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Gene isoforms as expression-based biomarkers
predictive of drug response in vitro
Zhaleh Safikhani1,2, Petr Smirnov 1, Kelsie L. Thu1,3, Jennifer Silvester1,3, Nehme El-Hachem3, Rene Quevedo1,2,

Mathieu Lupien1,2, Tak W. Mak1,2,4, David Cescon1,4,5 & Benjamin Haibe-Kains 1,2,6,7

Next-generation sequencing technologies have recently been used in pharmacogenomic

studies to characterize large panels of cancer cell lines at the genomic and transcriptomic

levels. Among these technologies, RNA-sequencing enable profiling of alternatively spliced

transcripts. Given the high frequency of mRNA splicing in cancers, linking this feature to drug

response will open new avenues of research in biomarker discovery. To identify robust

transcriptomic biomarkers for drug response across studies, we develop a meta-analytical

framework combining the pharmacological data from two large-scale drug screening data-

sets. We use an independent pan-cancer pharmacogenomic dataset to test the robustness of

our candidate biomarkers across multiple cancer types. We further analyze two independent

breast cancer datasets and find that specific isoforms of IGF2BP2, NECTIN4, ITGB6, and

KLHDC9 are significantly associated with AZD6244, lapatinib, erlotinib, and paclitaxel,

respectively. Our results support isoform expressions as a rich resource for biomarkers

predictive of drug response.
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Cell lines are the most widely used cancer models to study
response of tumor cells to anticancer drugs. Not only have
these cell lines recently been comprehensively profiled at

the molecular level, but they have also been used in high-
throughput drug screening studies, such as the Genomics of Drug
Sensitivity in Cancer (GDSC)1 and the Cancer Cell Line Ency-
clopedia2. The overarching goal of these seminal studies was to
identify molecular features predictive of drug response (predictive
biomarkers). Consequently, the GDSC and CCLE investigators
were able to confirm a number of established gene–drug asso-
ciations, including association between ERBB2 amplification and
sensitivity to lapatinib, and BCR/ABL fusion expression and
nilotinib. They also found new associations such as SLFN11
expression and response to topoisomerase inhibitors, thereby
supporting the relevance of cell-based high-throughput drug
screening for biomarker discovery. However, the biomarkers
validated in preclinical settings are still largely dominated by
genetic (mutation, copy number alteration, or translocation) as
opposed to transcriptomic (gene expression) features. Therefore,
there is a need for further investigation of transcriptomic markers
associated with drug response in cancer.

The vast majority of pharmacogenomic studies investigated the
association between gene-specific mRNA abundance and drug
sensitivity1–6. However, it is well established that genes undergo
alternative splicing in human tissues7, and changes in splicing
have been associated with all hallmarks of cancer8. Despite the
major role of alternative splicing in cancer progression and
metastasis8, only a few small-scale studies have reported asso-
ciations between these spliced transcripts (also referred to as
isoforms) and drug response or resistance9–14. These limited, yet
promising associations support the potential relevance of isoform

expression as a new class of biomarkers predictive of drug
response. Among the mRNA expression profiling technologies,
high-throughput RNA-sequencing (RNA-seq) enables quantifi-
cation of both isoform and gene expression abundances at the
genome-wide level. Recent studies have highlighted the advan-
tages of RNA-seq over microarray-based gene expression
assays15–19. In particular, microarray-profiling platforms are
limited to pre-designed cDNA probes15, and they depend on
background levels of hybridization. They also suffer from limited
dynamic range probe hybridization. As the detection of tran-
scripts and genes using RNA-seq is based on high-resolution
short-reads sequencing instead of probe design, they have the
potential to overcome these limitations17.

Recent initiatives have profiled hundreds of cancer cell lines
using Illumina RNA-seq technology3, 20–22. As part of CCLE, the
Broad Institute of Harvard and MIT released RNAseq profiles of
935 cancer cell lines through the Cancer Genomics Hub
(CGHub23, now moved to the NCI Genomic Data COmmon24),
whereas Genentech deposited RNA-seq data for 675 cell lines on
the European Genome-phenome Archive (EGA) as part of their
Genentech Cell Line Screening Initiative (gCSI)20, 22. Two other
initiatives used RNA-seq to profile panels of 70 (GRAY3) and 84
(UHN21) breast cancer cell lines. The availability of these valuable
datasets offers unprecedented opportunities to further explore the
transcriptomic features of cancer cells and study their association
with drug response.

In this study, we explore the genome-wide transcriptomic
landscape of large panels of cancer cell lines to identify isoform-
level expression features predictive of drug response in vitro. On
the basis of our new metaanalytical framework combining
the GDSC and CCLE pharmacogenomic data for biomarker
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discovery, we show that isoform-level expression measurements
are more predictive of response to cytotoxic and targeted thera-
pies than are gene-level expression values. We tested the accuracy
of our most promising isoform biomarkers in an independent
pan-cancer dataset, gCSI, and two breast cancer datasets, GRAY
and UHN. We validated four isoform-based biomarkers pre-
dictive of response to lapatinib, erlotinib, AZD6244 (MEK inhi-
bitor), and paclitaxel, indicating that isoforms constitute a
promising new class of biomarkers for cytotoxic and targeted
anticancer therapies.

Results
Discovery of isoform-based biomarkers. We developed a meta-
analysis pipeline enabling identification of molecular features
predictive of sensitivity to 15 drugs (Fig. 1; Supplementary
Table 1; Supplementary Fig. 1) across two large pharmacoge-
nomics studies, namely CCLE and GDSC (Fig. 1). CCLE used the
CellTiter-Glo (Promega) pharmacological assay, whereas GDSC
used Syto60 (Invitrogen)25, providing us with the opportunity to
discover biomarkers generalizable to multiple measures of drug
sensitivities. We identified a wide range of statistically significant
biomarkers for each drug (10 to 1984 biomarkers with FDR <1%
and concordance index > 0.55; Fig. 2a; Supplementary Data 1),
with a significantly larger proportion of isoform-based bio-
markers are predictive of drug response (Wilcoxon-signed rank
test p-value <10−3; Fig. 2a). For the majority of genes identified as

biomarkers, the highest ranking isoform, but not the overall gene
expression, is significantly predictive of drug response (Fig. 2b).
We investigated the discriminatory features between the “gene-
specific”, “isoform-specific”, and “common” biomarkers by first
assessing the number of alternatively spliced isoforms for each
selected gene (Supplementary Fig. 2). As expected, the largest
proportion of isoform-specific biomarkers originate from genes
with multiple transcripts. We also categorized the predictive
features by their biological types: protein coding, antisense, pro-
cessed transcript, linc RNA, and pseudogenes (Supplementary
Fig. 3). Although the largest proportion of protein-coding bio-
markers are isoformic (isoform-specific and common), the pro-
cessed transcript biomarkers is dominated by isoform-specific
ones. The pseudogene type contains the lowest ratio of isoform-
specific biomarkers.

We further tested whether the number of associations with
drug sensitivity was significantly larger for isoforms than gene,
copy number alterations, or mutations. Concurring with the Drug
Sensitivity Prediction DREAM challenge6, we found that
expression-based features were more significantly associated with
sensitivity for most of the drugs (Fig. 3a). Overall, there were
significantly more isoform-based biomarkers than gene expres-
sion and copy number alterations (one-sided Wilcoxon rank sum
test p-value < 0.001; Fig. 3a) and their concordance index was
superior (one-sided Wilcoxon rank sum test p-value < 0.001;
Fig. 3b). However, even though there were more isoform-based
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Fig. 2 Comparison of number of statistically significant (FDR < 1%) predictive biomarkers for each of the 15 drugs in common between CCLE and GDSC.
a Number of significant associations for gene and isoform models. The associations are compared at gene level, i.e., only one isoform is considered for each
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Fig. 3 Comparison of significance and predictive value for multiple data types. The comparison is limited to 1600 genes for which mutations, copy number
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biomarkers than mutation-based biomarkers for most drugs,
mutations were more predictive for nilotinib, crizotinib, PLX4720
and TAE684 (Fig. 3). Although these results are limited to a set of
1600 genes for which all data types were available, they support
isoform expression as a promising new class of biomarkers for the
majority of the drugs in our training set.

Pan-cancer validation of isoform-based biomarkers. We first
validated our candidate biomarkers identified in our training set
using gCSI, a large pharmacogenomic dataset recently released by
Genentech20, 22. This dataset contains 16 drugs, of which 5 are
overlapping with our training set (Supplementary Fig. 4). Thanks
to the large sample size of gCSI, we observed high validation rate
for multiple drugs (61 and 54% for erlotinib and lapatinib,
respectively; Fig. 4; Supplementary Data 2). Predicted and actual
AAC values for the top biomarkers were reported for each tissue
type in Supplementary Figs. 5, 6 and 16. These new results clearly
indicate that reasonable validation rate can be achieved when a
large validation set is available. We further investigated the cases
of paclitaxel and the MEK inhibitor PD-0325901. Both drugs
have broad growth inhibitory effects, as indicated by the large
variance of drug sensitivity values (Fig. 4a, b). Concurring with
our previous results26, we observed that AAC values were
inconsistent between the training sets (GDSC and CCLE; Sup-
plementary Fig. 7), finding that extends to the comparison of
GDSC and gCSI dataset (ρ= 0.36; Fig. 4a). On the contrary, PD-
0325901 yielded moderate to high consistency in drug sensitivity
data between the training sets (ρ= 0.56; Supplementary Fig. 7)
and with validation set (ρ= 0.64 and 0.79 for GDSC vs. gCSI and
CCLE vs. gCSI, respectively; Fig. 4a). In addition, the selected
biomarkers tended to yield higher correlation between the

training and the test set for PD-0325901. These observations
explains in part why the validation rate was low for paclitaxel,
whereas the number of biomarkers was high for PD-0325901
(Supplementary Table 2).

Pre-validation in an independent breast cancer dataset. In vitro
validation of drug response biomarkers in fully independent
datasets has been shown to be challenging27–30. We therefore
sought to assess the predictive value of our most promising iso-
form biomarkers for eight drugs screened both in our training
sets and in the independent breast cancer dataset published by
Daemen et al.3 (referred to as GRAY), which used the same
pharmacological assay as CCLE. We first selected the significant
isoform-based biomarkers in our training set that were predictive
in breast cancer cell lines (see “Methods”). We assessed the
predictive value of these biomarker candidates in GRAY and
tested whether these isoform biomarkers were significantly more
predictive than their corresponding gene expression (Fig. 5;
Supplementary Fig. 8; Supplementary Data 3). The validation
success rate for isoformic biomarkers ranged from 0% (no vali-
dated biomarkers for crizotinib) to 25% validated biomarkers
for paclitaxel (Supplementary Table 2). We found that the poor
validation rate for crizotinib and sorafenib stems from incon-
sistency in their pharmacological profiles (Supplementary Fig. 9).
On the basis of the number and effect size of biomarker candi-
dates that were significant in GRAY, we selected AZD6244,
lapatinib, erlotinib, and paclitaxel for further validation.

Validation using a different pharmacological assay. To test the
robustness of our pre-validated biomarkers we generated a new
set of drug sensitivity data combined with the RNA-seq profiles of
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breast cancer cell lines published by Marcotte et al.21 This new
pharmacogenomic dataset is referred to as UHN. We screened
cell lines with a different pharmacological assay (sulforhodamine
B assay; SRB) from those used in the training and pre-validation
sets. We first cultured cell lines to check their doubling time in a
course of 120 h (Supplementary Table 3). Only cell lines with a
growth rate/doubling time that was amenable to the 5-day SRB
assay as a readout for cytotoxicity were considered for testing in
the full 9-dose assay. We then assessed the anti-proliferative
effect of cell lines to drugs using SRB assay in 96 well plates in
triplicates. All the drug dose–response curves passed our quality
controls (see “Methods”).

Similar to the pre-validation performed in GRAY, we
considered an isoformic biomarker to be validated if the linear
association between its expression and drug sensitivity is both
significant and in the same direction (same coefficient sign in the
regression model). This resulted in validation of 2 out of 12, 2 out
of 5, 6 out of 11, and 11 out of 35 biomarkers for AZD6244,
lapatinib, erlotinib, and paclitaxel, respectively (Supplementary
Table 2; Supplementary Data 4. We selected the isoform with the
largest effect size for each drug (Supplementary Table 4; known
biomarkers are provided as reference in Supplementary Table 5))
and investigated its exon occupancy and correlation compared

with the other isoforms of the same gene (Fig. 6; Supplementary
Fig. 10). The selected IGF2BP2-002 (ENST00000346192), NEC-
TIN4 (ENST00000368012), and ITGB6-001 (ENST00000283249)
isoforms were associated with sensitivity to AZD6244, lapatinib,
and erlotinib, respectively (Fig. 6a–c; Supplementary Fig. 10),
whereas the KLHDC9-207 (ENST00000490724) isoform is
associated with lack of sensitivity to paclitaxel (Fig. 6d;
Supplementary Fig. 10). For KLHDC9-207, the predictive isoform
was highly correlated with other isoforms of the same gene,
sharing similar exon occupancy (Fig. 6h), whereas predictive
isoform for IGF2BP2-002, NECTIN-2014, and ITGB6-001 present
a more specific expression pattern (Fig. 6e–g). Predicted and
actual AAC values for these top validated biomarkers are
provided in (Supplementary Fig. 11).

Discussion
Although gene expression represents an important class of bio-
markers for prediction of drug response in vitro1–6, 22, association
between gene isoforms and drug sensitivity has not been well
studied despite the critical role of alternative splicing in cancer8.
Our study is the first to describe a genome-wide meta-analysis of
isoform-based biomarker predictive of drug response in vitro
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(Fig. 1). Controlling for the large number of isoforms, we found
that significantly more genes had one of their isoforms predictive
of response compared with overall gene expression for the vast
majority of the drugs (Fig. 2a). Importantly, only a minority of
biomarkers were solely predictive based on their overall gene
expression and would have been missed by focusing on isoform
expressions (Fig. 2b), supporting isoforms as a promising,
untapped resource for drug response biomarkers.

Recognizing the challenges involved in biomarker discovery
and validation from in vitro drug screening data22, 25, 27, 28, 30–34,
we further assessed the predictive value of our newly discovered
isoform-based biomarkers for five drugs in the pan-cancer gCSI
dataset, as well as four drugs (AZD6244, lapatinib, erlotinib, and

paclitaxel) in GRAY and UHN, two independent breast cancer
pharmacogenomic datasets (Fig. 1; Supplementary Table 1).
Thanks to the large sample size of gCSI, we obtained validation
rates of over 50% for some targeted therapies (Supplementary
Table 2). As expected, we found that consistency of pharmaco-
logical profiles between training set as well as the validation set
was determinant to ensure reasonable validation rate. When
testing the robustness of our biomarker candidate in breast
cancer, we obtained low validation rates for eight drugs (33–51%;
Supplementary Table 2) in our pre-validation phase, despite the
fact that this study used the same pharmacological assay as CCLE
to generate their drug sensitivity data (CellTiter-Glo; Supple-
mentary Table 1). We found that many of the strongest
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biomarkers were significantly more predictive of drug sensitivity
at the isoform level compared to the overall gene expression level
(Wilcoxon-signed rank test p< 0.05; Fig. 3).

Given that we and others have shown that the choice of
pharmacological assay may influence drug sensitivity
measurements22, 25, 31, we sought to validate our candidate iso-
form biomarkers using the sulforhodamine B assay (SRB), which
differs from the assays used in the training and pre-validation
datasets (Fig. 1). We selected 14 breast cancer cell lines and
screened them with the set of four drugs. Despite the small
sample size, we found 21 isoform biomarkers whose association is
close to significance (p< 0.1; Supplementary Table 2). We
selected the most predictive isoform for each drug to investigate
its correlation with the other isoforms of the same gene (Fig. 6).
AZD6244 is a highly selective MAPK-ERK kinase inhibitor. As a
biomarker predictive of response to the MEK inhibitor AZD6244
in breast cancer, we identified ENST00000346192, one of the
longest isoforms of the insulin-like growth factor 2 mRNA-
binding protein 2 (IGF2BP2) (Fig. 6e), which codes a protein with
556 amino acids. It has been shown that IGF2BP2 stabilizes and
regulates many oncogenic proteins such as NRAS, MAPK1, and
RAF1 involved in the NRAS-MEK-ERK-MAPK signaling path-
way, hyperactivated in many cancers35. As IGF2BP2 lies upstream
of the mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) pathway, this suggests that
IGF2BP2 could be a putative biomarker of sensitivity for com-
pounds acting upstream of the MAPK-ERK pathway and target-
ing MEK1/2 such as AZD6244.

We investigated the association between isoform expressions
and sensitivity to lapatinib, a dual tyrosine kinase inhibitor, which
interrupts the HER2/neu and epidermal growth factor receptor
(EGFR) pathways, and is a FDA-approved drug for breast cancer.
In our study, NECTIN4 isoform expression (ENSG00000143217)
has been associated with sensitivity to lapatinib (Fig. 6b). It is the
longest and the only protein-coding isoform of NECTIN4
(Fig. 6f). It has been reported that Nectin-4 is overexpressed in
several human cancers, including lung, and breast cancer36.
Furthermore, it has been shown that expression of Nectin-4
strongly correlates with the basal-like marker EGFR in breast
cancer, thus proposed as a putative new histological and ser-
ological tumor-associated biomarker37, 38. This strengthens our
hypothesis that the expression of Nectin-4 isoform would sensi-
tize a subset of breast cancer cells to lapatinib.

Our results also indicate that sensitivity to the EGFR inhibitor,
erlotinib, can be predicted by the expression of the
ENST00000283249 isoform of ITGB6 (Fig. 6c). Previous reports
showed that the interaction between integrins and several
receptor tyrosine kinases like HER2 and EGFR leads to a crosstalk
between signaling events that have been implicated in tumor
progression and metastasis39, 40. Desai et al.41 recently identified a
significant positive correlation between ITGB6 and EGFR pro-
teins, suggesting that ITGB6 and EGFR are interacting, and that
ITGB6 isoform expression sensitizes cells towards erlotinib, an
EGFR inhibitor.

Lack of sensitivity or innate resistance to chemotherapies is a
major issue in current breast cancer management42. We found
that expression of the ENST00000490724 isoform of the kelch
domain-containing 9 (KLHDC9) gene is associated with lack of
sensitivity to paclitaxel in breast cancer cell lines (Fig. 6d).
Paclitaxel is a known microtubule stabilizer that inhibit cell
division (mitosis) and is a broad chemotherapeutic agent.
KLHDC9 has been characterized as an interaction partner of
cyclin A1/CDK2 complex, a key regulator of the mitotic cell
cycle43. Furthermore, KLHDC8B, another member of the Kelch
domain-containing protein family has been implicated in mitotic
regulation and chromosomal segregation in lymphoma44. We

hypothesize that a lower expression of KLHDC9 isoform will
negatively affect mitotic integrity, potentiating the activity of
paclitaxel on rapidly dividing cells. However, additional char-
acterization of the biology underlying the isoform specificity of
this association are required to draw firm conclusion on the
functional relation between KLDHC9 and pacliatxel resistance
(Fig. 6h).

This study has several potential limitations. First, our bio-
marker discovery pipeline is restricted to univariate linear asso-
ciation between gene and isoform expression and drug sensitivity.
These two restrictions have been imposed to mitigate the risk of
overfitting as the development of multivariate, potentially non-
linear predictors of in vitro drug sensitivity has been proven to be
challenging27, 28. A larger compendium of pharmacogenomic
datasets will be necessary to overcome this. A second limitation
lies in the use of a single processing pipeline to quantify
expression of each individual transcripts from Illumina RNA-seq
data. We choose to use the HISAT2/StringTie pipeline for RNA-
seq18 because of its excellent performance in recent
benchmarks45, 46. We recognize that many alternatives exist47–49

but their comparison is out of the scope of the present study.
Third, we used a bootstrapping procedure, coupled with a
Wilcoxon-signed rank test to statistically compare our candidate
biomarkers to a model including tissue type as sole predictor. We
recognize that the dependency across bootstraps may inflate the
p-values. New statistical testing procedures are yet to be devel-
oped to properly address this issue. Fourth, the tissue-specific
validation of our biomarkers is limited to breast cancer cell lines,
the only tissue type for which we had multiple independent
pharmacological and molecular datasets available. Lastly, we are
aware that clinical relevance of our candidate isoform biomarkers
remains to be tested in vivo, using patient-derived xenografts and
clinical samples in both retrospective and prospective studies. The
release of RNA-seq and pharmacological profiles of such samples
will allow to further challenge our findings in future studies.

The advent of RNA-sequencing technology enables efficient
quantification of alternatively spliced transcripts in cancer cells.
Our genome-wide search for biomarkers demonstrates that gene
isoforms constitute a rich resource of transcriptomic features
associated with response to targeted and chemotherapies in vitro.
We found that specific isoforms of IGF2BP2, NECTIN4, ITGB6,
and KLHDC9 were significantly associated with AZD6244,
lapatinib, erlotinib, and paclitaxel, respectively, in multiple
screening using different pharmacological assays. Our results
suggest that isoform-based biomarkers are more frequent and
more significantly associated with drug sensitivity than overall
gene expression, opening new avenues for future biomarker dis-
covery for in vitro and in vivo drug screening.

Methods
Published pharmacogenomics studies. We used our PharmacoGx platform50

to create curated, annotated, and standardized pharmacogenomic datasets, which
comprises CCLE2, gCSI22, GDSC1, and GRAY3 (Supplementary Table 1). CCLE,
gCSI, and GRAY pharmacological data were generated using the CellTiter-Glo
assay (which quantitates ATP, Promega), whereas GDSC used the Syto60 assay
(a nucleic acid stain, Invitrogen)25. We updated CCLE, gCSI, and GRAY
PharmacoSets to include gene and isoform-level expression data processed from
the raw RNA-seq profiles downloaded from CGHub23 and NCBI GEO51,
respectively.

RNA-seq data processing. The RNA-seq reads were aligned to the Ensembl
Genome Reference Consortium release GRCh3852 using HISAT253 and
StringTie45, 46 was used to annotate genes and isoforms, and quantify their
expression. Gencode version 2554 was used as the transcript model reference for the
alignment as well as for all gene and isoform quantifications. Gencode annotated a
total of 58,037 genes, which includes 19,950 protein-coding genes, 15,767 long
noncoding RNA’s (lncRNA’s), and 14,650 pseudogenes. Expression values were
computed as the log2(FPKM+1)45, where FPKM represents the number of
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fragments per kilobase per million mapped reads units that control sequence length
and sequencing depth55.

Pharmacological data processing. We developed a unified framework to process
the raw pharmacological data of CCLE, GDSC, gCSI, and GRAY and to obtain the
drug dose–response curves using a standard curve fitting algorithm50 (Supple-
mentary Methods). To summarize the drug dose–response curves into a single-
sensitivity measure, we computed the area under the curve (AUC) metric, which
combines both potency and efficacy of drug responses56 (Supplementary Fig. 12;
Supplementary Methods). Compared with IC50 and Emax metrics, which represent
only one point on the drug dose–response curve, AUC values are computed by
integrating all data points. Consequently, AUC has been shown to be more
reproducible across pharmacogenomic studies28, 31. In this study, we used the area
above the drug dose–response curve (AAC = 1−AUC; Supplementary Fig. 12)
so that higher AAC values represent higher drug sensitivity.

Biomarker discovery. To identify gene and isoform expression robustly associated
with drug sensitivity, we developed a machine learning pipeline combining linear
regression models with a bootstrapping procedure for stringent model selection.
Our choice of model assumes a linear relationship between molecular features and
drug responses. Although violation of this assumption may result in biased pre-
dictions, linear models are robust to variation or noise in the data, making them
less prone to overfitting in a high-dimensional context such as pharmacogenomics.
Therefore, the association between each molecular feature and response to a given
drug is assessed by fitting linear models using the gene or isoform expression across
cell lines as predictor variables, adjusted for tissue of origin of cancer cell lines, and
their sensitivity values to the given drug as dependent variables (Supplementary
Fig. 13). To assess the association of each gene and its isoforms to a given drug,
three linear models were constructed for each dataset as following:

M0 :Y ¼ β0 þ βTT; ð1Þ

M1 :Y ¼ β0 þ βTT þ βGXG; ð2Þ

M2 :Y ¼ β0 þ βTT þ βIIG 8IG 2 GI; ð3Þ

where T represents the tissues of origin as a vector of size N × 1; N is the number of
cell lines; Y denotes the drug sensitivity vector of size N × 1 containing the drug
sensitivity values (AAC) of the cell lines treated by the drug of interest; XG

represents a vector of size N × 1 of log2 normalized FPKM values for the expression
of gene G across all the cell lines; GI is all the isoforms of gene G; IG is a vector of
size N × 1 of log2 normalized FPKM values for each isoform of G across all the cell
lines. The effect size of each association is quantified by βG and βI, which indicate
the strength of associations between drug response and the molecular feature of
interest, adjusted for tissue type. To estimate standardized coefficients from the
linear model, the variables Y and XG and IG are scaled (standard deviation equals to
one, mean equals to zero). The null model (Eq. (1)) estimates the association
between drug response and tissue source, as we previously showed that drug
sensitivity in vitro is tissue specific57. The models in Eqs. (2) and (3) estimate the
strength and significance of the association between drug sensitivity and the gene
level and its best isoform expressions, respectively.

To address the lack of reproducibility of drug sensitivity measurements across
studies26, 31, we developed a meta-analytical pipeline to combine the
pharmacological data from CCLE and GDSC. The June 2014 release of CCLE
consists of 11,670 experiments in which 24 drugs have been screened on 1053
cancer cell lines from 24 tissue origins. GDSC release 5 comprises 79,903
experiments for 140 different drugs tested on a panel of up to 778 unique cell lines
from 30 tissue types. The panel of drugs and cell lines screened in these two
datasets overlapped for 15 compounds and 706 cell lines, respectively
(Supplementary Data 5 and 6; Supplementary Fig. 1). Univariate gene–drug
associations were computed using the linear models described in above-mentioned
equations with CCLE RNA-seq data as predictors and CCLE and GDSC drug
sensitivity data separately. We recognize that using CCLE RNA-seq data in
combination with GDSC is suboptimal as gene expression of cell lines are subject to
biological and technical variations33. In the absence of RNA-seq data for GDSC, we
could only address the variations observed in the drug sensitivity measurements,
which we demonstrated to be significantly higher than variations in gene
expression data26. To ensure that cell line identity was conserved across CCLE and
GDSC, we performed SNP fingerprinting (Supplementary Methods) and filtered
out the cell lines identified as different across studies using a cutoff of 80%
concordance26. In addition, we compared the microarray expression profiles of cell
lines between microarray and RNA-seq profiles, which resulted in good
concordance (Supplementary Fig. 14) supporting that expression profiling are
consistent.

To determine the most predictive isoform for each gene the predictive value
(concordance index58) of all of its isoforms is estimated with Eq. (3) and the most
significant isoform (the one with the smallest Bonferroni-corrected p-value) is
selected for further analysis (Supplementary Fig. 13). Comparison of the predictive
value of each model was performed using a bootstrapping procedure: 100

resampled datasets are generated, where the cell lines are obtained by sampling
with replacements from all the cell lines with sensitivity and expression profile
available for a given drug. The linear regressions are solved for each bootstrap using
the resampled set (~2/3) and unselected cell line set (~1/3) for training and testing,
respectively. To evaluate the prediction performance of a gene or isoform model, its
vector of concordance index values is compared with a null model using a one-
sided Wilcoxon-signed rank test. Bootstrapping procedure is applied on the gene
and its most predictive isoform. We recognize that the dependence between the
different test sets may inflate the Wilcoxon’s test p-values; however such bias would
be present for both genes and isoforms, resulting in a fair comparison. To combine
the fitted models obtained from CCLE and GDSC, their coefficients and p-values
were averaged and weighted by the number of cell lines in those datasets
(Supplementary Fig. 13). To control for multiple testing, we corrected the p-values
obtained for all genes and isoforms, separately, using the false discovery rate (FDR)
method59.

Pan-cancer validation of isoform-based biomarkers. Beside CCLE, the recent
gCSI pharmacogenomic study20, 22 is the only publicly available dataset including
RNA-seq and pharmacogenomic profiles for a large panel of cell lines spanning
across multiple cancer types (Supplementary Fig. 4). We therefore used gCSI to
validate our candidate biomarkers in a pan-cancer setting. We computed the sig-
nificance of the linear association between the biomarker expression and drug
response controlled for tissue type (unadjusted p-value < 0.05) with the same
direction of association (sign of the coefficient β) as the training sets. Similarly to
the discovery phase, we selected the validated biomarkers by statistically comparing
the concordance index distribution of the isoform-based and gene-based models to
concordance indices of the null model (tissue type only) based on the bootstrap
procedure using a one-sided Wilcoxon-signed rank test (Supplementary Fig. 13).

Pre-validation of isoform-based biomarkers in breast cancer. We also validated
the accuracy of our biomarkers using a previously-published independent dataset,
GRAY3, which includes RNA-seq of a panel of 70 breast cancer cell lines screened
with 90 FDA-approved drugs (CellTiter-Glo pharmacological assay; Supplemen-
tary Table 1), with eight compounds in common with CCLE and GDSC (Sup-
plementary Fig. 15). To check the predictive value of our biomarkers in breast
cancer, we fitted the linear models in Eqs. (1–3) using only breast cancer cell lines
in our training sets (61 and 54 breast cancer cell lines in CCLE and GDSC,
respectively). A biomarker is selected if its predictive value in breast cancer cell
lines is > 0.55. To validate the selected biomarkers in GRAY, we computed the
significance of the linear association between the biomarker expression and drug
response (unadjusted p-value < 0.05) with the same direction of association (sign of
the coefficient β) as the training sets. To select the validated biomarkers whose
isoform expression is significantly more predictive than the corresponding overall
gene expression, we estimated the concordance index distribution of the isoform-
based and gene-based models using the bootstrap procedure and compared these
distributions using a two-sided Wilcoxon-signed rank test (Supplementary Fig. 13).

Final validation of isoform-based biomarkers. To test whether the predictive
value of the isoform-based biomarkers validated in GRAY was robust to the use of
a different pharmacological assay, we leveraged a collection of 84 breast cancer cell
lines recently used to investigate gene essentiality in breast cancer molecular
subtypes21. We selected 14 cell lines in this collection that were readily available
and showed extreme expressions of the biomarkers of interest (Supplementary
Table 1). Selected cell lines were cultured and screened for their response to three
targeted agents: lapatinib, AZD6244 and erlotinib, and one chemotherapy, pacli-
taxel. We used the sulforhodamine B colorimetric (SRB) proliferation assay60 in
96well plates to determine the drug dose–response curves. We subtracted the
average phosphate-buffer saline (PBS) wells value from all wells and computed the
standard deviation and coefficient for each triplicate. Data points with coefficient
or standard deviation > 0.2 were discarded. All the individual treated well values
were normalized to the control well values. We used the PharmacoGx50 package to
fit the curves using a logarithmic logistic regression method to estimate the AUC
sensitivity values. Raw and processed pharmacological data are available through
our PharmacoGx platform under the UHNBC PharmacoSet.

Code availability. Our code and documentation are open-source and publicly
available through the RNAseqDrug GitHub repository (github.com/bhklab/
RNASeqDrug). A detailed tutorial describing how to run our pipeline and repro-
duce our analysis results is available in the GitHub repository. Our study complies
with the guidelines outlined in refs. 61, 62.

Data availability. The pharmacogenomics data used in this study are publicly
available through our PharmacoGx platform50. CCLE and GDSC data are available
from https://portals.broadinstitute.org/ccle/ and http://www.cancerrxgene.org/,
respectively. The gCSI dataset is available from the European Genome-phenome
Archive (EGAS00001000610). The GRAY dataset is available from EGA
(EGAS00000000059 and EGAS00001000585) and ArrayExpress (E-TABM-157
and E-MTAB-181). The RNA-seq data for the UHN dataset are available on the
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NCBI Gene Expression Omnibus (GSE73526), whereas the drug sensitivity data are
available in PharmacoGx (UHNBreast).
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