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Abstract

Mutually inhibitory populations of neurons, half-center oscillators (HCOs), are commonly

involved in the dynamics of the central pattern generators (CPGs) driving various rhythmic

movements. Previously, we developed a multifunctional, multistable symmetric HCO model

which produced slow locomotor-like and fast paw-shake-like activity patterns. Here, we

describe asymmetric features of paw-shake responses in a symmetric HCO model and test

these predictions experimentally. We considered bursting properties of the two model half-

centers during transient paw-shake-like responses to short perturbations during locomotor-

like activity. We found that when a current pulse was applied during the spiking phase of one

half-center, let’s call it #1, the consecutive burst durations (BDs) of that half-center

increased throughout the paw-shake response, while BDs of the other half-center, let’s call

it #2, only changed slightly. In contrast, the consecutive interburst intervals (IBIs) of half-cen-

ter #1 changed little, while IBIs of half-center #2 increased. We demonstrated that this asym-

metry between the half-centers depends on the phase of the locomotor-like rhythm at which

the perturbation was applied. We suggest that the fast transient response reflects functional

asymmetries of slow processes that underly the locomotor-like pattern; e.g., asymmetric

levels of inactivation across the two half-centers for a slowly inactivating inward current. We

compared model results with those of in-vivo paw-shake responses evoked in locomoting

cats and found similar asymmetries. Electromyographic (EMG) BDs of anterior hindlimb

muscles with flexor-related activity increased in consecutive paw-shake cycles, while BD of

posterior muscles with extensor-related activity did not change, and vice versa for IBIs of

anterior flexors and posterior extensors. We conclude that EMG activity patterns during

paw-shaking are consistent with the proposed mechanism producing transient paw-shake-

like bursting patterns found in our multistable HCO model. We suggest that the described

asymmetry of paw-shaking responses could implicate a multifunctional CPG controlling

both locomotion and paw-shaking.
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Author summary

The existence of multifunctional central pattern generators (CPGs), circuits which control

more than one rhythmic motor behavior, is an intriguing hypothesis. We suggest that the

cat paw-shaking response could be a transient response of the locomotor CPG. Our gen-

eral prediction is that this CPG is multifunctional, and in addition to the locomotor

rhythm, it can generate a transient, ten-times faster, paw-shake-like response to a stimu-

lus. In our multistable half-center oscillator (HCO) CPG model, we applied perturbations

to the locomotor pattern which resulted in a transient paw-shake-like pattern that eventu-

ally returned back to the locomotor pattern. We showed that the inactivation of the slow

inward current that drives the locomotor rhythm produced asymmetry of the transient

flexor and extensor activity in a symmetric HCO model. To test predictions from our

model about the transient nature of the paw-shake response, we compared burst durations

(BDs) and interburst intervals (IBIs) of the model half-centers in consecutive cycles of

paw-shake-like responses with the BD and IBI of electromyographic (EMG) activity bursts

of cat hindlimb flexors and extensors recorded during a paw-shake response. In both

cases, we found similar asymmetric trends in the BD and IBI throughout a paw-shake

response.

Introduction

We engage in many types of rhythmic motor behaviors in our everyday lives, such as walking,

breathing, chewing, etc. Rhythmic behaviors like these are generally controlled by interneuro-

nal networks called central pattern generators (CPGs) [1–4]. Many of these behaviors are

steady-state and long-lasting, such as walking and breathing. Other rhythmic behaviors tend

to last for only a short interval of time and may have variable characteristics, such as scratch-

ing, struggling, gasping, etc. Although a wide variety of motor rhythms have been described in

the literature, the mechanisms underlying these rhythms are still debated. For example, the rel-

atively slow locomotor rhythm and the much faster paw-shake response in the cat could be

controlled by two separate independent CPGs, separate CPGs with shared interneuronal cir-

cuits, or a single multifunctional CPG. There is experimental evidence from a variety of species

supporting the possibility of multifunctional CPGs controlling a variety of different motor

behaviors [5–13].

In principle, multifunctional CPGs could produce multiple rhythms of different frequen-

cies. Relatively slow long-lasting rhythmic behaviors could be controlled by a stable, steady-

state rhythm of a multifunctional CPG until an input signal changes or halts its rhythmic activ-

ity. A short-duration, non-steady-state rhythmic behavior, on the other hand, could result

from transient neural dynamics of the same CPG triggered by a perturbation, e.g., a sensory

input signal. These transient neural dynamics could generate a short-duration rhythmic

behavior as a reliable response to certain environmental stimuli, such as transient responses

seen in insect olfaction processing [14–16].

We have recently developed a multifunctional CPG model that generates reciprocal rhyth-

mic activity between cat hindlimb antagonists and exhibits multistability of slow, locomotor-

like and fast, paw-shake-like steady-state rhythms [17,18]. The model is based on a novel

mechanism that produces multistability of two rhythms that differ in frequency by an order of

magnitude, e.g., 1 Hz and 10 Hz. This mechanism involves two slow, intrinsic currents in each

half-center neuron with significantly different kinetics of inactivation. These two currents are

slowly inactivating, low-voltage-activated calcium current (ICaS) and slowly inactivating
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sodium current (INaS). The locomotor-like rhythm in our model is largely generated and con-

trolled by ICaS, while the paw-shake-like rhythm is largely generated and controlled by INaS.

Although ICaS and INaS both inactivate relatively slowly, the time constant of inactivation of

ICaS is much larger than the time constant of inactivation of INaS. The slow calcium current in

our model deinactivates at voltages that are more hyperpolarized than the minimum voltage

reached during the stable paw-shake-like rhythm. Therefore, ICaS is completely inactivated

during the paw-shake-like rhythm, allowing INaS to control the paw-shake-like rhythm and

maintain a much higher frequency than the locomotor-like rhythm. During the locomotor-

like rhythm, however, ICaS and INaS are both active, but the kinetics of ICaS bring the rhythm to

a much slower frequency. With a short perturbation (a pulse of conductance) to one or both

half-center neurons, the model can be switched from the locomotor-like rhythm to the paw-

shake-like rhythm or vice versa. We have shown that a neuromechanical model of cat hin-

dlimbs controlled by this multifunctional CPG and motion-dependent somatosensory feed-

back could reproduce not only distinct rhythms of cat locomotion and paw-shaking but also

the typical reciprocal activation of flexors and extensors during locomotion and the atypical

reciprocal activation of anterior and posterior muscles during paw-shaking [17,19]. In a previ-

ous study, we modeled steady-state paw-shake-like activity patterns [18], whereas recorded

paw-shake cycle periods are not steady but become longer with each subsequent paw-shake

cycle [19]. This suggests that paw-shake responses could be generated by transient dynamics

elicited by some sensory stimuli. Here, we investigated potential mechanisms that can produce

transient paw-shake-like responses to short pulses of current applied at various phases of loco-

motor-like activity of our previously developed multistable, half-center oscillator CPG model

[17,18]. We also compared characteristics of the model’s transient dynamics with the charac-

teristics of EMG activity recorded during paw-shake responses in unrestrained cats.

Thus, the first goal of this study was to investigate the mechanism by which neural transient

dynamics could be produced in the multistable, half-center oscillator CPG model. The second

goal was to investigate temporal characteristics of EMG activity of cat hindlimb antagonistic

muscles (durations of activity cycles, bursts and interburst intervals) in consecutive paw-shake

cycles evoked during locomotion and compare them with those of the model. We tested the

hypothesis that the temporal characteristics of recorded EMG activities during cat paw-shake

responses would be consistent with the model transient dynamics.

Methods

Ethics statement

All surgical and experimental procedures of this study were in compliance with the “Guide for

the Care and Use of Laboratory Animals. Eighth Edition” (National Research Council, 2011)

and were approved by the Institutional Animal Care and Use Committee of the Georgia Insti-

tute of Technology (protocol number A13063).

Modeling

We used our previously published Hodgkin-Huxley style model [17,18] to investigate fast

paw-shake-like activity as a transient response to a perturbation of a steady-state locomotor-

like rhythm. Our model consists of two identical, mutually inhibiting neurons with the same

intrinsic currents and the same synaptic currents. There are five intrinsic currents in each neu-

ron: a fast sodium current (INaF), a slowly inactivating sodium current (INaS), a potassium cur-

rent (IK), a low-voltage-deinactivated, slowly inactivating calcium current (ICaS), and a leak

current (Ileak). Currents INaF and IK were modified from another mammalian locomotion CPG

model [20,21]. The following equations use the units of second (s), milliVolt (mV),
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nanoSiemens (nS), and picoAmpere (pA):

V 0 ¼ �
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where �g x is the maximal conductance; Ex is the reversal potential; mx and hx are the activation

and inactivation variables, respectively, of some current Ix. The activation and inactivation var-

iables range from 0 to 1, where the current is fully deactivated when mx = 0 and fully activated

when mx = 1; the current is fully inactivated when hx = 0 and is fully deinactivated when hx = 1

[22]. The variable mSynPre is the synaptic activation variable of the presynaptic neuron which is

governed by the corresponding presynaptic membrane potential VPre. The capacitance C in

this model is 0.001 nF.

We integrated these equations using the 8th order Runge-Kutta integration method and

GSL ODE solver software, with a maximum step size of 10−5 seconds, an absolute tolerance of

10−8 and relative tolerance of 10−9. Values of the model parameters are provided in Tables 1

and 2.

The transient fast rhythmic activity was elicited in our model by applying a pulse of an addi-

tional excitatory modulatory current, IE with an excitatory reversal potential EE = 0 mV, as a

square pulse of conductance, gE. This pulse of modulatory current was applied to both neurons

in the model when the model was engaged in a slow locomotor-like rhythm. It was applied at a

specified time, tpul, corresponding to a specific phase, ppul, and it continued for a specified

duration, dpul. The fast rhythmic activity that results from this pulse may be either transient or

stable. Many cases of transient paw-shake-like activity were collected by varying the time of

pulse onset, tpul, and the pulse duration, dpul. The phase ppul = 0% was defined as the instant of

the first spike peak in each burst of neuron 2. We varied ppul from 0% to 100% with a step of

0.25% of the cycle, and for each of these phases, we varied pulse duration dpul from 200 ms to

1200 ms with a step of 5 ms.

For each episode of transient paw-shake-like activity in the model, we measured the tempo-

ral characteristics of bursting activities of the two neurons comprising the half-center oscillator

Table 1. Canonical conductance parameters and perturbation conductance (in nS).

�gNaF �g NaS �gK �gCaS gleak �g Syn
�g E

50.0 3.83 40.0 12.3 2.96 5.5 1.0

https://doi.org/10.1371/journal.pcbi.1009677.t001

Table 2. Reversal potential parameters and perturbation reversal potential (in mV).

ENa EK ECa Eleak ESyn EE
65.0 -70.0 160.0 -54.0 -75.0 0.0

https://doi.org/10.1371/journal.pcbi.1009677.t002
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CPG for each subsequent activity cycle. These characteristics included bursting cycle period

(CP), burst duration (BD), and interburst interval duration (IBI). CP of each neuron was cal-

culated as the time between the peak of the first spike of a burst and the peak of the first spike

of the next burst. BD was calculated as the time between the peak of the first spike of a burst

and the peak of the last spike of the same burst. IBI was defined as (CP–BD). Duty cycle (DC)

was defined as 100�BD/CP. Paw-shake-like rhythms were defined as rhythms with CPs < 210

ms. The progressions of BD and IBI throughout each episode of transient activity were mea-

sured for each neuron and each phase of pulse onset. Linear regression analysis was used to

perform a linear curve fit in order to evaluate the rate of change of BD and IBI over time dur-

ing transient activity. We excluded the very first burst after the pulse from the linear curve fit,

because there were some simulations where the first burst was very short, sometimes consist-

ing of only 2 or 3 short spikes. For each 0.25%-phase increment of pulse onset, we obtained a

simulation of transient paw-shake-like activity. Among all collected responses, we selected and

used for further analyses those which contained between 5 and 9 paw-shake-like burst cycles,

and disregarded simulations with fewer or greater. We applied linear curve fits to BD and IBI

versus time for each collected simulation, determined the slopes of these fits for each simula-

tion, and used a sliding averaging of the slopes with a window width of 1.25% of the cycle dura-

tion. That gave us the mean slope values of BD and IBI for all simulations corresponding to

each perturbation phase. We also investigated more closely the mean slopes of BD and IBI in

the phase range of 20% - 40% which approximately corresponds to the locomotor cycle phases

in which paw-shaking is actually initiated in cats.

We hypothesized that the asymmetry of the linear trends of BD and IBI throughout time in

our model could be explained by the functional antiphase relationships between the slowest

state variables of the two half-centers. To test this hypothesis, we built a reduced version of the

model, which we called the “constant hCaS model”. In each neuron of the reduced model, the

hCaS state variable was held constant and its corresponding equations were removed from the

CPG model. We separately varied hCaS1 and hCaS2 as two parameters, producing a simulation

of the model for each combination of values in a certain domain. Each simulation was inte-

grated for 1000 s to ensure that the activity had reached a steady state. We obtained the mean

values of BD and IBI for neurons #1 and #2 separately by averaging over the last 20 bursts for

each simulation case. We measured the difference of DC between the two model neurons and

plotted this difference versus the difference in hCaS of the two neurons, and we performed a

linear curve fit on these data.

Animal experiments

We analyzed EMG recordings from 12 adult female cats (mass 3.56±0.73 kg) that were part of

our previous studies [23–26]. Details of surgical and experimental procedures were described

previously [23,24]. Briefly, cats were trained with food rewards to walk on a plexiglass enclosed

walkway. After training, the major ankle, knee and hip muscles of one hindlimb were

implanted with bipolar wire electrodes (CW5402; Cooner Wire, Chatsworth, CA, USA) under

aseptic conditions and general isoflurane anesthesia (1–3%). The animals recovered after sur-

gery for 2 weeks. Pain medication (fentanyl transdermal patch, 12–25 μg/h and/or buprenor-

phine, s.c., 0.01 mg/kg, or ketoprofen, 2 mg/kg, s.c.) and antibiotics (cefovecin, 8 mg/kg, s.c.,

or ceftiofur, 4 mg/kg, s.c.) were administered for 3 and 10 days, respectively. To evoke paw-

shake responses during walking, we attached a small piece of adhesive tape (~2 cm x 3 cm) to

paw pads of the implanted hindlimb and placed the cat on the walkway. The animal walked

across the walkway and performed paw-shaking during the swing phase of the hindlimb keep-

ing the other limbs on the ground until termination of paw-shaking and resuming locomotion
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[23,27]. EMG activity was recorded at a sampling rate of 3000 Hz. Recorded EMG signals were

band pass filtered (30–1000 Hz) and amplified. Since our CPG model describes the operation

of a HCO that acts as a rhythm generator and generates excitatory inputs to the neural network

that activates flexor and extensor motoneurons, we analyzed paw-shake EMG recordings from

hindlimb muscles with flexor and extensor locomotor activity (25). These muscles included

flexors tibialis anterior (TA, ankle flexor) and iliopsoas (IP, hip flexor) and extensors soleus
(SO, ankle extensor), medial gastrocnemius (MG, ankle extensor and knee flexor), vastus later-
alis and vastus medialis (VA, knee extensor), and anterior biceps femoris (BFA, hip extensor).

For each of these muscles, we measured the progression of EMG burst characteristics of

paw-shake cycles throughout each paw-shake episode. In order to measure these burst charac-

teristics, we first full-wave rectified the EMG signal and slightly smoothed it using a zero-lag,

moving average with an 8-ms window. For each channel, we then took a random time interval

with no muscle activity that was at least 200 ms wide and determined the mean and standard

deviation of the raw EMG signal within this selection. The standard deviation was used as a

measure of the EMG noise level in each trial. We set the activity burst threshold to be 3 times

this standard deviation. We defined the EMG paw-shake cycle period (CP) for each muscle as

the time between the EMG burst onset in a given cycle and the burst onset in the next cycle.

The EMG burst duration BD was defined as the time between the burst onset and offset, and

EMG interburst interval IBI was defined as the time between the burst offset and next burst

onset. The duty cycle DC was calculated as 100�BD/CP.

We analyzed changes in BD and IBI in all consecutive cycles of individual paw-shake epi-

sodes for each muscle: 28 episodes for MG, 28 for SO, 12 for VA, 12 for BFA, 21 for IP, and 12

for TA (Table 3). Each paw-shake episode had between 5 and 11 cycles. We calculated Pear-

son’s correlation coefficient for BD and IBI versus time for each paw-shake response within

each muscle group. The median Pearson’s correlation coefficient (R) of all trials within each

muscle group was greater than 0.7 for IBI of MG, SO, VA, and BFA; and for BD of IP, TA, and

VA. For the IBI of IP and TA and for BD of MG, SO and BFA, BD/IBI appeared to remain

constant over time, and therefore, R varied widely from trial to trial with a median R anywhere

Table 3. Number of paw-shake episodes analyzed per animal and muscle.

Animal ID MG SO VA BFA IP TA

A 8 7 2 0 5 0

B 7 6 0 0 2 0

C 6 7 6 9 6 0

D 2 2 0 2 0 0

E 1 2 0 0 0 0

F 1 0 0 0 2 6

G 1 1 0 0 1 0

H 1 0 0 0 0 0

I 1 0 0 0 0 0

J 0 2 2 1 3 0

K 0 1 0 0 1 2

L 0 0 2 0 1 4

Total 28 28 12 12 21 12

Muscle abbreviations: MG, medial gastrocnemius; SO, soleus; BFS, biceps femoris anterior; IP, iliopsoas; TA, tibialis

anterior; VA, vastus lateralis and vastus medialis. Each paw-shake episode contained between 5 and 11 cycles. The

raw data could be found in S1 Data.’

https://doi.org/10.1371/journal.pcbi.1009677.t003
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from -0.3 to 0.3. We used linear regression analysis of BD and IBI versus time for each paw-

shake response to see if the median curve fit slopes were statistically different from zero in the

case of variables that appeared to remain constant and to quantify the mean and median rates

of change of these variables over time in the case of groups with high R values. In order to be

consistent with the model analysis, we excluded the first burst from the regression analysis.

We then calculated the slopes of these regression lines for each muscle and paw-shake episode.

We determined that we could not assume the regression slopes were normally distributed

based on histograms of the slope data and eyeball metrics. We used the one-sample non-

parametric Wilcoxon rank test to determine whether the median linear regression slopes were

significantly different from zero.

Results

Transient dynamics of half-center oscillator model

In our model of a half-center oscillator, two steady-state oscillatory regimes–slow locomotor-

like and fast paw-shake-like, coexist (Fig 1A and 1B), as previously described in detail in

[17,18]. In previous studies, we simulated a paw-shake response during locomotion by apply-

ing a pulse of current to switch from stable locomotor-like activity to stable paw-shake-like

activity and then applying another pulse of current to switch back to locomotor-like activity.

Here, we reduced the duration of the first pulse in order to produce a transient paw-shake-like

response, where a second pulse is not needed to return to locomotor-like activity (Fig 1C). In

this case, the model produced a few paw-shake-like bursts and then slowly (within several sec-

onds) returned to a slow steady-state locomotor-like activity. During this transient activity, BD

and IBI of both neurons changed as a sigmoid function of time (Fig 1C). The duration of the

transient paw-shake-like activity (i.e., the number of transient bursts) depended on the phase

of pulse onset and the pulse duration (Fig 2). The pulse duration needed to produce this tran-

sient activity also changes depending on the phase of pulse onset (Fig 2).

In large regions of phase space, which will be explored further in the following, we found

asymmetric trends across the two half-centers within transient paw-shake-like activity, despite

that our HCO CPG model had two completely symmetric half-centers (two neurons with the

same intrinsic and synaptic properties) with identical burst characteristics for the steady-state

slow regime and the fast regimes and that both neurons received the same perturbations at the

same time. Looking back at the example simulation in Fig 1, when we zoomed in on transient

paw-shake-like activity, we found that the burst characteristics of the two neurons evolved

asymmetrically throughout the transient paw-shake-like activity (Fig 3). If the pulse was

applied during the spiking phase of the locomotor-like burst of neuron #2, then its BD (BD2)

grew faster than the BD of neuron #1 (BD1), and the IBI of neuron #1 (IBI1) grew faster than

the IBI of neuron #2 (IBI2) (Fig 3B). For each simulation of transient paw-shake-like activity,

we computed linear regressions between BD and the time of burst occurrence within the paw-

shake-like response, i.e. the burst onset time, between IBI and the burst onset time, and

between DC and burst onset time.

We then collected all simulations from the analysis in Fig 3 that had between 5 and 9 paw-

shake cycles, which amounted to 1328 model simulations relatively evenly distributed across

phase of pulse onset (Fig 4A). In this data set, we found that the regression slopes (the mean

rate of change) of BD and IBI for neurons #1 and #2 depended on the phase of pulse onset and

pulse duration (Fig 4A). There was substantial variability in the slopes for BD and IBI as evi-

dent from Fig 4B, so we used a sliding window method to produce a relatively smoothed, aver-

aged representation of the slopes of BD and IBI versus phase of pulse onset disregarding pulse

duration (Fig 4B). At around phase = 10% (near the burst onset of neuron #2), BD2 slope
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became greater than BD1 slope, and at around phase = 55% (near the burst onset of neuron

#1), BD1 slope became greater than BD2 slope. On the other hand, at around phase = 15%, IBI1

slope became greater than IBI2 slope, and at around phase = 60%, IBI2 slope became greater

than IBI1 slope.

Asymmetric responses of the symmetric HCO model

We then looked more closely at a range of pulse application phases from 20% to 40% where

behaviors of BD and IBI in the model and cat experiments were similar (see next section) and

where actual paw-shake responses during cat locomotion begin, i.e. in the flexor (swing) phase

of a locomotion cycle assuming neurons #1 and #2 represent the extensor and flexor half-cen-

ters, respectively. Within this range, the pulse was applied around the middle of the spiking

activity of neuron #2, which would represent the swing phase of a cat’s locomotion cycle. We

produced 286 simulations in this phase range by modifying the phase of pulse onset and the

pulse duration, so that the pulse duration ranged from 700 ms to 1000 ms. Slightly varying

these pulse parameters produced highly variable effects on the resulting transient activity of

Fig 1. Examples of stable and transient activity in a symmetric HCO model. Characteristics of neuron #1 are depicted in blue, while

characteristics of neuron #2 are depicted in orange. A and B: A slow locomotor-like rhythm (A) and a fast paw-shake-like rhythm (B)

coexist in the model. (C1) A transient fast rhythm was elicited by applying a square pulse of excitatory conductance with amplitude �g E =

1 nS to both neurons for about 1000 ms (950 ms was used in this example). The pulse was applied during the spiking phase of neuron 2

with the phase of pulse onset equal to 20%. The transient fast rhythmic activity occurs immediately after the pulse and activity returns to

the slow rhythm in about 2 seconds after the pulse offset. The gray rectangle represents the region which is depicted in C3. (C2) The BD

and IBI of neurons #1 are #2 during the transient response. The time axis is common for C1 and C2. (C3) Zooming in on the transient

paw-shake-like activity marked by the gray rectangle in C1.

https://doi.org/10.1371/journal.pcbi.1009677.g001

Fig 2. The number of bursts contained in a transient response depends on the phase of pulse onset and pulse

duration. The color map represents the duration of transient fast rhythm response (measured as the number of

transient bursts). The black region above the colored portion represents traces where the pulse caused a switch to the

stable fast rhythm. The locomotor-like cycle corresponding to the phase of pulse onset during the slow rhythm is

shown at the bottom by one full bursting cycle period of neurons #1 (blue trace) and #2 (orange trace).

https://doi.org/10.1371/journal.pcbi.1009677.g002
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neurons #1 and #2 (Figs 4 and 5). We calculated the mean and median slopes of the regression

lines for all of the simulations in this range and found that the median slopes of the linear

regression lines for BD, IBI and DC as functions of the burst onset time during paw-shake-like

activity were significantly different from zero for neuron #1 and neuron #2. However, the

median BD slope of neuron #1 (0.0043) was significantly smaller than the median BD slope of

neuron #2 (0.013). The median IBI slope of neuron #2 (0.0037) was significantly smaller than

the median IBI slope of neuron #1 (0.011). Moreover, the DC slopes for neurons #1 (-0.0015)

was negative, while the DC slope for neuron #2 was positive (0.003) (Fig 5). Thus, despite the

identical properties of the two half-centers of the HCO model, they produced asymmetric

transients in response to identical perturbation pulses.

We then investigated possible causes of the asymmetric changes of BD and IBI in our sym-

metric half-center oscillator CPG model. We looked at the differences in inactivation of the

two slow currents, hNaS (time constant of 100 ms) and hCaS (time constant of 485 ms) between

the two neurons throughout the transient paw-shake-like response (Fig 6). Although values of

hNaS at the onset of each burst were asymmetric for the first couple bursts, they did not exhibit

substantial asymmetry throughout the entire duration of transient activity and thus could not

explain the differences in temporal evolution of BD and IBI between the two neurons (Fig 6B

and 6D). On the other hand, the values of hCaS of neurons #1 and #2 progressed differently

throughout the entire duration of transience (Fig 6C). Although the difference in the hCaS
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Fig 3. Example of burst duration (BD) and interburst interval duration (IBI) progressions throughout transient paw-shake-like activity. The membrane

potential, BD, and IBI of neurons #1 and #2 are depicted in blue and orange, respectively. (A) Revisiting the example from Fig 1, where the gray region

indicates transient paw-shake-like activity. (B) Zooming in on the gray region from panel A, we see that BD2 (orange lines) and IBI1 (blue lines) increase, while

BD1 (blue lines) and IBI2 (orange lines) remain roughly constant.

https://doi.org/10.1371/journal.pcbi.1009677.g003

PLOS COMPUTATIONAL BIOLOGY Activity properties of the paw-shake response in cats

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009677 December 28, 2021 11 / 28

https://doi.org/10.1371/journal.pcbi.1009677.g003
https://doi.org/10.1371/journal.pcbi.1009677


Fig 4. Regression slopes of the relationship between burst duration and burst onset time (BD slope) and between

interburst interval and burst onset time (IBI slope) throughout paw-shake-like episodes depend on phase of pulse

onset and pulse duration. (A) BD slope and IBI slope for neuron #1 are shown for simulations with 5 to 9 transient

paw-shake-like bursts. The color map represents the magnitude of these slopes. (B) BD slope and IBI slope averaged

across pulse durations as a function of phase of pulse onset for neuron #1 and neuron #2 and smoothed with a sliding

window of phase width 1.25%. A locomotor-like cycle corresponding to the phase of pulse onset is shown at the

bottom by traces of neurons #1 and #2.

https://doi.org/10.1371/journal.pcbi.1009677.g004
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values at burst onset between the two neurons was small (Fig 6D), we hypothesized that it

could explain the asymmetric evolution of BDs and IBIs throughout the transient activity.

While hNaS may play some role in the initial asymmetry in BD and IBI across the two neurons,

mainly at the beginning of transient activity, we focused on the role of hCaS due to the clear

asymmetry in the progression of hCaS throughout the entire duration of transient-paw-shake-

like activity (Fig 6C and 6D).

To further investigate the effects of the difference in hCaS between two neurons, we built a

reduced version of the model, called the “constant hCaS model”, in which hCaS for each neuron
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Fig 5. Simulated burst durations (BD), interburst intervals (IBI), and duty cycles (DC) and their linear regression lines as functions of the burst onset

time during transient paw-shake-like responses. We generated 286 different cases of transient activity by applying a pulse of conductance with different pulse

durations (between 700 ms and 1000 ms) and at different phases of locomotor-like activity of neuron #2 (between 20% and 40%). (A) Only 20 randomly
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lines was calculated (shown in top and middle rows for neurons #1 and #2, respectively). (B) The median and quartile slopes are shown for BD slope, IBI slope,
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https://doi.org/10.1371/journal.pcbi.1009677.g005

PLOS COMPUTATIONAL BIOLOGY Activity properties of the paw-shake response in cats

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009677 December 28, 2021 13 / 28

https://doi.org/10.1371/journal.pcbi.1009677.g005
https://doi.org/10.1371/journal.pcbi.1009677


was treated as a parameter, and the corresponding variable and its differential equation was

removed from the neuron model. These new parameters, hCaS1 and hCaS2, corresponding to

the inactivation of slow calcium current in neurons #1 and #2, respectively, were kept constant

with respect to time. We varied hCaS1 and hCaS2 separately, to produce a simulation of the

model for each combination of values. We first kept hCaS2 constant at 0.01, and varied hCaS1
from 0.0075 to 0.02 by steps of 0.0005. We found that BD of neuron #1 increased with the

parameter value of hCaS1, while IBI of neuron #1 increased only slightly as hCaS1 increased (Fig

7A and 7B). On the other hand, BD of neuron #2 only slightly increased as hCaS1 increased,

while IBI of neuron #2 increased significantly as hCaS1 increased (Fig 7A and 7B). We

A
V1 50 mV

-30 mV

V2 50 mV

-30 mV

500 ms

B

60

80

100

B
D

 (m
s)

80

100

120

IB
I (

m
s)

C
hNaS1

0.1

0.2

hNaS2
0.1

0.2
0.3

0.34

0.38

O
ns

et
 h

N
aS

D

hCaS1 0.01

0.005

hCaS2 0.01

0.005500 ms 4000 4500 5000
Time (ms)

0.01

0.015
O

ns
et

 h
C

aS

Fig 6. Progression of variables hNaS and hCaS throughout transient paw-shake-like response. Characteristics for neurons #1 and #2

are depicted in blue and orange, respectively. All panels are on the same time scale. (A) Membrane potentials during model transient

paw-shake-like activity from the same simulation shown in Fig 3. Gray dots represent the time of the burst onset. (B) Changes in burst

duration (BD) and interburst interval (IBI) of neurons #1 and #2 in an example of a paw-shake-like transient response, also shown in Fig

3B. (C) Progression of variables hNaS and hCaS during transient-paw-shake-like activity. (D) The values of variables hNaS and hCaS for

neurons #1 and #2 at the burst onsets of each neuron, which we refer to as “onset hNaS” and “onset hCaS”, marked by gray dots in A and

C.

https://doi.org/10.1371/journal.pcbi.1009677.g006
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https://doi.org/10.1371/journal.pcbi.1009677.g007

PLOS COMPUTATIONAL BIOLOGY Activity properties of the paw-shake response in cats

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009677 December 28, 2021 15 / 28

https://doi.org/10.1371/journal.pcbi.1009677.g007
https://doi.org/10.1371/journal.pcbi.1009677


measured mean onset hNaS for both neurons as we varied hCaS1 and found that as hCaS1
increased, onset hNaS2 increased linearly while onset hNaS1 remained roughly constant, reflect-

ing changes in corresponding constant values of parameters hCaS1 and hCaS2 (Fig 7C).

Then for each value of hCaS1, we varied hCaS2 between 0.0075 and 0.02 with a step size of

0.0005, and we used the same range of values and step size to vary hCaS1. We found that within

this data set of 676 simulations the difference in duty cycle between the two neurons depended

linearly on the difference in hCaS between the two neurons in the reduced model (Fig 7D).

This means that the difference in BD between the two neurons normalized by their shared

cycle period depends linearly on the difference in hCaS of the two neurons. Therefore, the duty

cycles are directly and predictably controlled by the difference in hCaS (hCaS2-hCaS1) between

the two neurons. We concluded that the asymmetry in transient responses in the full model

occurred due to the difference in how much the slow calcium currents in both neurons inacti-

vate while they are depolarized during the pulse.

In order to determine whether hNaS plays any notable role in generating the asymmetric

trends throughout paw-shake transience, we set hCaS constant in both neurons at the moment

the pulse ended using the same example of transient activity that was used in Figs 1, 3, and 6

(Fig 8A). At the moment the pulse ended, hCaS1 and hCaS2 were held constant at the values they

had reached, and thereby, at different asymmetric values (hCaS1 = 0.0311, hCaS2 = 0.0242) (Fig

8). We found that while the baseline values for BD and IBI were asymmetric across the two

model neurons, they remained roughly constant at those values indefinitely (Fig 8B). We

applied this same procedure to all of the cases of transience previously analyzed in 20% - 40%

phase range and found that this result was consistent (Fig 8E and 8G). To quantify this result,

we applied linear regression analysis to the first few bursts after the pulse, where the number of

bursts included was constrained to the number of bursts in the original transient paw-shake-

like activity of the corresponding simulation. Since the asymmetric trends in BD and IBI dis-

appear when hCaS is held constant, the kinetics of the inactivation of slow calcium current is

the sole driver of these asymmetric trends in our model.

We then performed the same procedure except that we held hCaS constant at the same value

for both neurons, namely at the average of the two values reached at the moment of pulse offset

(Fig 8C, 8D, 8F, and 8H). We found no asymmetric trends of BD and IBI, and we found that

the asymmetry in the baseline values for BD and IBI disappeared; BD and IBI both remained

roughly constant at the same value for both neurons (Fig 8D, 8F, and 8H). Therefore, the

kinetics of the inactivation of slow calcium current is the sole driver of asymmetry in the base-

line values of BD and IBI during transient paw-shake-like activity.

Temporal dynamics of EMG activity bursts during experimental paw-shake

response

During actual paw-shaking in cats, the recorded muscles demonstrated reciprocal extensor

and flexor EMG activity (Fig 9A and 9B). The paw-shake CP progressively increased at each

consecutive cycle within an episode (Figs 9C and 10), consistent with a previous study [19].

Since CP grows throughout a paw-shake response, one might expect that BD and IBI would

both grow throughout a paw-shake response also. That was not the case for most of the mus-

cles we recorded. BDs of flexors (TA and IP) tended to grow throughout a response, while

flexor IBIs did not; on the other hand, IBIs of extensors (SO, MG, VA, and BFA) tended to

grow throughout a response, while extensor BDs did not, except for VA (Figs 9C and 10). This

unexpected asymmetry may offer some insight into the neural dynamics that could produce

this rhythmic response. Interestingly, we also found that flexor EMG activity had a greater DC
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Fig 8. Constant hCaS during transient paw-shake-like activity. (A) hCaS was set constant in both neurons at pulse

offset; this moment is marked by a vertical green line. The same example of transient activity that was used in Figs 1, 3,

and 6 is shown. hCaS1 and hCaS2 were held constant at the values they had reached at that moment (hCaS1 = 0.0311,

hCaS2 = 0.0242). (B) BD and IBI are shown for the first few bursts of trace in A. These burst characteristics can be

compared to Fig 3B or Fig 6B. (C) hCaS was again set constant at pulse offset (vertical green line), but in this case hCaS1
and hCaS2 were both set to the average of the values they reached at the end of the pulse (hCaS1 = hCaS2 = 0.0277). (D)

The progression of BD and IBI of trace shown in C. (E) hCaS was set constant asymmetrically after the pulse for all 286

transience cases used in Fig 5. Linear regression analysis was applied to the resulting progressions of BD and IBI and

the mean linear curve fit is shown. (F) hCaS was set constant symmetrically after the pulse for all 286 transient cases
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than extensor activity during paw-shaking, even though the extensor EMG activity had a

greater DC during walking (Figs 9A and 9B and 10).

We calculated Pearson’s correlation coefficient (R) and performed linear regression analysis

of BD, IBI, and DC for each paw-shake response within each muscle group. We used the one-

sample Wilcoxon signed rank test to examine if the median linear regression slopes of BD, IBI

and DC (Fig 10) were significantly different from zero. We found that for each of the hindlimb

extensors (MG, SO, VA and BFA), the median IBI slopes were significantly positive (Figs 10

and 11B; for MG, p = 3.8x10-6, n = 28 paw-shake episodes; for SO, p = 4.7x10-6, n = 28; for VA,

p = 6.8x10-3, n = 12; for BFA, p = 4.9x10-4, n = 12). The median BD slopes for these muscles,

on the other hand, were not different from zero, except for VA (Figs 10 and 11A; for MG,

p = 0.399, n = 28; for SO, p = 0.151, n = 28; for BFA, p = 0.233, n = 12; while for VA

p = 4.9x10-3, n = 12). The DC slopes of the extensor bursts were significantly less than zero

(except for VA), i.e. DC of these bursts decreased with consecutive cycles of paw-shaking (Figs

10 and 11C; for MG, p = 1.5x10-5, n = 28; for SO, p = 5.3x10-6, n = 28; for BFA, p = 9.8x10-4,

n = 12); but the VA DC was not different from zero (p = 1.0, n = 12).

After using the same Wilcoxon signed rank test on slopes of EMG bursts of flexor muscles

IP and TA (Figs 9 and 10), we obtained mostly opposite results. Specifically, the median BD

slopes were significantly positive for these muscles (Figs 10 and 11A; for IP, p = 2.1x10-4,

n = 21 and for TA, p = 4.9x10-4, n = 12), while the IBI slopes were not significantly different

from zero for IP and TA (Figs 10 and 11B; for IP, p = 0.357, n = 21; and for TA, p = 0.151,

n = 12).

The DC slope for IP was significantly greater than zero (p = 0.0496, n = 21). The median

DC slope for TA was positive but not significantly different from zero (p = 0.677, n = 12).

Discussion

In this study, we demonstrated that the model of a multistable half-center oscillator CPG,

capable of producing steady-state slow locomotor-like and fast paw-shake-like rhythms

[17,18], could also produce a fast paw-shake-like rhythm as a transient response to a perturba-

tion of the slow steady-state locomotor-like rhythm (Fig 1). The transient activity was asym-

metric with different evolution rates for BD, IBI, and DC of the two half-centers throughout

the transient response, despite that the two model half-centers are entirely identical (Figs 3–5).

In the model, we determined that this asymmetry resulted from the anti-phasic activity occur-

ring at the time identical current pulses were applied to both neurons. More specifically, the

asymmetry resulted from the different levels of inactivation of the slow calcium currents

between the two neurons at the time of pulse offset and the different progressions of these lev-

els throughout the transient activity (Figs 6 and 7).

We also recorded EMG activity of selected hindlimb muscles while cats performed paw-

shaking during walking. Measured paw-shake cycle periods increased in consecutive paw-

shake cycles (Figs 9 and 10) in accordance with previous studies [19]. We demonstrated for

the first time that EMG burst duration and interburst interval evolve asymmetrically in conse-

cutive paw-shake cycles of hindlimb muscles with flexor- and extensor-related activity (Figs 9–

11). This asymmetry was similar to the transient dynamics of the model CPG half-centers

(Figs 3 and 5).

from Fig 5. Linear regression analysis was applied to each resulting progression of BD and IBI and the mean linear

curve fit is shown. (G) Boxplot of the linear regression slopes for all 286 simulations where hCaS was set constant to

asymmetric values. (H) Boxplot of the linear regression slopes for all 286 simulations where hCaS was set constant

symmetrically.

https://doi.org/10.1371/journal.pcbi.1009677.g008
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Fig 9. Examples of EMG extensor and flexor activity of hindlimb muscles in a paw-shake episode during locomotion. Data of Cats J and F (Table 3). Paw-

shake EMG activity during locomotion is shown for muscles with extensor EMG bursts (medial gastrocnemius, MG; soleus, SO; vastus lateralis, VA; and biceps
femoris anterior, BFA) and flexor EMG bursts (iliopsoas, IP and tibialis anterior, TA). (A1) EMG activity of muscles SO, VA, BFA and IP of cat J during

walking and a paw-shake response. (A2) EMG activity of muscles MG, SO, and TA of cat F during walking and a paw-shake response. (B1, B2) Zoomed-in

EMG traces of the paw-shake episodes in A1 and A2. (C1, C2) Burst duration (BD), interburst interval (IBI), and cycle period (CP) for each cycle of the paw-

shake responses and each muscle as a function of time. The activities of extensors and flexors are depicted in blue and orange, respectively.

https://doi.org/10.1371/journal.pcbi.1009677.g009
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In the next sections, we discuss these findings in the light of the potential role of multistable

CPGs and their possible operation during locomotion and paw-shaking in the cat.

Functional transient activity in biological systems

Central pattern generators are often modeled to produce stable steady-state rhythmic patterns,

and each such pattern is an attractor state of the system. When a system exhibiting a steady-

state pattern, e.g. a locomotor pattern, is perturbed, some transient activity may occur before

the system returns to that attractor state and resumes its steady-state rhythmic pattern

[14,15,28]. This transient activity is often not considered in modeling studies, although it may

represent functional activity of the network with properties necessary for producing an appro-

priate response to a stimulus [14,15,28–30].

Studies have shown in various neural circuits of different organisms that transient activity

can have functional purposes sometimes more so than steady state activity. For example, olfac-

tory responses are encoded by transient dynamics in many investigated species [14,15,31,32].

In locusts, when an odor is presented in a short puff of air, transient oscillations of membrane

potential occur in specific neurons of the antennal lobe depending on the odor presented [31].

Each neuron responds specifically to a small set of odors, and the transient pattern of the

evoked oscillation is specific to the odor [31]. If the stimulus is present for more than 2–3 sec-

onds, then the oscillations reach a stable attractor state, and odor specificity decreases during

this stable activity [14,31]. The above example demonstrates that the properties of the transient

responses to short stimuli may be more important for functionality than the steady-state pat-

tern in locust olfaction. Transient dynamics are known to produce reliable responses to spe-

cific stimuli in other systems as well, such as mammalian learning and memory processes and

cortical visual processing [15,16,33].

Fig 10. EMG burst duration (BD), interburst interval (IBI), duty cycle (DC), and cycle period (CP) of hindlimb extensor and flexor activity as

functions of time during paw-shake response. Gray straight lines represent linear regression lines. Slope values shown in each panel represent the

mean ± SD of the regression slope coefficient. EMG characteristics of extensor muscles (gastrocnemius medial, MG; soleus, SO; vastus lateralis, VA; and

biceps femoris anterior, BFA) are indicated by blue lines; characteristics of flexor muscles (iliopsoas, IP and tibialis anterior, TA) are in orange. Data are

from all 12 cats and 113 paw-shake episodes (Table 3).

https://doi.org/10.1371/journal.pcbi.1009677.g010
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Fig 11. Median and quartile slopes of the linear regression lines relating EMG burst duration (BD), interbust interval (IBI), and duty cycle (DC) with

time during paw shaking. Box plots depict the median slopes and quartiles of BD versus burst time (A), IBI versus burst time (B), and DC versus burst time

(C) for all of the muscles. The dashed lines represent a slope of zero. Black asterisks indicate whether the linear regression slopes are statistically different from

zero, with a p-value< 0.05 (the Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pcbi.1009677.g011
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We propose that a mechanism similar to the one we have modeled here could apply to

other species where a brief behavior is required to respond to some environmental stimulus.

For instance, the struggling behavior in Xenopus tadpoles and larval zebrafish [6,11,12,34] and

the scratching behavior in turtles [5,6,35,36]. Struggling and scratching are transient, reflexive

behaviors that could be generated by a transient response of the swimming CPG in either

organism.

Potential transient dynamics of locomotor CPG controlling the paw-shake-

like pattern

Given that the recorded paw-shake cycle periods change in each successive cycle (Figs 9–11

and [19]), we propose that cat paw-shaking may result from a locomotor CPG’s transient activ-

ity. Paw-shaking can be elicited in deafferented spinalized cats [37] and fictive paw-shake-like

responses can be produced in spinal-transected curarized cat preparations [38], suggesting

that the paw-shaking rhythm is generated by a spinal CPG. Although motion-dependent

somatosensory feedback affects the centrally generated paw-shake activity patterns, these

effects appear to be limited to two muscle groups responsible for the atypical muscle synergy

during paw-shaking–the vasti (VA) and tibialis anterior (TA) muscles [37].

In the current study, we investigated the question of whether paw-shake responses can be

produced as a transient response of the multifunctional locomotor CPG. Our HCO CPG

model can exhibit transient paw-shake-like activity in two different types of parameter

regimes, (1) when the model exhibits coexistence of paw-shake-like activity and locomotor-

like activity, and (2) when the model exhibits only locomotor-like activity but is set nearby the

stable paw-shake-like regime in parameter space. In (2), having CPG parameters set in the

vicinity of the range supporting the fast paw-shake-like regime as an attractor relates to the

concept of a conditional burster: a neuron producing endogenous bursting activity under cer-

tain physiological conditions, for example under certain neuromodulatory tone. If both slow

and fast regimes are attractors as in case (1) then transient paw-shake-like activity could be

induced due to a slow passage near basin of attraction of the fast regime as a result of perturba-

tion which shifted trajectory of HCO activity close to the border between basins of attraction

of the two regimes but did not make it cross the border. Our model uses a relatively novel

mechanism for multistability of bursting regimes with largely distinct periods that involves the

different kinetics of inactivation of two intrinsic slow currents [17]. These two slow currents

were built with largely distinct time constants of inactivation and different voltages of half-

inactivation in order to produce two rhythmic bursting regimes with cycle periods that differ

by an order of magnitude, the locomotor regime (1 Hz) and the paw-shake-like regime (10

Hz). The model was built so that the kinetics of inactivation of the slow Ca++ (ICaS) and Na+

(INaS) currents would drive the kinetics of inactivation of the slow and fast regime, respectively.

When transient activity is generated in our model, slow Na+ current is still the main driving

current of the transient fast activity, but slow Ca++ current controls the way burst duration and

interburst interval change over time and the way the transient activity terminates and returns

to the slow rhythm. The transient rhythmic bursting is reliably controlled by the slowest vari-

able of the system, hCaS, which drives the slow bursting rhythm, locomotor-like bursting.

While it has been shown in other CPG models that asymmetric external input can create

asymmetric burst characteristics in a symmetric model [39], we show that entirely symmetric

external input can create asymmetric burst characteristics in a symmetric model, due to the

inherent asymmetry involved in anti-phasic activity. Using a pulse applied symmetrically to

both neurons, we could obtain an asymmetric response characterized by an asymmetric evolu-

tion of BD and IBI for neurons #1 and #2, depending on the phase of pulse onset. This
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asymmetry occurred due to the anti-phasic activity of the two neurons. The same pulse was

applied to both neurons, but if it was applied during the silent phase of neuron #1 and the spik-

ing phase of neuron #2, then BD in the elicited paw-shake-like response would grow faster for

neuron #2 and IBI would grow faster for neuron #1. Since neuron #2 was spiking, the slow cal-

cium current was inactivated, i.e. its inactivation state variable hCaS2 was decaying towards 0.

At the same time, the membrane potential of neuron #1 was hyperpolarized, and the slow cal-

cium current was deinactivated, its inactivation state variable hCaS1 was growing towards 1.

Thus, hCaS1 was larger than hCaS2 at the time the pulse was applied due to the asymmetric

removal of inactivation of the slowest inward current. During the pulse, the slow calcium cur-

rent inactivated in both neurons, i.e. the values of hCaS in both neurons were decreasing, but at

the end of the pulse, hCaS was still greater for neuron #1 than for neuron #2 (Fig 6D). During

transient activity for neuron #2, the value of hCaS at the beginning of the burst increased at

each consecutive burst causing BD to increase throughout the transient response, and this, in

turn, caused IBI of neuron #1 to increase throughout the transient response (Fig 6). During

transient activity for neuron #1, the values of hCaS at the beginning of the burst made a very

slight U-shape as it progressed, causing BD1 of neuron to remain roughly constant throughout

transience, which caused IBI2 to also remain roughly constant (Fig 6). Therefore, although the

current INaS drives the stable fast rhythm, the current ICaS, driving the stable slow rhythm, con-

trols the duration and dynamics of the transient fast activity. During the stable fast rhythm,

ICaS is completely inactivated so when ICaS is only slightly deinactivated, it has a large effect on

the BDs of the two neurons (Fig 5). In our model, the value of hCaS only increased to around

0.02 before the transition to the slow rhythm (Fig 7). Interestingly, these small differences in

the hCaS values between neurons #1 and #2 were able to create substantial asymmetry in burst

durations between the two neurons (Figs 6 and 7).

It has been theorized that slowly inactivating sodium current is the main driving current of

the mammalian locomotor rhythm [20]. There is experimental evidence indicating that slowly

inactivating sodium current plays an important role in the generation of fictive locomotion in

the isolated rodent spinal cord [40]. Although slowly inactivating low-voltage-activated cal-

cium current is the main driving current of the locomotor-like rhythm in our model, slowly

inactivating sodium current is still required to generate locomotor-like activity. There is also

experimental evidence indicating that slowly inactivating low-voltage-activated calcium cur-

rent contributes to the fictive locomotor rhythm in the isolated neonatal mouse spinal cord,

but it has not been determined whether this current is crucial to the generation of this rhythm

[41,42].

Possible organization of a mammalian multifunctional locomotor CPG

capable of producing faster transient rhythmic behaviors

In this study, we investigated a simple half-center oscillator CPG generating two phases (flexor

and extensor) of a steady-state rhythmic locomotor-like behavior and a paw-shake-like tran-

sient activity. One limitation of our model is that it does not consider sensory feedback despite

that motion-dependent somatosensory feedback affects the centrally generated experimental

paw-shake activity patterns. However, these effects appear to be limited to two muscle groups

responsible for the atypical muscle synergy during paw-shaking–the vasti (VA) and tibialis
anterior (TA) muscles [37]. The phase of the VA activity burst in the cycle of real and fictive

locomotion [25,43–45] or real and fictive paw-shaking [19,37,38,46,47] is different from activ-

ity burst phases of other pure hindlimb extensors. This suggests a unique organization of spi-

nal networks controlling VA motoneurons. In this study, we found that VA did not have the

same BD trends as other extensors, which is consistent with the previous findings that VA’s
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phase relationships during paw-shaking are also different from other extensors

[19,25,37,38,46,47].

We have previously shown by using a neuromechanical model of cat hindlimbs that a loco-

motor CPG comprising a half-center oscillator rhythm generator and a basic reflex network is

capable of reproducing both walking and paw-shaking [17]. In that extended model, the flexor

and extensor half-centers activated flexor and extensor motoneurons, respectively, and the

neuromechanical model reproduced co-activation of knee extensor vasti and ankle flexor

tibialis anterior, a.k.a. the paw-shake mixed synergy [19], due to additional strong excitatory

input from spindle length-sensitive afferents of vasti being stretched during the flexor phase.

Thus, our previous modeling results, the reciprocal activity of hindlimb muscles with flexor-

and extensor-related EMG bursts in this (Fig 9) and other studies [17], as well as experimental

studies of fictive paw-shake-like activity patterns generated without motion-dependent sen-

sory input in the cat [38], have demonstrated that most of flexor and extensor hindlimb moto-

neuronal pools have reciprocal activity patterns consistent with receiving flexor and extensor

inputs from a half-center oscillator CPG. There have been suggestions that the same or a

largely shared CPG rhythm generator with flexor and extensor half-centers could generate

both slow locomotor-like and fast scratch-like fictive activity patterns in the cat [48,49]. These

suggestions were based on similar effects of deletions and afferent stimulations seen during fic-

tive locomotion and scratching [48,49]. Although the duration of flexor and extensor phases

are different between fictive locomotion and fictive scratching, suggesting that these two

behaviors could be controlled by two specialized spinal rhythm-generating mechanisms [50],

these observations appear consistent with the behavior of a single multistable HCO CPG dur-

ing locomotor-like and transient paw-shake like activities (Figs 5, 6 and 9–11).

Although the exact structure of the mammalian spinal locomotor CPG is still debated, all

current CPG schematics contain HCO CPG elements that provide excitatory inputs to flexor

and extensor motoneurons of all muscles throughout the hindlimb [51,52]. While the more

realistic model of the HCO locomotion CPG in mammals would consist of two inhibitory pop-

ulations of neurons carrying mutual inhibition between two excitatory populations of neurons,

we model this HCO with a single neuron representing an excitatory neural population with

synaptic transmission representing signals carried by an inhibitory population. This simplifi-

cation is a common practice used in computational modeling studies assuming highly syn-

chronized activity of the two populations making up one half-center [36,53]. This

simplification would miss patterns of activity with more complex relationships between neu-

rons within and between excitatory and inhibitory populations. We suggest that our simple

model represents the key temporal features of the measured EMG signals of different cat’s

muscles during locomotor and paw shaking rhythmic movements [36,53]. Our simplified

HCO model may provide useful insights into potential mechanisms of the transition from

locomotor-like rhythms to faster paw-shake like activities and their generation.

In summary, we investigated a model of a multifunctional locomotor CPG, which exhibited

coexistence of a slow locomotor regime and a fast paw-shaking regime and found that tran-

sient paw-shake-like responses exhibit functionally asymmetric phase duration changes

between the half-centers, and that this asymmetry depends on the phase of the locomotor-like

rhythm at which the perturbation was applied. In the model, the asymmetry is caused by asym-

metric levels of inactivation across the two half-centers of the slowly inactivating inward cur-

rent that drives the locomotor-like rhythm. In experiments, muscle activity driving a paw-

shake response evoked during cat locomotion is transient in nature and consists of high-fre-

quency bursts with increasing cycle durations and a similar asymmetry in phase duration

changes. Our study makes a general prediction that multifunctionality of a CPG producing

two patterns, one with a slow steady rhythm and the other with a fast transient rhythm, could
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potentially be identified by trends exhibited during the fast rhythm. The fast rhythm would

exhibit asymmetry in its pattern imposed by the state of the shared slow variable participating

in the slow rhythm.

Supporting information

S1 Data. Folder contains 44 supplementary data files each corresponding to a single epi-

sode of paw shaking. File name of each file has the following structure: SupplementaryFile-

Number_Data_SessionNumber_AnimalCode_EpisodeNumber.txt. Example: S1_Data_7_3-

25-0_bo_9F.txt, where S1 is the supplementary data file number 7, 3-25-0 is session number,

bo is animal code, 9F is episode number, and txt is file type extension. Each column of each file

contains raw EMG signal of a specific muscle in mV sampled at 3000 Hz and band-pass fil-

tered (Butterworth zero-lag filter, 30 Hz– 1000 Hz, 3 dB). First line of each file contains muscle

name abbreviations (see Table 3 in the manuscript): MG, medial gastrocnemius; SO, soleus;

BFS, biceps femoris anterior; IP, iliopsoas; TA, tibialis anterior; VA, vastus lateralis and vastus

medialis.
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