized at
a sampling frequency of 1,000Hz (robotic block) or 5,000Hz
(FES block) using Brain Products Amplifiers and transmitted
online to BCI2000 software. BCI2000 controlled in combination
with a custom-made software the respective feedback device, i.e.,
either the robotic orthosis or the functional electrical stimulation.
Depending on the task, one of the following preparations
was performed. Either the robotic hand orthosis (Amadeo,
Tyromotion) was attached to the subject’s left hand (Figure 1A),
fixated with Velcro strips across the forearm and with magnetic
pads on the fingertips (Gharabaghi et al., 2014a; Naros et al.,
2016b); or functional electrical stimulation (FES, Figure 1B)
was applied to the M. extensor digitorum communis (EDC) by
the RehaMove2 (Hasomed GmbH, Magdeburg) with two self-
adhering electrodes (50mm, HAN-SEN Trading & Consulting
GmbH, Hamburg). First an electrode was fixed to the distal
end of the EDC’s muscle belly serving as ground. Then a
rectangular electrode prepared with contact gel was used to
find the optimal place for the second electrode where maximal
extension of the left hand could be achieved. Here a custom
writtenMatlab script was executed to detect the current threshold
needed for the extension. Starting at 1mA, the current was
increased in steps of 0.5–1mA. During each trial, FES was
applied for 3 s with a pulse width of 1,000 µs and a frequency
of 100Hz. At the beginning of stimulation, a ramping protocol
was implemented for 500ms. Once, the correct position and
threshold of stimulation were found, the temporary electrode
was replaced by the second stimulation electrode and both
were fixed with tape. A mean stimulation intensity of 6.5mA
(SD = 2.27) was required to cause the desired contraction
in this study.

Experimental Setup
In the beginning and end of the experiment, we recorded
3min of resting state EEG measurements with the subjects
having the eyes open. They were instructed to look straight
ahead and focus on a white cross some 1.5m in front of them
on a screen. The study consisted of a motor imagery task
with robotic feedback in one session and FES in the other.
After each session the subjects completed a NASA Task Load
Index (NASA-TLX) questionnaire (NASA Human Performance
Research Group, 1986). The evaluation consisted of two parts.
At first, the source of workload was identified: 15 cards were
shown to the subject; each with two of the six categories mental
demand, physical demand, temporal demand, performance,
effort and frustration. The subject had to decide which of the
respective two categories described the actual task demands
better. Afterwards, scales from 0 to 100 were provided for all
six categories, and the subjects were asked to rate each of them
with regard to the respective task. The experimental structure is
depicted in Figure 2A.

Block and Trial Structure
Each session consisted of 9 runs of motor imagery-based
feedback (either robotic or FES), with each run consisting of 20
trials. One session lasted until at least 120 feedback onsets (but
no more than 139 onsets) were reached. A trial began with a
preparation phase which was indicated by the auditory signal
“left hand.” After 2 s, the subjects received a “go” cue. During
the following 6 s, the hand robot or FES extended the fingers
of the left hand if the classifier of the brain-machine interface
(BMI) detected sufficient sensorimotor desynchronization in
the contralateral sensorimotor cortex. Otherwise, the passive
finger extension was stopped. Following this feedback period, the
subject received an auditory cue to “relax,” after which the robot
closed the subject’s hand again. The relax period lasted 6 s, until
the next trial commenced. Subjects were instructed to perform
kinesthetic motor imagery of opening their left hands during the
feedback period. They were instructed to keep calm and relaxed,
and to refrain from performing any motor imagery during the
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FIGURE 2 | (A) Task structure. Functional electrical stimulation (FES) and robotic feedback were applied in a cross-over block design. The FES and robotic session

consisted of 9 runs with 20 trials each. Each trial included a 2-s preparation phase, a 6-s motor imagery phase and a 6-s resting phase. One session lasted until at

least 120 feedback onsets were reached. After each block subjects completed a NASA-TLX questionnaire. Before and after the intervention a resting state EEG was

recorded. The study lasted ∼3 h. (B) Correct classification rate (CCR). Exemplary single subject data of the CCR of brain-machine interface control with robotic

feedback (a) or functional electrical stimulation (b). Time on the x-axis is relative to the go-cue for motor imagery at 0 s and the relax-cue at 6 s. The CCR on the y-axis

indicates the probability of classifying the sample correctly as motor imagery after the go-cue or as rest after the relax-cue. It is calculated on the basis of a

smoothened time course averaged over 30 trials with 95% confidence intervals estimated by bootstrapping.
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relaxation period. For all trial periods, subjects were instructed
not to perform any active movement.

Classification Algorithm
As in our earlier studies, the classification algorithm was
based on the average power in the beta-range (17–21Hz) over
sensorimotor electrodes (FC4, C4, and CP4), and has been
described in detail before (Vukelić et al., 2014; Bauer et al.,
2015, 2016b; Vukelić and Gharabaghi, 2015a): For online-
analysis, we used BCI2000 (Schalk et al., 2004), implementing
an autoregressive model based on the Burg Algorithm with a
model order of 32 and a window size of 500ms to update
the beta-power value every 40ms. The feature values were
accumulated for the last 15 s of the resting period in a first-
in-first-out manner. We calculated the standard deviation and
mean of these buffered values to transform all estimates by
subtraction of the mean and division with the standard-deviation
into a z-scored distribution. Application of a threshold θ then
enabled us to distinguish between sufficient and insufficient
desynchronization relative to the average of the relaxation period.
A classification of desynchronization as sufficient during the
feedback period was considered a true-positive and caused
extension of the fingers, while a classification as sufficient during
the relaxation or preparation period was considered a false
positive (Vukelić and Gharabaghi, 2015a,b; Bauer et al., 2016a,b).
The desynchronization threshold that controlled the feedback
was kept fixed at 0.6 for both the robotic movement and the FES.

Offline Signal Processing
The data in the FES task was recorded with 5,000Hz and then
down-sampled to 1,000Hz. Offline analysis was performed using
an algorithm that was identical to the one described for online-
analysis; therefore, no additional pre-processing was performed.
For both tasks, the true positive rate (TP) and false positive
rate (FP) were extracted from the three electrodes FC4, C4,
and CP4, and the classification accuracy (CA) was calculated by
the formula:

CA =
TP + (1− FP)

2
(1)

The first 2 s of the resting phase were excluded from analysis due
to the closing of the robotic orthosis during this time period.
Close attention was paid that there were no differences in the
offline signal processing between the conditions and that equal
time windows were used for the calculations.

This CA represents the mean performance of both the
motor imagery and relax periods. To capture the instantaneous
performance during each time-point of the tasks, the correct
classification rate (CCR) needs to be estimated. The CCR
indicates the true positive rate during the motor imagery period
and the true negative rate during the rest period. Exemplary data
for the CCR during the robotic and FES tasks is presented in
Figure 2B.

Statistical Analysis
One subject asked to quit the FES session after the first run, as the
stimulation was painful even after repositioning of the electrodes

and applying the lowest stimulation intensity. This subject was,
therefore, excluded from the statistical analysis.

The analysis was divided into two steps.
First, the results of the NASA-TLX were investigated. The

weights of each workload component were multiplied with the
respective rating from 0 to 100. This resulted in the adjusted
workload for each component. These adjusted workloads of the
different categories were, finally, added up and divided by 6.

Afterwards, the means of total workloads, weights, ratings and
adjusted workloads over all subjects were compared between the
two feedback conditions. If the values were normally distributed
on the basis of a Kolmogorov-Smirnov test, a bilateral t-test was
applied; otherwise non-parametric methods, namely a sign test
and aWilcoxon sign-rank-test were used. All confidence intervals
were calculated with a probability of 95%.

Furthermore, the weighted components of the NASA-TLX
questionnaire of a previous study of our group by Fels et al. (2015)
with actual hand opening and EMG feedback were included and
compared to the two conditions of the present study in terms of
likelihood relations between the workload weights.

Finally, the BMI performance of the two conditions (robotics
vs. FES) was calculated and compared by estimating the CA, the
TPR and the FPR, and recalculating them for thresholds between
−5 and 5.

RESULTS

The weights of the different workload components were quite
similar between both robotic (brain-robot interfaces, BRI) and
functional electrical stimulation (FES) feedback (see Table 1 and
Figure 3). In both conditions, mental demand, performance
and effort were considered as more relevant than frustration,
physical demand, and temporal demand. Physical demand (p
= 0.125) and temporal demand (p = 0.21) showed a trend to
differ between conditions, whereas the other components did
not (p > 0.79).

When comparing the workload weights of the BMI tasks with
the EMG task of the study of Fels et al. (2015), themental demand
of the latter was less (mean = 3.05; CI = 2.28 to 3.82) reaching
levels similar to performance (mean= 3.1; CI= 2.49 to 3.70) and
effort (mean = 3.24; CI = 2.55 to 3.93). The temporal demand
(mean = 2.14; CI = 1.51 to 2.78), frustration (mean = 1.81; CI
= 1.08 to 2.54), and physical demand (mean= 1.67; CI= 0.94 to
2.39) were similar between conditions.

Notably, it was 6.79 times more likely that the FES condition
showed a mental demand like the robotic condition than the
EMG task. Furthermore, the likelihood was at least 2.67 times
greater for the FES than the robotic task to show a physical
demand like the EMG task. All other components, showed no
evident differences between conditions, i.e., values between 0.9
and 1.2.

The magnitude of workload for the different components
(see Table 1 and Figure 4) was normally distributed with values
greater than 0.24 in the Kolmogorov-Smirnov tests, and was
similar to the weights. However, the physical demand of the FES
task was significantly higher (p< 0.05) than of the robotic task. In
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TABLE 1 | Results for the task-load measures.

Weights Magnitude Score

BRI FES BRI FES BRI FES

Mental demand 4.26 ± 0.42 4.11 ± 0.59 76.32 ± 7.74 70.79 ± 8.08 328.9 ± 51.7 296.6 ± 57.5

Physical demand 1.21 ± 0.71 1.84 ± 0.71 27.63 ± 11.65 35.79 ± 12.08 58.7 ± 44.6 91.8 ± 48.9

Temporal demand 2.16 ± 0.49 1.58 ± 0.59 53.68 ± 11.04 44.84 ± 11.27 125.0 ± 40.9 78.0 ± 35.8

Performance 2.95 ± 0.79 2.68 ± 0.67 39.74 ± 11.6 41.58 ± 11.19 103.4 ± 42.0 98.7 ± 30.3

Effort 2.84 ± 0.61 3.21 ± 0.63 68.95 ± 9.76 67.90 ± 7.92 211.1 ± 57.1 225.3 ± 53.9

Frustration 1.58 ± 0.77 1.47 ± 0.75 42.90 ± 11.6 37.37 ± 11.65 96.6 ± 59.0 81.3 ± 50.9

Numbers show in the columns the weights, the magnitude and the weighted score for the six different categories of the the NASA-TLX. For each task [i.e., brain-robot interface (BRI)

vs. functional electrical stimulation (FES)], the table reports the mean and the width of the symmetric 95% confidence interval.

FIGURE 3 | Weights of workload categories. The work load categories mental

demand (MD), physical demand (PD), temporal demand (TD), performance (P),

effort (E) and frustration (F) of the NASA-TLX for BMI control of passive

movement with different feedback modalities (Robotic vs. FES) in comparison

to active movement with EMG feedback (data form Fels et al., 2015).

Confidence intervals are given with a probability of 95%.

contrast, the temporal demand was estimated significantly higher
(p< 0.05) during the robotic task. On average, subjects stated that
both tasks were mentally demanding and made the experience
that they had to work hard to accomplish the performance level
reflected in the effort value. Furthermore, most of them rated
their performance as successful. Also, frustration was balanced
in both conditions (p= 0.42).

Finally, two components were particularly relevant in the
adjusted workload ratings (see Table 1 and Figure 5), which were
normally distributed according to a Kolmogorov-Smirnov test
with values greater than 0.23; namely mental demand and effort.

The remaining four components reached values only below
200. The differences between conditions with regard to the
physical demand and temporal demand were significant in the
adjusted ratings as well, similar to the findings for weight
and rating. FES was estimated as significantly more physically
demanding (p = 0.0368) than the robotic task. On the other
hand, the temporal demand was indicated as significantly higher
(p = 0.0403) when feedback was provided by the robotic hand

orthosis. Performance and frustration did not show notable
differences between conditions.

We calculated for each subjects the individual maximal
classification accuracy at the optimal threshold. This maximal CA
for BRI (61.579, CI= 54.05 to 69.11) and FES (mean= 58.112; CI
= 50.37 to 65.85) was significantly above chance level, indicating
that the subjects were able to control the respective orthosis.
Notably, this maximal CA is different from the CA that is shown
in Figure 6, which shows the CA averaged for each threshold.
Specifically, a Gaussian fit of these classification accuracies across
thresholds can be used to estimate the capacity for cognitive load
while considering the instructional design of the task (see Bauer
and Gharabaghi, 2015a). This analysis confirmed that there were
no significant differences in this measure between conditions (p
= 0.806; CI = −0.027 to −0.034); furthermore, i.e., neither the
width (p = 0.553; CI = −0.280 to 0.155) nor the spatial location
(p = 0.773; CI = −0.442 to 0.334) changed between conditions
(Figure 6). However, while maximal CA did not differ, subjects
could on average initiate orthosis movements in more trials with
BRI (17.22/20, SD = 3.02) than with FES feedback (16.46/20, SD
= 2.94). This difference was significant (p= 0.016). This indicates
the following complementary findings: The performance in both
tasks was different, i.e., subjects could to start the robotic orthosis
slightly more often than the electrical one. However, the maximal
attainable performance and cognitive load capacity was similar
between the tasks.

DISCUSSION

This study showed that using a brain-machine interface with
motor imagery and neurofeedback on the basis of a restricted and
regularized feature space (i.e., sensorimotor beta frequency band)
was a cognitively demanding task. It required relevant mental
effort independent of the applied feedback modality even from
young healthy subjects.

This observation may at least partially explain previous
findings of limited added benefit, when applying robotics
and FES during the neurorehabilitation of severely affected
chronic stroke patients (McCabe et al., 2015). Specifically, when
comparing the therapy outcome of standard physiotherapy on
the basis of motor learning to that observed with additional
robotics or FES, no differences were observed. The current
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FIGURE 4 | Magnitude of workload. Subjects rated the mental demand (MD),

physical demand (PD), temporal demand (TD), performance (P), effort (E) and

frustration (F) of the NASA-TLX for BMI control of passive movement with

different feedback modalities (Robotic vs. FES) on a scale from 0 to 100. Data

is averaged over all subjects. Confidence intervals are given with a probability

of 95%.

FIGURE 5 | Weighted workload scores. The importance weight (Figure 3) of

each workload component was multiplied with the respective magnitude

(Figure 4) and averaged over all subjects. Confidence intervals are given with

a probability of 95%.

mental demands of these neurotechnology-assisted interventions
may be beyond the residual cognitive capacities of many
stroke survivors, particularly of those with severe impairments.
Along these lines, a recent meta-analysis revealed an association
between cognitive deficits, particularly with regard to executive
functions and attention, and arm motor recovery after stroke
(Mullick et al., 2015).

Presumably, due to the actual activation of muscles, physical
demand was experienced significantly higher in FES that in
robotics task, and thereby, more similar to the active movement
condition with EMG feedback (Fels et al., 2015). This observation
matches with studies showing muscular fatigue as a consequence
of FES application (Doucet et al., 2012). We may only speculate
about the significantly higher temporal demands of the robotics
feedback. Since the device had to move back to the starting

position in the resting phase of each trial, which took about
2 s, this may have been perceived as less intuitive that the
instantaneous halt of the FES. In any case, these differences
seem not to have impacted the BMI interaction during this
single session intervention. Specifically, there were no differences
in the classification accuracy between feedback conditions (see
Figure 7) and only minor (even though significant) differences
in the number of movement onsets (on average 17 robotic vs. 16
FES from 20 trials).

This indicates that the ability to perform the task remained
unchanged during both conditions (Bauer and Gharabaghi,
2015a), and also that the opportunity to learn did not differ
between the tasks (De Jong, 2010). This may be explained along
the following lines. Even though robotics and FES led to rather
“passive” and “active” movements, respectively, both were related
to similar proprioception, i.e., perception of the current state of
the limbs, which is mediated by muscle spindles (Naito et al.,
2016). Therefore, passive movements have been shown to closely
resemble actual motor execution with regard to the neuronal
activation patterns (Szameitat et al., 2012; Bauer et al., 2015). This
may have also caused the similar BMI performances with the
two feedback modalities. However, the classification accuracies
showed a large variability between subjects (Figure 6), a finding
that suggests relevant differences between the participants with
regard to the preference for one or the other feedback modality.
This finding suggests, furthermore, that these preferences may be
considered, when planning BMI interventions for patients.

Future Research Directions
This work shows that the feedback modality (robotic vs.
FES) seems not to be the major hurdle for translating BMI
technology to effective clinical application, even though the
role of different feedback modalities is still underexplored
(Vukelić and Gharabaghi, 2015a; Kraus et al., 2016b, 2018;
Royter and Gharabaghi, 2016; Darvishi et al., 2017). To
overcome the inherent cognitive demands of this restorative
neurotechnology, without sub-challenging the participants,
physiologically-informed, online adaptations of task difficulty in
the course of the training may be necessary.

It has previously been shown that cognitively demanding
BMI tasks activated a distributed oscillatory network beyond
the sensorimotor cortex that was trained by the neurofeedback
(Vukelić et al., 2014; Bauer et al., 2015; Vukelić and Gharabaghi,
2015a,b). Addressing more specifically distinct parts of this
network that mediate corticospinal gain modulation (Khademi
et al., 2018) and subserve motor or cognitive control (Wagner
et al., 2016) may overcome some of the current limitations.
Importantly, future studies will need to evaluate in particular the
learning process in subsequent training sessions (Naros et al.,
2016b).

Moreover, the large variability of classification accuracies
that we observed in this study indicates the need to detect
the individually optimal task difficulty for each BMI user.
This has already inspired approaches to adapt the classification
threshold in the course of an intervention to overcome cognitive
load issues, maintain motivation and improve reinforcement
learning (Bauer and Gharabaghi, 2015a,b; Bauer et al., 2016a,b).
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FIGURE 6 | Classification accuracy of the feedback modalities. We

recalculated the classification accuracy (CA) offline for various thresholds to

estimate capacities for cognitive load (see also Bauer and Gharabaghi, 2015a).

The subfigures show the average CA as solid trace, on top of boxplots

indicating the distribution of CA within the group. Boxplots are characterized

by the red dotted line indicating the median, the blue boxes indicating

interquartile ranges (IQR) and the whiskers indicating 1.5 IQR. Red crosses

mark extreme values outside the whiskers. The upper subplot shows the CA

for the BRI task, the lower subplot for FES.

However, classical BMI metrics like the classification accuracy
may be suboptimal for such adaptations. A Bayesian simulation,
for example, indicated that the difficulty threshold with the
highest classification accuracy allowed for fast initial learning,
but was suboptimal for retention (Bauer and Gharabaghi, 2015b).
Accordingly, the optimal difficulty threshold from a motor
learning perspective was defined as the result of an interaction
with the individual’s ability (Guadagnoli and Lee, 2004) and
needed, therefore, to be sufficiently challenging, i.e., allowing for
a fixed failure (Wilson et al., 2019).

Along these lines, we have previously shown that adaptation
on the basis of self-rated mental effort improved the performance
of BMI neurofeedback on the basis of beta oscillations (Bauer
et al., 2016a). In this work, a linear relationship between the
difficulty threshold and the self-rated mental effort was observed,
and the threshold for optimal effort was significantly higher than
the threshold for optimal classification accuracy. This, in turn,
indicates that neurofeedback training at difficulty thresholds with

FIGURE 7 | Comparing the classification accuracy (CA) between tasks. When

the graph exceeds the dotted line at 1.3 (log10(p) after Wilcoxon signed rank

test), the CA of the two tasks would differ at a significance level of p < 0.05.

The values were calculated from the average over subjects and trials.

higher mental efforts may improve learning, and that the mental
demands related to BMI training may in fact be even beneficial if
the participants are not overstrained. In this context, an online-
adaptation strategy based on biomarkers of cognitive demand
may be particularly important (Bauer et al., 2016a).

Limitations
The single session, cross-over design of our study revealed
instantaneous work load profiles related to BMI neurofeedback
with different feedback modalities, but did not permit us
to investigate the cumulative effects during subsequent
interventions, which will have a relevant impact on cognitive
load, motivation and learning. Beyond BMI performance
metrics we did not evaluate other behavioral or physiological
parameters, which may have helped to further differentiate
between the feedback modalities. Cortical motor mapping with
refined transcranial magnetic stimulation protocols (Kraus and
Gharabaghi, 2015, 2016; Mathew et al., 2016), for example,
may overcome this limitation and provide further insight
into the differential modulation of sensorimotor areas by
these neurotechnologies (Kraus et al., 2016a). The findings
were, furthermore, acquired in healthy young participants,
who may relevantly differ in their cognitive capacities and
neurophysiological status (Mary et al., 2015) from the target
population of these interventions. Future studies will therefore
need to investigate BMI-related workload profiles in stroke
patients and age-matched controls, and consider gender
differences (Catrambone et al., 2019).

CONCLUSION

Brain-machine interfaces are cognitively demanding
independent of the applied feedback technology. Work load
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profiles help to design more personalized neurorehabilitation
interfaces tailored to the individual needs of BMI users.
This may facilitate human-centered rehabilitation hardware
for a more natural bidirectional interaction and acceptance
by the user.
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Bauer, R., Fels, M., Vukelić, M., Ziemann, U., and Gharabaghi, A. (2015).

Bridging the gap between motor imagery and motor execution with a brain–

robot interface. Neuroimage 108, 319–327. doi: 10.1016/j.neuroimage.2014.

12.026

Bauer, R., and Gharabaghi, A. (2015a). Estimating cognitive load

during self-regulation of brain activity and neurofeedback with

therapeutic brain-computer interfaces. Front. Behav. Neurosci. 9:21.

doi: 10.3389/fnbeh.2015.00021

Bauer, R., and Gharabaghi, A. (2015b). Reinforcement learning for adaptive

threshold control of restorative brain-computer interfaces: a Bayesian

simulation. Front. Neurosci. 9:36. doi: 10.3389/fnins.2015.00036

Bauer, R., and Gharabaghi, A. (2017). Constraints and adaptation of closed-

loop neuroprosthetics for functional restoration. Front. Neurosci. 11:111.

doi: 10.3389/fnins.2017.00111
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