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Mechanism of right thoracic adolescent idiopathic
scoliosis at risk for progression; a unifying pathway
of development by normal growth and imbalance
Christian Wong
Abstract

Adolescent idiopathic scoliosis is regarded as a multifactorial disease and none of the many suggested causal
etiologies have yet prevailed. I will suggest that adolescent idiopathic scoliosis has one common denominator,
namely that initial curve development is mediated through one common normal physiological pathway of thoracic
rotational instability. This is a consequence of gender specific natural growth of the passive structural components
of thoracic spinal tissues for the adolescent female. This causes an unbalanced mechanical situation, which
progresses if the paravertebral muscles cannot maintain spinal alignment. The alteration in the coronal plane with
the lateral curve deformity is an uncoupling effect due to a culmination of a secondary, temporary sagittal plane
thoracic flattening and of a primary, temporary transverse plane rotational instability for the adolescent female.
Treatment of adolescent idiopathic scoliosis should address this physiological pathway and the overall treatment
strategy is early intervention with strengthening of thoracic rotational stability for small curve adolescent idiopathic
scoliosis.
Introduction
Adolescent idiopathic scoliosis has been described as
early as 400 BC by Hippocrates [1]. Since then, numerous
studies have been conducted to clarify the etiologies
behind adolescent idiopathic scoliosis, suggesting a
broad variety of causes: central nervous system-related
as a result of cortical brain development or disharmony
in development between the somatic and autonomic
nervous system, growth-related due to anterior spinal
overgrowth or asymmetric rib growth, genetic as recog-
nized from twin studies, hormonal related to melatonin,
calmodulin or leptin system dysfunction, biomechanical
as a result of a medullary or ligamental mechanical tether,
related to asymmetry in pre-existing rotational patterns
or developmental changes in the trunk, and many others
causal theories [2-16]. The mosaic of these theories are
now being brought together into a more coherent frame-
work such as the double neuro-osseous theory and a
multimodal causal treatment may emerge in the future
[17,18]. Still, so far no single causal theory for adolescent
idiopathic scoliosis has prevailed and it is still a
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conundrum and regarded as a multifactorial disease
[2,3,18]. However, the enigma of the common clinical
characteristics of adolescent idiopathic scoliosis with a
right primary thoracic curve at risk of progression
(AIS), developing in the adolescent girl during spinal
growth, cry out for a unifying theory, clarifying these
aspects, or as formulated by Weinstein; “the key question
of how and why initial small curve develops have not been
answered” [2,3,19,20]. This paper will suggest that AIS
should not be explained by one unifying causal theory.
The etiology, being by nature multifactorial, is initiated
and mediated, however, through one common physio-
logical mechanism of thoracic rotational instability (RI)
in turn being a consequence of gender specific natural
growth, causing an unbalanced mechanical situation. I
will suggest that it is a common physiological pathway
of the normal spinal growing tissue bring about or me-
diates the ‘etiologies’ of the progressive structural AIS,
and it is the ‘mediating culprit’ that should be addressed
when treating. The foundation for this physiological
pathway has already been paved thoroughly in the scien-
tific literature, but has to be seen in a pediatric view of
growth with the biomechanical perspective of spinal
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instability in regards to treatment. Rather than considering
it to be a coherent etiology accounting for all gender, age
and curve variations, it should be seen as relevant obser-
vations leading to a suggested physiological pathway for
scoliosis with a right primary thoracic curve, since treat-
ment of these are required due to risk for progression
[20]. Principally, such a common pathway to AIS should
answer the following questions; why does AIS develop in
adolescent girls? Why is the right thoracic main curve
with rotation at risk of progression? And how to stop it?

Hypothesis
Firstly, AIS seems to be uniquely human and have been
attributed to the reclined erect posture of human bi-
pedalism [3,19,21]. Secondly, early AIS is almost equally
common in both genders, but the incidence and risk of
progression increase for girls when reaching the growth
spurt [2,20,22]. Thirdly, it seems, that the adolescent
female (AF) with AIS is taller, but does not differ with
respect to a faster growth velocity and maturation rate
as believed earlier [3,22,23]. These circumstances imply
that AIS is not due to abnormal growth but rather a
consequence of normal development for the upright
modern human and due to gender-related differences
[19]. Changes during growth of supporting structural
tissue of the spinal bones, ligaments, and muscles for
the AF would therefore seem important for the initiation
and development of AIS.
In principle, AIS has developed as a consequence of

the spine growing into a mechanically unstable column
and seems to progress in a self-sustaining ‘vicious cycle’
due to the effect of gravity and asymmetric loads in a
growth-modulating buckling-like manner [3,19,24]. Prin-
ciples of mechanical engineering or column stability tell
us, that when a column structure is higher, as in the
growing spine, it is less stable and would require stron-
ger inherent constraints for stability [19,25]. The spinal
growth spurt for both sexes coincides with adolescence,
but AF distinguish themselves from males by a signifi-
cantly increased and with an earlier thoracic growth,
and developing ‘sexual dimorphism’ of slender vertebra
[23,26,27]. The factors of thoracic growth, slender verte-
brae, and reclined posture make the thoracic spine sus-
ceptible to rotational instability when subjected to the
axial load of gravity - especially when subjected to dor-
sal shear loads as for humans [3,21,27,28]. These factors
coincide with the development of a temporarily ‘straigh-
ter’ back in sagittal plane of the thoracic spine, creating
a ‘lordotic spinal posture’ with a smaller thoracic kyphosis
at the vertebral growth peak for the AF as observed by
Adams as early as in 1882 [3,21,22,24,28-31]. This might
be initiated in the thoracolumbar junction [12] or as a
consequence of growth-induced changes in the lumbar
lordosis, sacral slope and pelvic incidence [32], but it
contributes to the overall RI, since it redirects the axial
load of gravity dorsally onto the apices of the trans-
versely heart-shaped thoracic vertebrae with ‘biplanar’
asymmetry [19,28,29]. The thoracic vertebrae will then
perform a lateral bending when rotating, due to the
‘coupled motion’ between the thoracic vertebrae [33].
This mechanism interconnects rotation and lateral
bending motion, whilst forcing the posterior element
towards the concavity of the AIS [19,21,29,33-36]. The
alteration in the coronal plane is therefore an uncoup-
ling effect due to a culmination of a secondary sagittal
plane deformity and of a primary transverse plane RI
for the AF. The concept of axial rotational imbalance is
not novel and has already been recognized as a key factor
for AIS development [37,38]. The changed dorsal-directed
load would affect the posterior elements of the facets and
costovertebral joints [28]. This makes the thoracic
frontally-oriented facet joints susceptible to RI [28,39,40].
The thoracic spine will follow the preexisting rotational
pattern to the right, since the normal adolescent also has a
right superior facet asymmetry [3,39-41]. Moreover, when
the costovertebral joints’ mechanical integrity is com-
promised, it would seem to accentuate rotation of the
vertebrae and subsequently the ‘coupled motion’ of lateral
bending [42]. Yet another ‘coupled motion’ seems to
occur, in which rotation of the vertebrae subsequently lead
costae to rotate, thus probably facilitating the ‘hump’
[35,43]. Moreover, the thoracic cage increases in size dur-
ing this period of spinal growth, whilst displaying truncal
asymmetry and a relative narrowing for the AF, adding to
the instability [12,44].
Changes in flexibility of the passive structures of spinal

soft tissue including ligaments and discs occur for the
normal AF. Spinal mobility develops with a significant
increase in thoracic rotation to the right in adolescence,
otherwise becoming stiffer in the thoracic spine in all
other planes for the AF [41,45,46]. Lumbar lateral flexion
also increases with a shift from left to right and the spine
develops significantly less overall anterior flexion for the
AF [41,47,48]. These gender-related changes in flexibility
favor RI by developing a mechanical situation of increased
lumbar lateral flexion and right thoracic rotation for the
AF without the ability to compensate for the latter by
flexing forward thoracically in the sagittal plane [19].
These factors force the spine into the classic shape of
AIS under the aforementioned ‘right’ circumstances of
increased growth, increased flexibility, and ‘lordotic’ pos-
ture, which peaks for girls in early adolescence. Not sur-
prisingly the spine regains rotational stability as the AIS
curve develops and progresses [49,50].
Already half a century ago muscle imbalance was sug-

gested as causation for AIS [3,19,51,52]. Differences in
paravertebral muscle morphology, electromyographic re-
sponse, and behavioral response to exercise have indicated
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that muscle imbalance is a cause for progression or regres-
sion of AIS [2,3,52-55]. The majority of AIS remain stable,
but the rest either regress or progress [52]. This has led to
a muscle balancing/tuning theory, where the spinal mus-
cles - in a heightened state - try to return the spine to a
neutral position, displaying a ‘wavy’ curve pattern with
fluctuations in lateral curve shape in mild and early AIS
when followed closely [20,22,52]. The paravertebral mus-
cles are suggested to have a correcting function, trying to
straighten the thoracic spine as a compensatory mechan-
ism to the increasing instability. The compensatory role of
the paravertebral muscles is substantiated by the partial
straightening of the spinal column of AIS during night-
time using electric muscle stimulation [56]. However, AIS
progresses when the paravertebral muscles fail to compen-
sate and stabilize for the inherently rotationally unstable
thoracic spine [3,19,29].
The many aforementioned proposed etiological factors

contribute to the instability, thus disturbing the spinal
equilibrium and trigger initiation of AIS through the
proposed physiological pathway. The anatomical variation,
and the multiple and variable destabilizing factors give rise
to the morphological variation in AIS curves. Morpho-
logical changes in spinal bone would seem to be an
adaptive response and secondary to the initial thoracic
rotational instability [29,40].
In conclusion, the obvious lateral spinal curvature in

the coronal plane is a consequence rather than the cause
of AIS, but “by the time the AIS achieve clinical signifi-
cance, it is the secondary deformity which is obvious and
masks or obscures the underlying primary deformity”
[29]. Moreover, there is a physiological pathway for devel-
opment of the classic right thoracic curve of AIS for AF,
and this is right thoracic rotational instability. This de-
scribed pathway should be addressed when treating AIS.

Treatment
In the last decades the nature of treating the clubfoot
has been changed successfully by Ignatius Ponseti, where
his first article was hypothetical by nature as this one,
and to paraphrase his ‘concluding words’ [57]:
“We are handicapped because of our ignorance of the

primary causes of the deformity of AIS…The altered
form of the lateral curvature is the result rather than the
cause of the deformity…and the essence of this deformity
of the spine consists in the twisting of the thoracic spine
due to rotational instability by a temporary development
of thoracic hypokyphosis…Treatment entails correction of
the position of the thoracic sagittal curvature as well as
the stretching of thoracic ligaments and strengthening
rotational thoracic and lumbar muscles. The younger the
girl, the easier these corrections are. Success requires a
thorough knowledge of the deformity and of the func-
tional anatomy of the spine”.
I will suggest that treatment of primary right thoracic
idiopathic scoliosis should address the physiological
pathway, namely by early identification and treatment
of small curve AIS, strengthening thoracic rotational
stability by exercise and creating an external hyperkyphos-
ing thoracic posture by light bracing or by other means of
sagittal plane hyperkyphotic and coronal plane central
autocorrection. Rotational strengthening exercises should
apply appropriate parts of the principles of targeted train-
ing with focus specifically on trunk control of the chest
[17,58]. Earlier brace intervention than that which is
presently practiced has recently been examined, and the
strategy of early intervention is somewhat substantiated
[59]. Likewise, brace treatment focusing on sagittal plane
correction by thoracolumbar junction hyperlordosation
have shown both initial and short-term promising results
of coronal plane correction [60,61], and autocorrective
training, which would address the central nervous system-
induced asymmetric spinal development, have also been
recognized as an effective treatment [17,62]. The perspec-
tive of treating the underlying etiological factors are
attractive, but do not seem eminent, hence treatment
aimed at this proposed physiological pathway of AIS
would (almost readily) be feasible. However, Proof of val-
idity of the proposed physiological pathway and treatment
are interrelated and will first arise after implementation of
treatment and documentation of a shift in the natural his-
tory of AIS. Large prospective longitudinal intervention
studies with randomization to either the current regime
or my proposed treatment would be needed [2].
The efficacy of the current conservative treatment of

bracing have been questioned [63,64], and it has been
claimed that omitting bracing is inconsequential [65] It
has nevertheless been prescribed for half a century [66].
Recently, bracing has been rigorously tested scientifically,
and it seems to minimize the risk of progression for AIS
in respect of the threshold for surgery [67]. However, it is
still being questioned in spite of this meticulous scientific
effort [68]. Moreover, bracing is physically and emotion-
ally strenuous for the AF with a correspondingly low
compliance [69-71]. From this point of view, it would
seem inappropriate not to look for alternate treatment
strategies [72].
In conclusion, in this study I have suggested a physio-

logical mechanism that gives a comprehensive explanation
to the enigmas of AIS. It lies inherently in the nature of
this developmental disease that long-term systematic scien-
tific proof is needed to confirm the predictions. However,
this is written to inspire future AIS research.
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