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Technology, Wuhan, China

Better understanding the mechanism of cisplatin-induced ototoxicity is of great
significance for clinical prevention and treatment of cisplatin-related hearing loss.
However, the mechanism of cisplatin-induced inflammatory response in cochlear stria
vascularis and the mechanism of marginal cell (MC) damage have not been fully clarified. In
this study, a stable model of cisplatin-induced MC damage was established in vitro, and
the results of PCR and Western blotting showed increased expressions of NLRP3,
Caspase-1, IL-1b, and GSDMD in MCs. Incomplete cell membranes including many small
pores appearing on the membrane were also observed under transmission electron
microscopy and scanning electron microscopy. In addition, downregulation of NLRP3 by
small interfering RNA can alleviate cisplatin-induced MC pyroptosis, and reducing the
expression level of TXNIP possesses the inhibition effect on NLRP3 inflammasome
activation and its mediated pyroptosis. Taken together, our results suggest that NLRP3
inflammasome activation may mediate cisplatin-induced MC pyroptosis in cochlear stria
vascularis, and TXNIP is a possible upstream regulator, which may be a promising
therapeutic target for alleviating cisplatin-induced hearing loss.
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INTRODUCTION

Hearing loss is the most common sensory disorder affecting approximately 6.1% of the world
population, which can be caused by ototoxic drugs (1–5), excessive noise exposure (6), aging6 (6–
10), genetic factors (11–15), and infections (16–18). The ototoxic drug cisplatin is the pioneer of
anticancer drugs and mainstay of cancer treatment and has been widely used in the treatment of
solid tumors, including ovarian, testicular, and lung cancer (19). However, an actuality that cannot
be ignored is that cisplatin can cause severe ototoxic side effects which usually manifested as bilateral
progressive irreversible sensorineural hearing loss (20–23). Clinical use of cisplatin often causes
hearing loss in 40%–80% of patients (24) and more damage to children (25). However, the exact
mechanism of ototoxicity induced by cisplatin remains unclear (26), and there are still no federally
approved drugs to prevent or treat cisplatin-induced hearing loss (27, 28).

The stria vascularis (SV), organ of corti (OC), and spiral ganglia are the main areas in cochlea
affected by cisplatin (29), of which the most attention has always been paid to the OC in the past
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(30, 31). Recently, Thomas et al. speculated that marginal cells
(MCs) of the SV could be the earliest targets of cisplatin in
cochlea (32). Prayuenyong et al. proposed the hypothesis of
preferential cochleotoxicity of cisplatin and emphasized the role
of SV in the pathogenesis of cisplatin-induced hearing loss (33).
Breglio et al. observed the highest cisplatin accumulation in the
SV relative to other cochlear regions, whether in mice or
humans, and pointed out that SV may be an important
intervening target for cisplatin-induced ototoxicity (34). All
these results suggested that SV may play a very significant role
in the development of cisplatin-induced ototoxicity and should
arouse more attention (35). However, few studies reported the
pathogenesis of SV in cisplatin-induced hearing loss. Thus, more
exploration on SV is necessary, and a better understanding on SV
may identify new opportunities for the clinical prevention and
treatment of cisplatin-induced hearing loss.

Oxidative stress has been identified as the crucial mechanism
of cisplatin-induced ototoxicity in the past 20 years (36–38).
However, until now, no antioxidant has been observed to have
the effect of mitigating cisplatin-induced hearing loss in clinical
trials. Recently, researchers pay increasing attention to the role of
inflammation in the pathogenesis of cisplatin-induced
ototoxicity (39, 40). Zhang et al. verified that inflammation is
involved in cisplatin-induced SV damage (41), but the precise
mechanisms involved remained unclear and need further
investigation. The NOD-like receptor protein 3 (NLRP3)
inflammasome is the most extensively studied inflammasome
currently (42). It plays an important role in innate immunity and
can promote the repair of injured tissues (43). Previous studies
have shown that cisplatin can trigger the assembly of the NLRP3
inflammasome and activate downstream pathways (44, 45); thus,
we speculated that the NLRP3 inflammasome may also have a
vital effect on the pathogenesis of cisplatin-induced hearing loss.

SV is mainly composed of marginal, intermediate, and basal
cells (46), and due to the expression of many ion channels and
transporters, MCs are thought to be the most important
component for the overall function of SV (47). In this study,
we established an in vitro model of cisplatin-induced MC
damage and demonstrated that cochlear marginal cell
pyroptosis is induced by cisplatin via NLRP3 inflammasome
activation, which may provide a novel intervention target for the
prevention and treatment of cisplatin-induced hearing loss.
MATERIALS AND METHODS

Primary MC Culture and Identification
All experimental procedures in this study were performed

according to the National Institutes of Health Guidelines for
the Care and Use of Laboratory Animals (NIH Publication No.
8023, revised 1978) with the approval of the Animal Care
Committee of Tongji Medical College of Huazhong University
of Science and Technology.

SV of the cochlea was isolated from Sprague-Dawley (SD) rats
at postnatal day 3 and digested with 0.1% type II collagenase
(Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37°C (48, 49).
After centrifugation for 5 min at 1,000 rpm, the cells were
Frontiers in Immunology | www.frontiersin.org 2
resuspended in Epithelial Cell Medium-animal (EpiCM-animal,
ScienCell, Carlsbad, CA, USA) and cultured at 37°C with 5% CO2.
Primary MCs were identified by immunofluorescence staining of
cytokeratin-18, which was a characteristic molecule of MCs.

Cell Viability Assay
The MCs cultured in 96-well plates were treated with different
concentrations of cisplatin (0~1,000 mM) for 24, 48, and 72 h,
respectively. Cell viability was detected using the Cell Counting Kit-
8 (CK04, Dojindo, Rockville, MD, USA) at a different time point
after incubation according to the manufacturer’s instructions.

Small Interfering RNA Transfection
To knock down the expression of NLRP3 or thioredoxin-
interacting protein (TXNIP), MCs were transfected with
NLRP3-small interfering RNA (siRNA) or TXNIP-siRNA
(RiboBio, Co., Ltd., Guangzhou, China) with Lipo3000
(Invitrogen, Carlsbad, CA, USA, L3000-015) according to the
manufacturer’s instructions. MCs transfected with NC-siRNA
(RiboBio. Co., Ltd., China) were taken to be the transfection
control (siNC). The untreated MCs were set as normal control.
The subsequent experiments were performed 24 h after
transfection completion. The sequences of each siRNA are
listed in Supplementary Table 1. We designed three small
interfering RNA sequences targeting NLRP3 and TXNIP and
selected the siRNA sequence with the highest interference
efficiency for subsequent transfection (Supplementary
Figure 1 and Figure 1).

Cell Death Detection by Flow Cytometry
The cell death ratios were determined by flow cytometry with a
FITC/Annexin V kit (556547, BD Biosciences) according to the
manufacturer’s instructions. Briefly, MCs were harvested via
trypsinization after treatment as predesigned, then rinsed twice
with cold PBS and resuspended in 200 ml of 1× binding buffer.
Isolated single-cell suspensions were stained with 5 ml of
Annexin V-FITC and 5 ml of PI for 10 min at 37°C in the
dark. Finally, the stained MCs were determined via flow
cytometry (FACSCalibur, BD Biosciences, Carlsbad, CA, USA).

Real-Time PCR
The total RNA of MCs was extracted with TRIzol reagent
(Takara, Kusatsu, Japan) and reverse transcribed to cDNA
using the PrimeScript RT Master Mix Kit (Takara, Kusatsu,
Japan) according to the manufacturer’s instructions. RT-PCR
reaction was performed using a real-time PCR system (Applied
Biosystems, Foster City, CA, USA). The mRNA expression was
normalized to GAPDH, and the results were calculated using the
comparative cycle threshold (DDCt) method. The sequences of
primers are listed in the Supplementary Table 2.

Western Blotting Analysis
The total protein of MCs was extracted with RIPA lysis buffer.
The protein samples were subjected to SDS-PAGE (8%–10%)
separation and bound to the polyvinylidene difluoride
membrane. Then the protein bands were blocked with 5%
April 2022 | Volume 13 | Article 823439
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skimmilk and incubated with a primary antibody against NLRP3
(A5652, 1;1,000, ABclonal Technology, Woburn, MA, USA),
ASC (bs-6741R, 1:1,000, Bioss, Woburn, MA, USA), caspase-1
(GB11383, 1:1,000, Servicebio, Wuhan, China), TXNIP (14715,
1:1,000, Cell Signaling Technology, Danvers, MA, USA),
GSDMD (AF4012, 1:1,000, Affinity Biosciences, Cincinnati,
OH, USA), GAPDH (20770-1-AP, 1:1000, Proteintech,
Wuhan, China), N-GSDMD (ab215203,1:1000, Abcam,
Cambridge, MA, USA), and cleaved-caspase1 (sc-398715,
1:200, Santa Cruz, Dallas, TX, USA) overnight at 4°C. The
horseradish peroxidase-labeled secondary antibody and ECL
detection kit were used to detect the target proteins. The ratio
of the gray value of the target protein to the corresponding
GAPDH was the relative expression of the target protein.

Immunofluorescence
MCs were cultured in confocal dishes and treated as predesigned.
The cells were washed with PBS and fixed with 4%
paraformaldehyde for 30 min at 37°C. Then, the cells were
washed with PBS and permeabilized with 0.3% Triton X-100
for 20 min at room temperature.

For TUNEL staining, the cells were washed after
permeabilization, then commercial TUNEL Kits (40308ES60,
Frontiers in Immunology | www.frontiersin.org 3
Yeasen, Shanghai, China) were used to detect cells with
fractured DNA according to the manufacturer’s instructions.

For the detection of target proteins, the cells were washed after
permeabilization, blocked with donkey serum (AntGene, Wuhan,
China) for 30 min at room temperature, then incubated with a
primary antibody against CK-18 (abs123946, 1:400, Absin
Bioscience, Shanghai, China), NLRP3 (NBP2-12446, 1:100, Novus
Biologicals, Littleton, CO, USA), ASC (ab175449, 1:100, Abcam,
Cambridge, MA, USA), caspase-1 (sc-398715, 1:100, Santa Cruz,
Dallas, TX, USA), thioredoxin-interacting protein (TXNIP,
ab210826, 1:300, Abcam), and GSDMD (20770-1-AP, 1:500,
Proteintech) overnight at 4°C. Then the cells were washed with
PBST and incubated with fluorochrome-conjugated secondary
antibody (1:500, AntGene, Wuhan, China) for 1 h at 37°C.
Subsequently, the cells were washed with PBST and
counterstained with DAPI (AntGene, Wuhan, China) for nuclei
for 5 min. Finally, the cells were observed with a laser-scanning
confocal microscope (Nikon, Tokyo, Japan).

Enzyme-Linked Immunosorbent Assay
IL-1b levels in the culture supernatant of primary MCs were
determined by the commercial ELISA kit (RLB00, R&D Systems,
Minneapolis, MN, USA); the testing process was carried out
A

B

C

FIGURE 1 | Cisplatin induced MC damage in vitro in a time- and concentration-dependent pattern. (A) MCs grow in clumps and express CK-18 characteristically.
Scale bar: 200 µm. (B) Cell viability of MCs under cisplatin treatment at gradient concentrations of 0, 0.1, 0.5, 1, 5, 10, 50, 100, 500, and 1,000 (mmol/L) for 24, 48,
and 72 h, respectively. (C) Representative images that cisplatin induced the variation of the proportion of MCs with membrane rupture (PI+, the percentage of cells in
Q1 and Q2 quadrant) with the time prolongation detected by flow cytometry. The control group was not treated with cisplatin, and the other groups were treated
with 5 mmol/l cisplatin for 24, 48, and 72 h, respectively. The above experiment was repeated at least 3 times. *p < 0.05, **p < 0.01, ***p < 0.001.
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according to the manufacturer’s instructions. Optical density was
read at 450 nm using a microplate reader.

Cell Ultrastructure Observation Under
Electron Microscope
After treatment as predesigned, the MCs were immediately
soaked in a commercial electron microscope fixing solution at
room temperature for 2 h, and then soaked in 1% osmium acid
for 2 h at dark-room temperature. After alcohol shaving and
dehydration, the cells were permeated and embedded, and then
ultrathin slices were made and stained with alcoholic uranyl
acetate and alkaline lead citrate. After cleaning and drying, the
slices were observed using the transmission electron microscope
(TEM, HT7800/HT7700, Hitachi, Tokyo, Japan).

For scanning electron microscope (SEM) observation, the
cells were postfixed with 1% of OsO4 at room temperature in the
dark for 2 h. Then they were dehydrated through ethanol series
and critical-point dried, mounted on stubs, and sputter-coated
with a thin layer of conductive metal, gold, and palladium;
finally, the images were observed under SEM (TEM, HT7800/
HT7700, Hitachi, Tokyo, Japan).

Statistical analysis
All experiments were performed independently at least in
triplicate, and data were presented in the form of mean ±
standard error. Statistical analysis was conducted by GraphPad
Prism 7.0 software. Two-tailed Student’s t-tests were used to
Frontiers in Immunology | www.frontiersin.org 4
compare the data means between two groups. The means of
more than two groups were compared using a one-way ANOVA.
A value of p < 0.05 was considered statistically significant.
RESULTS

Cisplatin Induced MC Damage In Vitro in a
Time- and Concentration-Dependent
Manner and Increased the Expression of
NLRP3 in MCs
Under a fluorescence microscope, the primary cultured MCs
grew in clusters and specifically expressed CK-18, which was
significantly different from non-MCs (Figure 1A).

The results of CCK-8 showed that the cell viability of MCs
decreased with the increase in cisplatin concentration regardless
of whether the time of cisplatin treatment was 24, 48, or 72 h
(Figure 1B). The results offlow cytometry implied that under the
treatment of 5 mM cisplatin, the proportion of MCs with
membrane rupture (PI+, the percentage of cells in the Q1 and
Q2 quadrants) increased with the prolongation of cisplatin
treatment (Figure 1C).

The results of PCR, Western blot, and immunofluorescence
indicated that, compared with the control group, the expression
of NLRP3 in cisplatin MCs increased significantly at both the
mRNA level and the protein level (Figure 2).
A B

C

FIGURE 2 | Cisplatin induced an increased expression of NLRP3 in MCs at both the mRNA level and the protein level. (A) The expression difference of NLRP3
mRNA in MCs between the control and the cisplatin group (5 mmol/l cisplatin for 24 h). (B, C) The increased expression of NLRP3 protein in the cisplatin group
compared with the control detected by immunofluorescence (B) and Western blotting (C). Green fluorescence indicates FITC-labeled NLRP3 protein, and blue
fluorescence indicates DAPI-labeled nuclei. Scale bars: 50 µm. Representative results of at least three repeated experiments are shown. *p < 0.05, ***p < 0.001.
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Downregulation of NLRP3 Decreased the
Number of MCs With Cell Membrane
Rupture or DNA Rupture
As shown in Figure 3A, the percentage of MCs with cell
membrane rupture (the cells in the Q1 and Q2 quadrants) in
the cisplatin group (8.19 ± 1.33%) was higher than that in the
control group (2.3 ± 0.25%). However, NLRP3-siRNA
significantly reduced the percentage compared with the
cisplatin+siNC group (cisplatin+siNLRP3 group: 3.07 ± 0.12%,
cisplatin+siNC group: 9.76 ± 1.39%). The results of TUNEL
staining are shown in Figure 3B, which show that the amount of
TUNEL-positive cells in the cisplatin+siNLRP3 group is
relatively small than that in the cisplatin+siNC group. This
difference is similar to the difference in the number of cells
with ruptured cell membranes.

NLRP3-siRNA Attenuates the Cisplatin-
Induced Pyroptosis-Like Morphological
Changes on the Cell Membrane of MCs
As shown in Figure 4A, under the TEM, the cell membrane of
MCs in the control group was continuous and smooth, while the
cell membrane of MCs in the cisplatin group showed local
rupture. The cytoplasm near the rupture showed low-density
staining, which seemed to be local swelling-related rupture. The
Frontiers in Immunology | www.frontiersin.org 5
cells in the cisplatin+siNC group showed morphological changes
similar to those in the cisplatin group. In the cisplatin+siNLRP3
group, although there were a few of small discontinuities in the
MCs’ membrane, there was no obvious low-density staining at
the nearby cytoplasm, and no obvious signs of local swelling-
related rupture were found.

As shown in Figure 4B, different from the control group
under the SEM, the MCs’ membrane in the cisplatin group
showed larger hole-like changes. The cell membrane resembled
withered tree branches. The above changes were more obvious at
the cell edges. In the MCs of the siNLRP3 group, the above
changes disappeared.

Downregulation of NLRP3 Inhibits the
Expression of Key Molecules in the
Process of Cisplatin-Induced NLRP3
Inflammasome-Mediated Inflammatory
Programmed MC Death (Pyrolysis)
The results of RT-PCR,Western blotting, and immunofluorescence
show that cisplatin caused an increased expression of NLRP3,
ASC, caspase-1, and GSDMD at both mRNA and protein levels.
The expression level of the above molecules in the siNLRP3
group was significantly lower than that in the cisplatin group
(Figures 5A, B, 6).
A B

FIGURE 3 | Downregulation of NLRP3 decreased the number of MCs with cell membrane rupture (A) or DNA rupture (B). (A) The differences in the percentage of
MCs with cell membrane rupture (the cells in the Q1 and Q2 quadrants) between the groups. (B) The differences in the percentage of MCs with DNA fracture
(TUNEL positive) between the groups. Blue fluorescence indicates DAPI-labeled cell nuclei, and red fluorescence indicates DNA fragmentation labeled with Alexa
Fluor 640. The red fluorescence overlapping with the nucleus was judged to be TUNEL-positive cells (white arrows). Scale bar: 100 µm. Representative results of at
least three repeated experiments are shown. **p < 0.01, ***p < 0.001.
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As shown in Figure 5C, the concentration of IL-1b in the
supernatant of the cisplatin group (43.25 ± 6.391 pg/ml) was higher
than that of the control group (3.774 ± 1.727 pg/ml), and the
concentration in the cisplatin+siNLRP3 group (4.025 ± 2.233 pg/
ml) was significantly lower than that in the cisplatin+siNC group.
All differences are statistically significant (p < 0.05). These findings
indicate that cisplatin may activate NLRP3 inflammasome-
mediated pyroptosis in MCs, whereas downregulation of NLRP3
could inhibit cisplatin-induced MC pyroptosis.
Frontiers in Immunology | www.frontiersin.org 6
Downregulating TXNIP Can Inhibit
Cisplatin-Induced NLRP3 Inflammasome-
Mediated Pyroptosis in MCs
The expression difference of NLRP3 inflammasome-mediated
pyroptosis-related proteins in the control, cisplatin, cisplatin+siNC,
and cisplatin+siTXNIP groups at mRNA and protein levels is
shown in Figures 7A, B. The expressions of TXNIP, NLRP3,
ASC, caspase-1, IL-1b, and GSDMD in the siTXNIP group were
all lower than those in the siNC group at both mRNA and protein
A

B

FIGURE 4 | Downregulation of NLRP3 reversed the cisplatin-induced ultramicroscopic changes in MCs. (A) The morphologic changes of MCs after different
treatments under TEM. The red arrows indicate the ruptured cell membrane and local lighter-stained cytoplasm. Scale bars: 2 µm. (B) The morphological changes of
MCs observed by SEM. The red arrows indicate the withered tree-like cell membrane at the edge of the cell. Scale bars: 50 µm. Representative results of at least
three repeated experiments are shown.
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levels. As shown in Figure 7C, the concentrations of IL-1b in the
control, cisplatin, cisplatin+siNC group, and cisplatin+siTXNIP
transfection groups were 3.774 ± 1.727, 43.25 ± 6.391, 35.22 ±
12.29, and 6.784 ± 3.373 pg/ml, respectively. As shown
in Figure 7D, the expression of NLRP3 in the cisplatin+
siTXNIP group is significantly lower than that in the cisplatin+
siNC group.
Frontiers in Immunology | www.frontiersin.org 7
Downregulation TXNIP Can Suppress
Cisplatin-Induced MCs’ Membrane
Rupture and DNA Fracture Formation
The percentage of MCs with membrane rupture in the
cisplatin+siTXNIP group (4.61 ± 0.47%) is significantly lower
than that in the cisplatin+siNC group (7.8 ± 1.08%) (Figure 8A).
Similarly, the difference in the amount of TUNEL-positive cells
A

B C

FIGURE 5 | The expression differences of key molecules in NLRP3 inflammasome-mediated pyrolysis (NLRP3, ASC, caspase-1, IL-1b, and GSDMD) in mRNA level
(A) and in protein level (B) in the control, cisplatin, cisplatin+siNC, and cisplatin+siNLRP3 groups. (C) The difference in the IL-1b concentrations in the supernatant of
each group. Representative results of at least three repeated experiments are shown. *p < 0.05, **p < 0.01, ***p < 0.001. ns, no significance.
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in the cisplatin+siTXNIP group is obviously fewer than that in
the cisplatin+siNC group (Figure 8B).

The morphology changes of MCs under TEM and SEM are
shown in Figure 9. The ultrastructure of MCs in the cisplatin+siNC
group is similar to that in the cisplatin group which was
characterized by the local ruptured cell membrane and withered
branch-like cytoplasm. However, TXNIP-siRNA, like the NLRP3-
siRNA, alleviates the above pyroptosis-related ultra-morphological
changes of MCs caused by cisplatin.
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION

In recent years, inflammatory responses have gradually become
research hotspots in the field of sensorineural hearing loss and
have received extensive attention from researchers. Previous
studies have implied that cisplatin showed a significant pro-
inflammatory effect with significantly elevated levels of
inflammatory cytokines such as IL-1b, TNF-a, IL-10, and IL-6
(50–53). Therefore, it is reasonable to speculate that inflammatory
A B

C D

FIGURE 6 | The expression differences of NLRP3, ASC, caspase-1, and GSDMD in the control, cisplatin, cisplatin+siNC, and cisplatin+siNLRP3 groups. Blue
fluorescence indicates DAPI-labeled cell nuclei, and green fluorescence indicates FITC-labeled target proteins. Representative results of at least three repeated
experiments are shown. Scale bar: 100 µm.
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A

B

D

C

FIGURE 7 | The effect of downregulation of TXNIP on cisplatin-induced NLRP3 inflammasome-mediated pyrolysis-related protein expression in MCs at mRNA level
(A) and protein level (B). (C) The difference in the concentrations of IL-1b in the supernatant in each group. (D) The variation of NLRP3 expression before and after
TXNIP-siRNA transfection. Scale bars: 100 µm. Representative results of at least three repeated experiments are shown. *p < 0.05, **p < 0.01, ***p < 0.001.
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signals may also be involved in cisplatin-induced SV damage and
hearing loss (54, 55). The results of this study demonstrate that
NLRP3 inflammasome-mediated inflammatory programmed cell
death (pyroptosis) is one of the possible reasons for cisplatin-
induced MCs damage, and TXNIP may be the upstream signal
that activates the NLRP3 inflammasome.

The NLRP3 inflammasome is composed of innate immune
receptor protein NLRP3, adaptor protein ASC, and inflammatory
protease caspase-1 (56). It is one of the important initiation
signals of inflammation. In this study, the increased expression
of NLRP3, ASC, and caspase-1 implied that cisplatin may
stimulate the elevated expression of the components of the
NLRP3 inflammasome in MCs. It is worth noting that caspase-
1 is primarily responsible for the maturation of pro-IL-1b into its
biologically active form, and IL-1b is a key cytokine that mediates
inflammation and coordinates innate and adaptive immune
responses (57, 58). Thus, the increased expression of IL-1b in
both intracellular and cultured supernatant in our results suggests
that cisplatin may indeed promote the assembly of the NLRP3
inflammasome inMC and induces the expression and secretion of
IL-1b through NLRP3 inflammasome activation. In addition, in
Frontiers in Immunology | www.frontiersin.org 10
the rats’ cochlea tissue of cisplatin-induced ototoxicity, we also
observed an increase in the expression of NLRP3 in the MC layer,
which indicates that the same or similar changes may exist in vivo
(Supplementary Figure 3).

Pyroptosis is a form of inflammatory programmed cell death
and is characterized by cell swelling, pore formation in the local
plasma membrane, DNA fracture, and GSDM expression (59, 60).
GSDMD is activated by inflammatory caspases and cleaved into
the n-terminal and C-terminal, where the n-terminal forms a
transmembrane pore that releases cytokines, ultimately leading to
intense inflammation and cell death (61, 62). Therefore, GSDMD
was identified as the executor of pyroptosis (63, 64). After cisplatin
treatment, we detected an increased expression of GSDMD in
MCs. Meanwhile, we observed that cells were deformed, the cell
membrane was incomplete, andmany small pores appeared on the
membrane under TEM and SEM. This is consistent with the
previous results described by other researchers that inflammatory
signals activated GSDMD, which caused pyroptosis-forming pores
that impair cell membrane integrity (65–67). Although there was a
slight difference in the GSDMD pore diameter from the uniform
15–32 nm reported by Zeng et al. (68), it may be due to the
A B

FIGURE 8 | Downregulation of TXNIP decreased the number of MCs with cell membrane rupture (A) or DNA rupture (B). (A) The differences in the percentage of
MCs with cell membrane rupture (the cells in the Q1 and Q2 quadrants) between the groups. (B) The differences in the percentage of MCs with DNA fracture
(TUNEL positive) between the groups. Blue fluorescence indicates DAPI-labeled cell nuclei, and red fluorescence indicates DNA fragmentation labeled with Alexa
Fluor 640. The red fluorescence overlapping with the nucleus was judged to be TUNEL-positive cells (white arrows). Scale bars: 100 µm. Representative results of at
least three repeated experiments are shown. *p < 0.05, **p < 0.01.
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different cell types. In addition, downregulating NLRP3 can reduce
the percentage of damaged marginal cells under cisplatin
treatment as well as the expression levels of GSDMD and IL-1b.
Therefore, it is reasonable to speculate that the cisplatin-induced
MC pyroptosis may be mediated by the NLRP3 inflammasome
and its downstream inflammatory signals.

TXNIP is the main binding medium of the thioredoxin (TXN)
antioxidant system (69, 70). Previous studies have shown that
TXNIP is involved in cell death mediated by the inflammatory
Frontiers in Immunology | www.frontiersin.org 11
signaling pathway (71, 72). However, the exact mechanisms have
not been clarified. In this study, downregulating TXNIP can
inhibit the NLRP3 inflammasome-mediated MC pyroptosis
under cisplatin treatment, which implied that TXNIP may be
the upstream factor of NLRP3 inflammasome activation. It is
worth noting that TXNIP could bind to NLRP3 in a redox-
dependent manner, thereby promoting the release of IL-1b and
subsequent inflammation (73, 74). In addition, TXNIP can inhibit
the antioxidant effect of thioredoxin (TRX) by binding to TRX and
A

B

FIGURE 9 | Downregulation of TXNIP reversed the cisplatin-induced ultramicroscopic changes in MCs, similar to that after downregulating NLRP3. (A) The
morphologic changes of MCs after different treatments were evaluated under TEM. The red arrows indicate the ruptured cell membrane and local lighter-stained
cytoplasm. Scale bars: 2 µm. (B) The morphological changes of MCs were observed by SEM. The red arrows indicate the withered tree-like cell membrane at the
edge of the cell. Scale bars: 15 µm. Representative results of at least three repeated experiments are shown.
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promote the production and accumulation of ROS (75, 76). Being
an upstream factor of both oxidative stress and inflammation,
TXNIP is thought to act as a molecular link between these different
mechanisms in disease progression. On the other hand, in the
MCs under the cisplatin treatment, is there a regulatory factor
more upstream on TXNIP? How does cisplatin affect the
expression level of TXNIP? These are issues worthy of further
study. According to existing reports, psychopathological events
such as oxidative stress and endoplasmic reticulum stress may be
the cause of the increase in TXNIP expression induced by cisplatin
(77–79). Furthermore, a recent analysis of cisplatin resistance has
confirmed that TXNIP is a downstream target molecule of UCA1
(80). UCA1 is an lncRNA that has been confirmed to play a role in
cisplatin pharmacology by regulating Wnt/b-catenin, Mir-143/
FOSL2, Mir-495/NRF2, and other pathways (81–83). TXNIP has
also been reported to play different roles by binding to different
microRNAs (84–86). However, these studies are piecemeal and
have not yet formed a concrete network. In summary, we consider
that the cisplatin/LncRNA/microRNA/TXNIP axis is promising
upstream pathways.

There are some limitations to our experiment. Firstly, the
growth rate of primary MCs was slow and it could not grow
limitlessly, and the optimal culture time was observed to be 5–6
days. Considering the time needed for transfection and recovery
(usually 12–24 h), the time of cisplatin treatment has to be no
longer than 24–36 h, so the time was finally set to 24 h.
Therefore, the results of this study can only represent the
injury mechanism of MCs under cisplatin treatment in a
relatively short time with high concentration, and it cannot be
ruled out that different mechanisms may exist in cisplatin-
induced MC damage with a small dose for a long time.
Secondly, due to the lack of effective vectors for specific
transfection to SV in animals, our experiments were conducted
on primary MC models in vitro. In the future, the realization of
targeted interventions on specific targets of MCs in animal
experiments will further enhance the level of evidence and
persuasiveness of the research. Thirdly, due to the lack of a
reliable quantitative detection method for the proportion of
pyrolytic cells, we cannot deny the existence of apoptosis or
other cell death modes in the model of this study. However,
which cell death mode is the most important death mode of MCs
under cisplatin treatment? Is there a mutual transition in the
process of different death modes, and what are the transition
conditions? These issues need to be further studied in the future.
Finally, whether inhibition of the NLRP3 inflammasome can
relieve the anticancer effect of cisplatin remains to be verified and
weighed, local cochlear drug delivery may be a promising
solution to this problem in the future.

In summary, the results of this studies suggest that NLRP3
inflammasome-mediated pyroptosis may be one of the
mechanisms involved in cisplatin-induced MC damage, and
TXNIP may be the upstream signal that activates the NLRP3
inflammasome (Figure 10). It can be inferred that NLRP3may be a
key target of cisplatin-induced damage to the MCs in the cochlea.
We expect that these findings would contribute to the prevention
and treatment of cisplatin-induced ototoxicity.
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