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ABSTRACT: Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains 

of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial 

dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse 

cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. 

The purpose of this review is to understand the relationships between mitochondrial and neurotransmission 

dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via 

disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission 

systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption 

of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed 

in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in 

dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex 

interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, 

prevent, or cure this devastating disease. 
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1. Introduction  

 

Alzheimer’s disease (AD) is characterised by progressive 

cognitive deterioration that manifests with behavioural 

and psychiatric symptoms [1]. Alzheimer’s disease 

accounts for 60% to 80% of all dementias [2] and is 

estimated to affect 115.4 million people worldwide by 

2050 [3]. The increasing prevalence of AD and the 

extreme burdens on individuals and society have led to 

extensive research into this devastating disease. Despite 

great efforts over the past few centuries, its molecular 

origin remains obscure and no treatments can delay or 

prevent this disease. Since the development of the 

amyloid cascade hypothesis in the early 1990s, deposition 

of amyloid plaques in the brain following amyloidosis is 

considered as one of the leading hypotheses [4]. Some 

patients with AD have autosomal dominant inherited 

mutations on amyloid precursor protein (APP), presenilin 

1 and 2 genes [5, 6]. In particular, the mutations on 

presenilin 1 and 2 genes induce subsequent mutations on 

γ secretase  [5, 6]. These eventually lead to defective APP 

processing, forming Aβ proteins consisting of 42 amino 

acids [5]. These faulty Aβ proteins are prone to 

accumulation and account for the plaque deposition 
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leading to neurodegeneration in early-onset familial AD. 

Interestingly, this familial type only appears in a minority 

(1%–5%) of the AD population [7].  

The majority (more than 95%) of the AD population 

have the late-onset sporadic type [7]. The well-

documented pathological hallmarks of sporadic AD 

include deposition of Aβ plaques and neurofibrillary 

tangles of phosphorylated tau (P-tau) [5, 8, 9]. Although 

the root cause for sporadic AD remains unknown, the 

most investigated risk factor is apolipoprotein E4 gene, 

which leads to increased Aβ production and plaque 

formation [7, 10, 11]. However, the above risk factor and 

pathological hallmarks are not always found in patients 

with the sporadic type [7], implying the existence of other 

causes of AD. Subsequently, a mitochondrial cascade 

hypothesis was proposed [12, 13], in which mitochondrial 

dysfunction is a driving force leading to Aβ plaque 

deposition in AD. In fact, mitochondrial damage was 

identified as one of the early events in AD pathogenesis 

[14, 15] and was strongly associated with age-related 

factors such as non-specific mitochondrial DNA 

(mtDNA) damage, reactive oxygen species (ROS), and P-

tau [16]. Recently, the mitochondrial cascade hypothesis 

was refined into primary and secondary mitochondrial 

cascades [17]. The primary cascade is similar to the 

original hypothesis that mitochondrial dysfunction 

induces pathological hallmarks such as Aβ and P-tau [13, 

17], whereas the secondary cascade posits that 

mitochondrial dysfunction is an intermediate step majorly 

initiated by Aβ deposition [17].  

Considering the excellent reviews on the associations 

of Aβ and P-tau with mitochondrial dysfunctions in [17-

19], we will only briefly describe their interactions on the 

role of mitochondrial dysfunction in AD. Both Aβ and P-

tau interfere with the electron transport chain, which 

affects energy production [20, 21], as well as induces 

mitophagy, leading to excessive loss of mitochondria [22, 

23]. Specifically, Aβ causes mitochondrial dysfunctions 

by arresting transmembrane translocase on mitochondria, 

interacts with cyclophilin D to hinder the bioenergetics, 

and facilitates the opening of mitochondrial permeability 

transitional pores (mPTP) [21, 24]. In addition, Aβ is 

associated with altered gene expressions that increase 

mitochondrial fission [21], and amyloid-binding alcohol 

dehydrogenase contributes to oxidative stress in 

mitochondria [21, 25]. As for P-tau, it increases dynamin-

related protein 1 level, which leads to enhanced GTPase 

enzymatic activity and excessive mitochondrial 

fragmentation [26].  

Another pathological change in AD patients is the 

disruption of neurotransmission, which can be observed 

in the early phases of AD [27, 28] leading to clinical 

manifestations. Cholinergic and monoaminergic systems 

have been reported to be altered in AD brains [29]. In 

particular, the cholinergic system, which regulates 

memory function and behaviour via the release of the 

neurotransmitter acetylcholine (ACh) [30], was found to 

be altered in AD in the 1980s. Accumulation of 

intraneuronal Aβ in AD degenerates basal forebrain 

cholinergic neurones and reduces ACh levels [31], which 

in turn leads to memory deficits [32]. Moreover, 

monoaminergic systems have also been reported to be 

defective in AD. Monoaminergic system involve various 

neurones in the brain that control neurocognitive and 

neuropsychiatry functions through regulating the release 

of serotonin (5-HT), dopamine (DA), norepinephrine 

(NE), and histamine (HA) [33]. Several reports have 

indicated a significant reduction of 5-HT [34], DA [35] 

and NE [36] levels as well as their receptors in AD brain, 

leading to neuropsychiatric and neurocognitive deficits 

[37]. In AD, loss of 5-HT results in depression, anxiety 

and agitation [38], whereas dysregulation of DA release 

leads to reward-mediated memory formation deficits [39], 

and low level of NE impairs spatial memory function [40]. 

Unlike the other monoaminergic neurotransmitters, HA 

showed altered levels in different AD cases [33], which 

not only leads to changes in learning behaviour, but also 

neuroinflammation contributing to disease progression 

[41].  

It is very clear that mitochondria and 

neurotransmission dysfunctions are involved in AD and 

play an important role in its pathogenesis and clinical 

symptoms. Understanding the interactions between 

mitochondrial and neurotransmission dysfunctions are 

crucial to elucidating the specific mechanisms 

contributing to the clinical symptoms in AD. Although the 

associations between mitochondrial dysfunctions and 

general synaptic deficits were recently reviewed in [18, 

42-45], specific interrelationships between mitochondrial 

dysfunctions and failure in neurotransmission systems is 

still missing. Therefore, this review aims to examine how 

mitochondrial dysfunctions affect neurotransmission 

contributing to AD symptoms, and vice versa, how 

neurotransmission disruptions, such as in cholinergic and 

monoaminergic systems, cause mitochondrial 

dysfunctions.  

 

2. Outline of the review  

 

In this review, we first provide a description of 

mitochondrial dysfunctions in AD, and then discuss the 

relationships with neurotransmission deficits, how they 

can trigger one another, and their roles in disease 

pathogenesis. We identified peer-reviewed articles in the 

PubMed database and Google Scholar web search engine 

using the following search terms: ‘Alzheimer*’ AND 

(‘mitochondria’ OR ‘oxidative stress’) AND 
(‘neurotransmission dysfunction’ OR ‘acetylcholine’ OR 
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‘monoamine’ OR ‘serotonin’ OR ‘dopamine’ OR 

‘norepinephrine’ OR ‘noradrenaline’ OR ‘histamine’). 

Additional relevant articles were identified from the 

reference lists of the included articles, review papers, and 

book chapters. Only original data were incorporated in 

this review, whereas review papers were used to provide 

context and background information.  

 
 
Table 1. Summary of specific types of mitochondrial dysfunctions in Alzheimer’s disease. 

 
Mitochondrial dysfunctions Evidence References 

Bioenergetic failure   

TCA cycle impairment 

Pyruvate dehydrogenase complex ↓ [54, 55, 58] 

Transketolase ↓ [55] 

Alpha-ketoglutarate dehydrogenase complex ↓ [55-58] 

Isocitrate dehydrogenase ↓, 

Succinate dehydrogenase ↑, and 

Malate dehydrogenase ↑ 

[58] 

ETC impairment 

Complex IV ↓ [20, 59-61] 

Haem-a (structural component of complex IV) ↓ [62-64] 

Transmembrane arrest of TOMM40 & TIM23 pores [65-67] 

Complex I ↓ due to phosphorylated tau [20] 

Complex V Dysregulation [68, 69] 

Oxidative stress 

Complex IV ↓ with complex III remains intact or ↑ [71] 

Oxidative scavengers (SOD, GPx & GSH) ↓ [72, 73] 

Reactive oxygen species level ↑ [71, 74-76] 

↑Peroxidation of Aβ-bind alcohol dehydrogenase in H2O2 [25, 77, 78] 

Peroxidation by haem-Aβ complexes ↑ [79, 80] 

mtDNA damage   

Specific damage mtDNA mutations at T477C, T146C & T195C [107] 

Non-specific damage 
mtDNA mutations stay at heteroplasmic state and accumulates until 

energy production impairs 

[111, 112] 

Ca2+ dysregulation 

Ca2+ influx ↑ from extracellular & endoplasmic reticulum to 

cytosol upon excitotoxicity 

[92, 113-115] 

Ca2+ influx ↑ into mitochondria via mPTP [116] 

Defective morphology and 

dynamics 

Fission ↑ with fusion ↓, possibly related to corresponding genes [108, 119-121] 

Size changes (smaller, spherical, swollen, and/or elongated) [118, 120, 121] 

Mitochondrial transport to synaptic terminal ↓ [125] 

Cristae ↓ and paler matrix [120]; Reviewed in [118] 

Mitophagy ↑ due to phosphorylated tau [22] 

Defective mitophagy 
PINK1 ↓ and parkin ↓, leading to autophagosomes ↓ 

and dysfunctional lysosomes ↑ 

[130]; Reviewed in [22, 

23] 

Membrane permeabilisation 

mPTP opening ↑ with cyt c release [131, 132] 

Aβ bind to VDAC ↑ leading to mPTP opening ↑ [123] 

TrkA receptor on cell membrane ↓ 

Extracellular proNGF ↑ 

Results:  pro-apoptotic signalling ↑, and  mPTP opening ↑ 

[135-137] 

 

 
The ‘↑’ indicates increased level or being stimulated, while ‘↓’ indicates decreased level or being inhibited. Abbreviations: Aβ, amyloid beta; Ca2+, 

calcium ions; cyt c, cytochrome c; GPx, glutathione peroxidase; GSH, reduced glutathione; H2O2, hydrogen peroxide; mPTP, mitochondrial 

permeability transition pore; mtDNA, mitochondrial deoxyribonucleic acid; NGF, neuronal growth factor; SOD, superoxide dismutase; TIM23, 
translocase of the inner membrane 23; TOM40, translocase of outer mitochondrial membrane 40 homolog; TrkA, tropomyosin receptor kinase A; 

VDAC, voltage-dependent anion channels. 

3. Mitochondrial dysfunctions in AD  

 

Mitochondria are rod-shaped double membrane 

intracellular organelles that are the powerhouse of cells. 

Under aerobic conditions, they produce energy in the form 

of adenosine triphosphate (ATP) via the tricarboxylic acid 

(TCA) cycle and electron transport chain (ETC). The ETC 

oxidises nicotinamide adenine dinucleotide (NADH) and 
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flavin adenine dinucleotide (FADH2) from the TCA cycle 

using oxygen to generate water and ATP, known as 

oxidative phosphorylation (OXPHOS). In fact, 

considering 20% of the body’s energy is consumed by the 

brain [46] and around 93% of all cellular energy is 

produced by mitochondria [47], the mitochondrion is an 

indispensable energy source for the neuronal system. 

Besides providing energy, mitochondria are also involved 

in intracellular calcium (Ca2+) regulation, cellular redox 

control, and programmed cell death/apoptosis. Many 

studies have reported that mitochondria appear to be 

defective in AD. In this section, we review mitochondrial 

dysfunctions in AD, including impaired cellular energy 

production, oxidative stress, mtDNA damage, Ca2+ 

dysregulation, impaired mitochondrial dynamics, and 

mitochondrial membrane permeabilisation (Table 1).  

 

3.1. Impaired energy production in mitochondria 

 

As early as the 1980s, reduced glucose metabolism was 

reported in AD and mitochondrial dysfunction was 

considered to be a major contributor. Numerous lines of 

evidence have suggested that glucose metabolism is 

decreased in the frontal, parietal, temporal, and posterior 

cingulate cortices of AD patients, possibly due to a 

disturbed TCA cycle [48-53]. This bioenergetic failure 

was associated with lower levels of pyruvate 

dehydrogenase complex (PDHC) [54, 55], transketolase 

[55], and alpha-ketoglutarate dehydrogenase complex 

(KDGHC) [55-58], as well as alterations in other TCA 

cycle enzymes [58], hence, these enzymes are less active 

in AD leading to hindered energy production by 

mitochondria.  

Furthermore, complexes I and IV (cytochrome 

oxidase, COX) in the ETC were found to be impaired in 

AD. The reduced efficacy of COX is the most 

documented change in AD [20, 59-61], which is 

associated with (1) a deficiency in its structural complex 

haem-a [62-64]; (2) transmembrane arrest of translocase 

of the outer mitochondrial membrane 40 kDa (TOMM40) 

and translocase of inner membrane subunit 23 (TIM23) 

protein pore related to Aβ and APP processing [65-67]; 

and (3) mtDNA damage. Diminished activity of complex 

I was also reported in AD as a result of P-tau [20]. Besides, 

dysregulated complex V (also known as ATP synthase) 

was reported in human with Aβ pathologies and tau 

transgenic (Tg) mice [68]. Interestingly, Beck et, al [69] 

emphasised a strong association between dysregulated 

complex V and loss of oligomycin sensitivity conferring 

protein (OSCP) and increased formation of mitochondrial 

permeability transition pores (mPTP) in Tg mice. The 

mPTP will be discussed in the upcoming section 3.6. Thus, 

it is reasonable to assume mitochondria are involved in 

bioenergetic failure in AD. 

 

3.2. Oxidative stress induced by mitochondria 

 

Oxidative stress occurs when reactive oxygen species 

(ROS) accumulates in mitochondria and cytosol. 

Superoxide anion (O2•–), hydrogen peroxide (H2O2), and 

hydroxyl radical (HO•) normally produced by ETC 

complex I and III are scavenged by endogenous 

antioxidants [70], such as superoxide dismutase (SOD), 

catalase, reduced glutathione (GSH), and glutathione 

peroxidase (GPx). In patients with AD, COX is inhibited 

and complex III is either left intact or stimulated resulting 

in increased levels of ROS [71]. Meanwhile, levels of 

SOD, GPx, and GSH are decreased in AD, which reduces 

the anti-oxidative power [72, 73] and aggravates the 

accumulation of ROS [71], resulting in cellular redox 

imbalance [74-76].  

In addition, mitochondrial-related oxidative stress 

can be exacerbated by the intramitochondrial Aβ 

accumulation, Aβ-binding alcohol dehydrogenase [25, 77, 

78], and peroxidation of haem-Aβ complexes under H2O2 

[79, 80]. The oxidative stress then triggers lipid 

peroxidation [81, 82] and protein oxidation [74, 83, 84], 

which in turn, lead to oxidative dysfunction of key ETC 

complexes [85], and PDHC and KDGHC of the TCA 

cycle [86-88]. Oxidative stress also damages nuclear 

DNA (nDNA) [89-91] and mtDNA, leading to 

insufficient production of ETC complex subunits [89, 91-

93]. The combined effects of lipid peroxidation, protein 

oxidation and downregulated ETC subunits, lead to 

bioenergetic failure in AD, which persists or worsens 

under oxidative stress.  

An interesting mechanism relating to oxidative 

stress was reported to involve the peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha 

(PGC-1α) and mitochondrial biogenesis. The PGC-1α, 

known as a central regulator of metabolism, induces the 

activities of respiratory complexes, which not only 

increase ROS production but at the same time increase the 

content of ROS detoxifying enzymes [94-97]. In cases of 

AD, the PGC-1α expression is reduced [98-101], 

implying lower levels of ROS-producing complexes I and 

III that possibly limit ROS levels in mitochondria. 

However, this phenomenon also lowers available ROS 

scavengers, exaggerating the accumulation of ROS. Some 

studies with ectopic expression have shown rescue of this 

phenotype in cells and animal models of AD [99, 101, 

102], but some studies showed exacerbation of oxidative 

damage in mice models [103]. Collectively, this raises the 

question of the precise role of PGC-1α downregulation in 

inducing oxidative stress in AD. This requires further 

research to elucidate how and to what extent PGC-1α 

downregulation mediates biogenesis (ROS production) 

and ROS detoxification contributing to oxidative damage 
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in AD neuronal mitochondria, as well as which other 

intrinsic factors of mitochondria synergistically work with 

PGC-1α to elicit the oxidative damage. 

 

3.3. Mitochondrial DNA damage 

 

Mitochondrial DNA, which encodes approximately 99% 

of polypeptide subunits of ETC complexes [85], has 

important roles in the vicious cycle of bioenergetic failure 

involving ETC defects and oxidative stress. Normally, 

chromatin changes occur in response to DNA damage 

from oxidative stress and ETC defects [104, 105]. 

However, mtDNA lacks protective histone and cannot be 

rescued by post-translational histone modification [93, 

106]. As a result, mtDNA is prone to acquiring mutations 

at mitochondrial control regions such as T477C, T146C, 

and T195C through mitoepigenetic changes due to its 

proximity to the ETC [107], leading to impaired assembly 

and activity of ETC proteins [108, 109]. These ETC 

impairments lead to mitochondrial energy defects and 

other pathological changes in AD. 

Indeed, mtDNA has a very high mutation rate that is 

about 10 fold faster than in nDNA, which accounts for the 

large number of non-specific changes [110, 111]. Mild 

non-specific damage in mtDNA mostly do not cause 

severe ETC impairments but coexists with normal 

mtDNA, which highlights the heteroplasmic state of 

mtDNA [111]. Deficits in energy production are limited 

if the proportion of mutant mtDNA remains low [111, 

112], but as the proportion of mutant mtDNA increases 

within the neuron, energy production becomes impaired, 

leading to mitochondrial dysfunctions and contributing to 

late-onset sporadic AD [112]. 

 

3.4. Ca2+ Dysregulation in mitochondria 
 

In post-mortem AD brains, mitochondrial Ca2+ 

homeostasis was found to be impaired due to changes in 

Ca2+ signalling [92, 113-115]. This dysfunction can be 

attributed to excess Ca2+ influx from extracellular fluid 

and Ca2+ efflux from the endoplasmic reticulum upon 

excitotoxicity. Excess Ca2+ in the cytosol enters the 

mitochondria via mPTP altering energy production [116]. 

In fact, mtDNA mutations and polymorphisms change the 

intracellular Ca2+ handling, leading to Ca2+ accumulation 

in mitochondria altering the mitochondrial matrix pH. 

Excess cytosolic Ca2+ also activates apoptosis in a 

caspase-dependent manner [92, 117] and contributes to 

neuronal loss in AD. Furthermore, excess cytosolic Ca2+ 

due to Aβ and P-tau dysregulates KIF5-Miro-Trak-

mediated mitochondrial transport to synapses [44]. The 

defects of mitochondrial dyanmics are discussed in the 

next section. 

 

3.5. Defective neuronal mitochondrial morphology and 

dynamics 

 

The morphology, dynamics, and motility of mitochondria 

have also been observed to be altered in AD. Multiple 

lines of evidence show that neuronal mitochondria in AD 

have fewer cristae and a paler matrix with enhanced 

fission and decreased fusion [108, 118-121]. Indeed, 

oxidative stress and Aβ in AD downregulated genes 

controlling mitochondrial fusion, such as inner membrane 

optic atrophy 1, outer membrane mitofusin 1 and 

mitofusin 2, as well as upregulated fission genes, such as 

fission 1 and dynamin-related protein 1 [108, 119-121]. 

Additionally, mitochondrial axonal transport is impaired 

in AD leading to mitochondrial membrane depolarisation, 

facilitating retrograde movement of mitochondria [122] 

damaging synaptic viability [123-125].  

 

3.7 Disturbed mitophagy  
 

Healthy cytosolic organelles and proteins are maintained 

within cells through a clearing process called autophagy, 

which is initiated by autophagy-related proteins (Atg) 

[126], and occurs in either selective or non-selective 

manner [23]. In non-selective autophagy, a double-

membraned vesicle, known as autophagosome, engulfs 

the target along with other content in the cytoplasm to 

form an autolysosome, which degrades the content by 

lysosomal proteases [127]. In selective autophagy, 

nascent autophagosome cargo receptor proteins attach via 

poly-ubiquitin chains to specific targets for autophagy 

[128]. Specifically, damaged mitochondria are cleared 

from the cell by mitochondrial-selective autophagy or 

mitophagy [129]. Generally, initiation of the mitophagy 

pathway occurs via the relocation of cardiolipin, a 

diphosphatidylglycerol lipid, from the inner 

mitochondrial membrane to outer mitochondrial 

membrane [23]. Evidence has indicated that two proteins 

PTEN-induced putative kinase1 (PINK1) and parkin can 

also initiate the mitophagy pathway leading to 

autophagosome-mediated mitochondrial degradation 

[130]. In AD, high levels of Aβ and P-Tau inhibit the 

expression of PINK1 and parkin, thereby reducing the 

number of autophagosomes leading to increased 

dysfunctional lysosomes and the severe disease pathology 

[22, 23]. 

3.6. Mitochondrial membrane permeabilisation and 

apoptosis 
 

The unstable mitochondrial membrane acts as a 

modulator of mitochondrial-mediated apoptosis 

dependent and independent of caspase, and controls 

programmed cell death of neurones in AD. The mPTP on 

the surface of mitochondria are mediated by cyclophilin 
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D [24]. When these pores open, cytochrome c (cyt c) is 

released from mitochondria into the cytosol, which 

activates caspases 9 and 3, and induces apoptosis [131-

133]. The increased opening of mPTP also disrupts 

complex V in the ETC, as discussed in section 3.1, in a 

mechanism involving excess cyclophilin D [69, 134]. The 

opening of mPTP can be increased by the following 

factors: (1) oxidative stress; (2) Ca2+ accumulation in 

mitochondria; (3) Aβ binding to voltage-dependent anion 

channels (VDAC) located on the mitochondrial outer 

membrane [123]; and (4) extracellular neurotrophic 

signals, such as neuronal growth factor (NGF) and its 

precursor, proNGF [135, 136].  

In AD brains, there are lower levels of tropomyosin 

receptor kinase A (TrkA) [135, 136] and higher levels of 

proNGF [135-137] compared to normal controls. This 

indicates excess coupling of proNGF to its high-affinity 

P75 neurotrophin receptor (p75NTR) activating the C-Jun 

N-terminal kinase (JNK)/p53 pathway [138-140]. This 

pathway further activates B-cell lymphoma-2 (Bcl-2)-

associated X protein (Bax), which increases mPTP 

opening and contributes to the apoptotic pathway.  

 

4. Cholinergic and Mitochondrial Dysfunction in AD 

 

Cholinergic transmission is performed by a specific group 

of neurones at the brainstem and basal forebrain and is 

involved in cognitive functioning, emotional reactions, 

memory formation, consolidation, and retrieval [141]. In 

AD, there is insufficient cholinergic transmission, leading 

to memory and learning deficits. The decline in 

cholinergic transmission can result from (1) the loss of 

cholinergic neurones in the basal forebrain, hippocampus, 

and amygdala; (2) impairment of ACh metabolism due to 

imbalanced synthesis and breakdown; and (3) 

downregulation of ACh receptors (nAChR), except α7 

subtype. How these changes are triggered and driven by 

mitochondrial dysfunctions is discussed in the section 

below.  

 

4.1. Mitochondrial membrane permeabilisation and 

cholinergic neuronal loss 

 

Discovered in the 1980s, cholinergic neuronal loss in AD 

was found to be a major contributor to cognitive 

impairment [142-145]. In AD, there are decreased levels 

of choline acetyltransferase (ChAT) [146], acetyl-

cholinesterase (AChE) [147], and vesicular acetylcholine 

transporter (VAChT) [148], which are responsible for 

producing, breaking down, and packing ACh into 

vesicles, respectively. Neuronal death is tightly correlated 

with excessive permeabilisation of the mitochondrial 

membrane, mPTP opening, and release of pro-apoptotic 

proteins such as cyt c, which activate caspases 9 and 3 to 

initiate cell death [131-133]. The hyperpermeability of the 

mitochondrial membrane results in cholinergic neuronal 

death and leads to ACh insufficiency.  

 

4.2. Inhibition of PDHC in mitochondria and ACh 

synthesis  
 

The ‘bioenergetic failure’ of mitochondria also affects 

ACh synthesis. Cholinergic neurones synthesise ACh 

from acetyl coenzyme A (acetyl-CoA) and choline via 

ChAT in the presynaptic cytoplasm. Most cellular acetyl-

CoA is produced in mitochondria from pyruvate in the 

TCA cycle by the action of PDHC. The majority of 

mitochondrial acetyl-CoA stays in the mitochondrial 

compartment and is converted to citrate for energy 

production [149]. The remaining mitochondrial acetyl-

CoA enters the cytosol via temporary release through 

Ca2+-induced mPTP upon depolarisation [150], where 

ATP citrate lyase (ACL) converts the released citrate into 

acetyl-CoA for further synthesis [150, 151].  

As mentioned above, the activity of PDHC is 

diminished in AD. Many studies have reported that 

presence of APP and Aβ peptides cause deficiency in 

pyruvate utilisation, leading to insufficient mitochondrial 

and cytosolic acetyl-CoA production for Ach in the 

cerebral cortex and hippocampus [152-154]. Multiple 

mechanisms have been proposed to explain this 

phenomenon. The first mechanism is that accumulating 

mitochondrial Ca2+ activates pyruvate dehydrogenase 

kinase (PDHK) and inhibits PDHC [155-157]. 

Meanwhile, excess mitochondrial Ca2+ leads to increased 

mPTP opening, resulting in the release of acetyl-CoA 

from mitochondria and long-term shortage of ACh and 

ATP [155, 158]. The second mechanism is that APP and 

Aβ peptides activate mitochondrial tau protein kinase 

I/glycogen synthase kinase-3β (TPKI/GSK-3β) pathways 

[152, 159], leading to dysfunction of lipoic acid, a PDHC 

cofactor [156]. Therefore, the pathological characteristics 

of AD hinder the ability of PDHC to convert pyruvate into 

acetyl-CoA, lowering the efficiency of ACh synthesis. 

 

4.3. Mitochondrial-induced oxidative stress and ACh 

breakdown 
 

Dysfunctional mitochondria can alter the activity of 

AChE and expression of its gene ACHE in the brain, 

which affects the degree of ACh breakdown. In vivo 

studies have shown that Aβ-induced oxidative stress was 

associated with enhancements in AChE activity [160, 

161]. Moreover, oxidative stress was also found to reduce 

AChE activity in zebrafish embryo by decreasing the 

expression of its gene, ache [162]. Interestingly, using an 

AChE inhibitor increased the activity of TCA enzymes 

and ETC complexes and decreased oxidative stress in AD 
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patients and Tg mice [163, 164]. However, some studies 

have suggested that this effect might be due to another 

ligand on AChE inhibitor interacting with Aβ and α7-

nAChR rather than through the direct inhibition of AChE 

[165-167]. Given the vague relationship between 

mitochondrial oxidative stress and the breakdown of ACh 

in AD, the causality between the nuclear genome 

encoding AChE, AChE activity, and mitochondrial 

dysfunction in AD requires further clarification. 

 

 
 

Figure 1. Relationships between mitochondrial and cholinergic dysfunctions. (1) Upregulated α7-nAChRs on cellular and mitochondrial membrane 

internalise Aβ from the extracellular fluid to the cytosol and intramitochondrial matrix. The cytosolic Aβ induces iNOS production. (2) PDHC is inhibited 

by Aβ via activation of TPK1/GSK3β and inhibition of lipoic acid and by excess Ca2+ influx via activation of PDHK, leading to decreased acetyl-CoA 
and subsequent ACh synthesis. (3) Upregulated cellular α7-nAChRs combine with Aβ to stimulate p38 MAPK and AP1/p53 signalling pathways. Bax 

proteins on the mitochondrial membrane are activated and enhance mPTP opening. (4) The mPTP opening on unstable mitochondrial membrane leads 

to release of cyt c, which activates caspase 9/3-dependent apoptosis. (5) AChE activity is enhanced by oxidative stress from mitochondrial dysfunction 
possibly through inhibition of CHAT nuclear gene. The enhanced AChE activity produces higher ROS levels which damage mitochondria, forming a 

vicious cycle of lowered ACh levels in the synapse (further investigations are needed). (6) CHT1 is inhibited due to ONOO- produced by O2-• from 

mitochondria and NO from iNOS. Chloride ions reuptake decreases and reduces Ach synthesis. Arrows indicate stimulation, whereas a line with an end 

bar indicates inhibition. Dotted lines refer to inhibited pathways and question mark in a triangle ( ) represents the need for future studies. 

Abbreviations: Acetyl-CoA, acetyl coenzyme A; ACh, acetylcholine; AChE, acetylcholinesterase; ACHE, gene that encodes acetylcholinesterase; 
ACL, ATP citrate lyase; AP-1/p53, activating protein-1 transcription factor / tumour protein p53; Aβ, amyloid-beta; Bax, Bcl-2-associated X protein; 

C3, caspase 3; C9, caspase 9; Ca, calcium ions; ChAT, choline acetyltransferase; CHT1, choline transporter 1; Cl, chlorine ions; cyt c, cytochrome c; 

iNOS, induced nitric oxide synthase; p38 MAPK, p38 mitogen-activated protein kinase signalling cascade; mPTP, mitochondrial permeability transition 
pore; Na, sodium ions; NO, nitric oxide; O2-•, superoxide radical; ONOO-, peroxynitrite; OXPHOS, oxidative phosphorylation; PDHC, pyruvate 

dehydrogenase complex; PDHK, pyruvate dehydrogenase kinase; ROS, reactive oxygen species; TCA cycle, tricarboxylic acid cycle; TIM23, 

translocase of the inner membrane 23; TOM40, translocase of outer mitochondrial membrane 40 homolog; TPKI/GSK3β, tau protein kinase I / Glycogen 
synthase kinase-3 beta signalling cascade; VAChT, vesicular acetylcholine transporter; α7nAChR, alpha 7 nicotinic acetylcholine receptor.  

4.4. Oxidative stress, nitrosative stress, and choline 
recycling 

 

Mitochondrial-induced oxidative stress via nitrosylative 

stress hinders the recycling of choline from the synapse 

leading to ACh deficiency. In late stage AD, levels of 

presynaptic high-affinity choline transporter 1 (CHT1) 

were observed to be decreased in synaptosomes in the 

hippocampus and neocortex of humans [168, 169] and Tg 

animals [170, 171]. Cuddy et al. demonstrated the 
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internalisation of CHT1 in SH-SY5Y neuroblastoma cells 

after treatment with nitric oxide (NO) donor (3-

morpholinosydnonimine), leading to peroxynitrite 

(ONOO–) formation [171, 172]. SH-SY5Y cells treated 

with APP were also observed to have internalisation of 

CHT1 [173, 174], suggesting a connection between APP 

and ONOO– in choline transport deficits. In fact, APP and 

its derivatives together with Aβ promoted the formation 

of inducible nitric oxide synthase (iNOS) leading to NO 

formation, whereas dysfunctional mitochondria produced 

excess O2•–, which combined to form ONOO– causing 

cellular nitrosative stress. The peroxynitrite-degraded 

proteasomes, which enhance the internalisation of CHT1, 

eventually lead to decreased choline reuptake from 

synaptic clefts [172]. By enhancing nitrosative stress at 

axonal terminals, the dysfunctional mitochondria restrict 

the availability of cytosolic choline, another major 

element for ACh synthesis, resulting in cholinergic 

dysfunction. 

 

4.5. Upregulated α7-nAChR and mitochondrial 

dysfunction 
 

Normally, muscarinic ACh receptors and nAChR are 

present on pre- and postsynaptic terminals. Binding of 

ACh on postsynaptic α7-nAChR stimulates long-term 

potentiation and facilitates learning and memory 

formation [175, 176]. High cytosolic oxidative stress 

inactivates nAChRs and induces rundown of ACh-evoked 

currents and long-term depression of cholinergic 

transmission [177], which suggests the oxidative stress 

produced by postsynaptic mitochondria can alter 

cholinergic neurotransmission.  

The significant upregulation of α7-nAChR at the 

nucleus basalis of Meynert in AD is possibly due to a 

compensatory effect from the blocking or disruption by 

Aβ, which maintains the cholinergic transmission [178-

180]. The binding of Aβ to α7-nAchR on the cell 

membrane stimulates p38MAPK and Bax/Bal pathways 

to enhance mitochondrial membrane permeabilisation, 

which increases cyt c release and mitochondrial-

dependent apoptosis [178]. On the other hand, agonistic 

cellular and mitochondrial α7-nAchR can attenuate the 

p38 MAPK cascade [178], thereby preventing the 

formation of VDAC and subsequent mPTP opening, as 

well as mitochondrial-induced apoptosis [181]. 

Besides its expression on the cell membrane, α7-

nAchR also presents on the mitochondrial membrane in 

parietal cortical and hippocampal cholinergic neurones. 

The α7-nAchR internalise Aβ from the cytoplasm to the 

mitochondrial matrix [182, 183] mediated by p38 MAPK, 

ERK1/2, and low-density lipoprotein receptor-related 

protein (LRP1) signalling pathways [19, 178, 182-184]. 

The Aβ accumulation in mitochondria leads to further 

mitochondrial dysfunctions such as oxidative stress and 

inhibition of TCA enzymes. 

 

5. Monoaminergic Dysfunction and Mitochondrial 

Dysfunction in AD 

 

Monoaminergic neurotransmission is a diverse network 

that consists of serotoninergic, dopaminergic, 

norepinephrinergic, and histaminergic systems. 

Mitochondrial dysfunctions are associated with 

monoaminergic inactivity through various mechanisms. 

In this section, we discuss the common interactions shared 

between all monoamines and examine specific changes 

that occur in each system associated with mitochondrial 

dysfunction in AD.  

 

5.1. Monoamine oxidase inhibits mitochondrial 

functioning 

 

Monoamine oxidases (MAOs), present on the outer 

mitochondrial membrane of all monoaminergic neurones, 

are enzymes that catalyze the breakdown of monoamine 

transmitters. These enzymes are separated into (1) type A 

(MAO-A), which is extensively expressed in 

catecholaminergic neurones and eliminate 5-HT, NE, and 

HA; and (2) type B (MAO-B), which cleave DA [185]. 

Abnormal MAO activity promotes the loss of 

monoamines and mitochondrial peroxidation in AD. The 

activity of hippocampal MAO was significantly increased 

in humans carrying ε4 allele of apolipoprotein E and in 

experimental mouse models of AD [186-188]. This 

enhanced MAO activity not only causes insufficient 

monoamines for neurotransmission, but also induces 

significantly higher levels of peroxidative stress in 

monoaminergic neurones via H2O2 production. This 

peroxidative stress causes lipid peroxidation, protein 

oxidation, nDNA and mtDNA damage, and mitochondrial 

membrane instability, as well as inhibits the TCA cycle 

and ETC complexes. Thus, hyperactive MAOs in AD lead 

to monoaminergic deficiency and mitochondrial 

dysfunction at presynaptic terminals through peroxidative 

stress. 

In addition, cytoplasmic Ca2+ levels affect MAO-A, 

which alters mitochondrial membrane stability. In a study 

of glial cell cultures with inhibited PI3K/Akt, ERK and 

p38 MAPK signalling pathway, free Ca2+ levels were 

increased resulting in enhanced MAO-A activity as part 

of the apoptotic pathway [189, 190]. The high cytosolic 

Ca2+ levels in AD lead to more Ca2+ binding to MAO-A, 

which increases MAO-A activity and affects 

mitochondrial membrane stability. Because Ca2+ 

homeostasis controls MAO-A, this also modulates 

mitochondrial permeabilisation and apoptosis. Indeed, 

artificially enhancing MAO-A by using a dopaminergic 
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neurotoxin (NMRSal) increased the mitochondrial 

membrane potential and induced mPTP opening [191]. 

Therefore, MAO aggravates mitochondrial dysfunctions 

through a non-transcriptional pathway.  

 

5.2. Serotoninergic and mitochondrial dysfunction in AD 
 

Serotoninergic transmission is mediated through neurones 

located at the brainstem and basal forebrain [192]. 

Serotonin or 5-hydroxytryptamine (5-HT) is synthesised 

from tryptophan catalyzed by tryptophan hydrogenase 

(TPH) at presynaptic terminals and released into the 

synaptic cleft. Normally, 5-HT is broken down into 5-

hydroxyindoleacetic acid (5-HIAA) under the action of 

MAO-A. Mitochondrial dysfunction in AD leads to 

serotoninergic inefficiency via membrane 

permeabilisation and altered serotoninergic metabolism. 

Inadequate serotoninergic transmission causes ROS 

accumulation and further mitochondrial dysfunction, 

contributing to AD progression.  

 

5.2.1. Mitochondrial membrane permeabilisation and 
serotoninergic apoptosis 

 

Similar to the cholinergic system, mitochondrial-

mediated caspase-dependent apoptosis is one of the 

causes of serotoninergic neuronal loss. The loss of 

serotoninergic neurones ultimately decreases 5-HT 

neurotransmission. Studies in the past 20 years have 

revealed that patients with AD exhibit extensive loss of 5-

HT synthesising neurones in the dorsal and median raphe 

nuclei [193, 194], and this likely involves mitochondrial 

membrane permeabilisation and release of pro-apoptotic 

proteins such as cyt c.  

 

5.2.2. Mitochondrial dysfunction induces excessive 5-HT 

breakdown 

 

Mitochondrial dysfunctions in AD lead to 5-HT deficits 

through excessive 5-HT breakdown. In studies using 

platelets (which can mimic neurones with high APP 

metabolism and extensive storage of 5-HT) from AD 

patients and Tg mice, high peroxidative stress (100 mM 

H2O2) significantly decreased 5-HT secretion [195]. 

Indeed, H2O2 is produced from O2•– formed in defective 

ETC in AD. In the cytoplasm of AD neurones, haem-Aβ 

complex forms when haem is released from mitochondria 

[196]. Under high peroxidative stress, the haem-Aβ 

complex breaks down 5-HT to dihydroxytryptamine or 

tryptamine-4,5-dione [79, 80, 197], which limits the 

neuroactivity of the serotoninergic system in AD. 

5.2.3. 5-HT insufficiency induces mitochondrial 

dysfunction 

 

Inhibiting tryptophan hydroxylase (Tph) and gene 

knockout in mice to achieve 5-HT deficiency lowered 

levels of citrate, oxoglutarate, succinate, pyruvate, and 

antioxidants, which increased oxidative stress [198, 199]. 

Moreover, dysregulated lipid metabolism was observed in 

TPH knockout mice, implying that serotoninergic 

dysfunction might change the lipid composition and 

induce pathological and functional changes, as well as 

alter physical properties such as mitochondrial membrane 

thickness [199]. These results indicate that lower levels of 

5-HT were associated with inhibited TCA enzymes and 

lowered energy production via oxidative stress, but the 

exact molecular mechanism remains obscure and requires 

further investigation.  

 

5.2.4. 5-HT1A receptors and mitochondrial bioenergetic 
distribution 

 

The mitochondrial movement in the axons of rat 

hippocampus are greatly facilitated by the activation of 5-

HT1A receptors via stimulation of Akt and inhibition of 

GSK3β [200]. However, AD neurones have limited 

binding of 5-HT to 5-HT1A receptors due to 

downregulated receptors and increased breakdown of 5-

HT [201-203], resulting in defective axonal transport of 

mitochondria. Inadequate binding on 5-HT1A receptors 

leads to impaired redistribution of energy resources in 

presynaptic terminals. Therefore, cellular energy 

production might not meet requirements, compromising 

global energy distribution and leading to bioenergetic 

failure in serotoninergic neurones.   

 

5.2.5. Insufficient melatonin and mitochondrial 

dysfunction  

 

Melatonin possesses anti-oxidative and anti-inflammatory 

properties, which activates the Bcl-2 pathway to decrease 

mitochondrial membrane permeabilisation [204, 205], 

and scavenges ROS to restore cellular oxidative balance 

[206]. Deficiency of 5-HT in AD decreases the precursor 

for melatonin production leading to insufficient 

melatonin. A change in the concentration of melatonin 

increases mPTP opening, induces oxidative stress, and 

impairs energy production in neuronal mitochondria. 

Melatonin treatment was able to rescue the inhibition of 

ETC and subsequent decrease in ATP production in AD 

experimental models [207, 208]. 
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Figure 2. Relationships between mitochondrial and serotoninergic dysfunctions. (1) Haem from C-IV of OXPHOS 

released from mitochondria through increased mPTP opening bind with cytosol Aβ to form haem-Aβ complexes. 

(2) Mitochondrial dysfunction enhances the clearance of 5-HT through the combined effects of haem-Aβ complexes and 

peroxide activity (H2O2) from defective ETC. (3) Enhanced activity of MAO-A excessively breaks down 5-HT, leading to 

5-HT-deficiency and H2O2, which lowers the efficiency of the TCA cycle. (4) 5-HT is associated with increased ROS levels 

(further research is needed to elucidate the precise molecular mechanisms), which damage enzymes in the TCA cycle. (5) 

Loss of 5-HT leads to the loss of anti-oxidative and anti-inflammatory melatonin, indirectly facilitating oxidative damage 

in mitochondria, reducing the activation of the Bcl-2 pathway. (6) Increased mPTP opening on the mitochondrial membrane 

leads to the release of cyt c, activating mitochondrial-mediated caspase-activated apoptosis. (7) Decreased 5-HT binding 

to 5HT-1A receptors hinders mitochondrial anterograde trafficking via inhibition of Akt and subsequent GSK3β 

stimulation, leading to altered normal energy distribution in the brain. Arrows indicate stimulation, whereas a line with an 

end bar indicates inhibition. A plus sign in circle (⨁) refers to catalysation and a question mark in triangle ( ) represents 

the need for future studies. Abbreviations: 5-HIAA, 5-Hydroxyindoleacetic acid; 5-HT, serotonin; 5-HT1A receptor, 

serotonin 1A receptor; Akt, protein kinase B; Aβ, amyloid-beta; Bcl-2, B-cell lymphoma 2; C-IV, complex IV in electron 

transport chain; C3, caspase 3; C9, caspase 9; cyt c, cytochrome c; DHT, 5,7-dihydroxytryptamine; GSK3β, glycogen 

synthase kinase-3 beta; H2O2, hydrogen peroxide; MAO-A, monoamine oxidase A; mPTP, mitochondrial permeability 

transition pore; O2•-, superoxide radicals; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; SOD, 

superoxide dismutase; TCA cycle, tricarboxylic acid cycle; TPH, tryptophan hydroxylase; VMAT2, vesicular monoamine 

transporter 2. 

5.3. Dopaminergic system and mitochondrial dysfunction 

in AD 
 

The dopaminergic system consists of a specific group of 

DA producing neurones, which innervate from the ventral 

tegmental area (VTA) in the midbrain to ventral striatum 

and prefrontal cortex, and from the substantia nigra pars 

compacta (SNpc) to the caudate nucleus and putamen 

[209]. In AD, there are lower levels of DA in the cingulate 

gyrus, amygdala, striatum, and raphe nuclei [210], which 

tightly correlated with the disease severity [211]. This 

reduction in DA was accompanied by loss of its precursor 

and metabolites, namely L-3,4-dihydroxyphenylalanine 

(L-DOPA) and 3,4-dihydroxyphenylacetic acid 

(DOPAC), respectively [210].  
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5.3.1. Mitochondrial-dependent apoptosis in the 

dopaminergic System 

 

The current evidence shows that dopaminergic 

dysfunction is associated with mitochondrial-mediated 

apoptosis, specifically excessive mitochondrial 

membrane permeabilisation. For a long time, it was 

debated whether the dopaminergic system was involved 

in the pathogenesis of AD. Several lines of evidence 

showed that depletion of the VTA volume leads to 

reduced outflow of DA to the hippocampus and nucleus 

accumbens. This depletion leads to the deterioration of 

memory formation and locomotor activities in humans 

and Tg animals [39, 212-215]. A recent study revealed 

that selective apoptosis was involved only in the VTA, 

and not SNpc, hippocampus, neocortex, and locus 

ceruleus (LC) of Tg mice in the pre-plaque stage of AD 

[39]. Intriguingly, in Parkinson’s disease, selective 

apoptosis was found in the SNpc due to mPTP opening 

and oxidative stress [216]. Given that mitochondrial-

mediated selective apoptosis is involved in dopaminergic 

neuronal loss in the SNpc in Parkinson’s disease, it is 

highly possible that the apoptosis observed in the VTA in 

AD shares the same mechanism. Further studies are 

needed to verify the hypothesis of a pathological 

connection between mitochondrial-mediated release of 

pro-apoptotic proteins and dopaminergic neuronal loss in 

the VTA in AD.  

 

 
 

Figure 3. Relationships between mitochondrial and dopaminergic dysfunctions. (1) Overproduction of H2O2 from MAO-B is 

considered a major peroxidative stressor that damages mtDNA and respiratory complexes of OXPHOS. (2) & (3) DA and DOPAL 

are auto-oxidised to their respective quinones by ROS formed from OXPHOS. The quinones aggravate the oxidative stress resulting 

in swollen mitochondria and nuclear DNA damage, and subsequent deficits in OXPHOS complexes. (4) Loss of ALDH2 on 

mitochondrial surface in AD leads to lower levels of DOPET, which is an anti-apoptotic metabolite cleaved from DOPAL. Loss of 

DOPET compromises the inhibition of AP-1/P53 and subsequent Bax activation and mPTP opening. (5) DA deficiency also 

contributes to the inactivation of dopamine 1 and 2 receptors, which control the anterograde transportation of mitochondria. However, 

investigations are required to elucidate how this loss relates to mitochondrial distribution in the brain. Arrows indicate stimulation, 

whereas a line with an end bar indicates inhibition. Abbreviations: 3-MT, 3-methoxy-4-hydroxyphenethylamine; Akt, protein kinase 

B; ALDH, aldehyde dehydrogenases; ALDH2, aldehyde dehydrogenase 2; AP-1/p53, activating protein-1 transcription factor / 

tumour protein p53; Bax, Bcl-2-associated X protein; C3, caspase3; C9, caspase 9; COMT, catechol-O-methyltransferase; cyt c, 

cytochrome c; D1R, dopamine 1 receptor; D2R, dopamine 2 receptor; DA, dopamine; DA-Q, dopamine quinone; DAT, dopamine 

transporter; DDC, DOPA decarboxylase; DOPA, dihydroxyphenylalanine; DOPAC, 3,4-dihydroxyphenylacetic acid; DOPAL, 3,4-

dihydroxyphenylacetaldehyde; DOPAL-Q, 3,4-dihydroxyphenylacetaldehyde quinone; DOPET, 3,4-dihydroxyphenylethylamine; 

ETC, electron transport chain; GSK3β, glycogen synthase kinase-3 beta; H2O2, hydrogen peroxide; HVA, homovanillic acid; MAO-

B, monoamine oxidase B; MHPA, 3-methoxy-4-hydroxyphenylacetaldehyde; MOPET, 4-(2-hydroxyethyl)-2-methoxyphenol; 

mPTP, mitochondrial permeability transition pore; mtDNA, mitochondrial deoxyribonucleic acid; OXPHOS, oxidative 

phosphorylation; TH, tyrosine hydroxylase; VMAT2, vesicular monoamine transporter 2. 
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5.3.2. Contradictory action of DA metabolites and 

mitochondrial dysfunction 

 

Normally, DA is metabolised into several products 

including (1) 3-methoxytyramine by catechol-O-

methyltransferase (COMT) that then converts to 

homovanillic acid (HVA) by MAO; (2) 3,4-

dihydroxyphenylacetaldehyde (DOPAL) by MAO that 

then mostly metabolises into DOPAC and HVA by 

aldehyde hydrogenase and COMT, respectively, and the 

rest converts to 3,4-dihydroxyphenyl ethanol (DOPET) 

via alcohol dehydrogenase; and (3) NE by DA beta-

hydroxylase (DBH). Besides the loss of DA in AD, there 

is also loss of its metabolite DOPAC. However, there is a 

higher concentration of DOPAC per neurone due to 

hyperactive and upregulated MAO [185]. DOPAC is 

neurotoxic due to its oxidative properties, which 

predisposes the mitochondrial structures to damage. In the 

early 1990s, DA and its metabolites were found to cause 

DNA damage and inhibit ETC [217]. Later, DA and 

DOPAC were found to undergo auto-oxidation in the high 

oxidative environment of mitochondria and MAO to form 

neurotoxic quinones [218]. Auto-oxidation of DA and 

DOPAC were found to be correlated with increased 

quinone content [219] and also its reductases [220] in 

early AD. These quinones and their derivatives 

accumulate in the cytosol and add to the oxidative stress 

[221], leading to architectural changes in the 

mitochondria including mPTP opening and a swollen 

morphology [222]. When DA and its derivatives react 

with heavy metal ions, such as copper ions commonly 

seen in AD, they non-enzymatically enhance the oxidative 

damage in DNA and mtDNA by up to 75 fold [223]. 

These processes aggravate the oxidative stress, damaging 

neuronal mitochondria in AD.  

Surprisingly, DA and its derivatives also elicit 

neuroprotective effects on mitochondria. They reduce Aβ 

accumulation and oxidative stress through the 

upregulation of haem-oxygenase 1 via oxidative 

transformation under aerobic conditions in microglia 

[224]. Moreover, another metabolite of DA, DOPET, was 

found to protect neuronal mitochondria in AD by 

reversing Aβ-induced mitochondrial-mediated caspase-

dependent apoptosis [225]. However, given only a small 

amount of DOPET is formed under physiological 

conditions, further evidence is needed. These 

contradictory effects of DA and its metabolites shed light 

on how DA and its metabolite levels influence 

mitochondrial functions in AD.  

 

5.3.3. DA receptors and mitochondrial trafficking 

 

Unlike 5-HT, DA exhibits both stimulating and inhibiting 

effects on mitochondrial motility via a receptor-dependent 

mechanism, which affects universal brain energy 

distribution. Treatment with DA 2 receptor (D2R) 

agonists decreased mitochondrial transport via enhancing 

Akt, whereas treatment with DA 1 receptor (D1R) 

agonists promoted mitochondrial movement via 

inhibiting Akt [226]. Only the density of D1R was 

severely reduced in cerebral regions in AD [227], which 

suggests that inadequate binding on D1R hinders 

mitochondrial distribution in neurones. However, there 

are no in vivo studies addressing this hypothesis. Further 

studies are needed to confirm the degree of DA deficiency 

and subsequent downregulation of receptors in impairing 

mitochondrial trafficking in dopaminergic neurones in 

AD. 

 

5.4. Norepinephrinergic system and mitochondrial 
dysfunction in AD 

 

Norepinephrinergic transmission in the brain originates 

from the locus coeruleus (LC) in the upper dorsolateral 

pontine tegmentum and projects to the neocortex, 

hippocampus, thalamus, cerebellum, and spinal cord 

[209]. In AD, selective neuronal loss at the LC contributes 

to insufficient NE in hippocampal, temporal, cortical, and 

cerebellar regions [154, 228], as well as memory and 

cognitive impairments [40, 229]. The mitochondrial 

oxidative stress following neuronal activity-dependent 

Ca2+ influx was considered the major contributor to the 

vulnerability of LC apoptosis in early AD [40].  

 

5.4.1. The contradictory relationship between NE and 

mitochondrial dysfunction 

 

Under physiological conditions, NE protects neurones 

from oxidative damage by producing glutathione and 

peroxisome proliferator-activated receptor delta to 

enhance the antioxidant system [230, 231]. However, it is 

worth noting that the neuroprotective effect of NE only 

lasts a short time [232]. In addition, NE also rescues 

mitochondrial membrane depolarisation, caspase 

activation and apoptosis, and maintains the level of 

mitochondrial aggregation and fusion in Aβ-toxified cells 

[231, 233]. These additional effects of NE were produced 

by mediating β-adrenoreceptors, cAMP production, 

pCREB signalling and subsequent activation of NGF and 

BDNF pro-survival pathway [233]. The reduction of NE 

in the LC in AD alters mitochondrial functioning by 

decreasing oxidative scavengers, such as glutathione, 

increases oxidative stress, and promotes excessive 

mitochondrial membrane permeabilisation. The reduced 

NE was reported to cause excessive oxidative stress and 

decrease mitochondrial metabolism without activation of 

nuclear factor erythroid 2-related factor 2, β-
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adrenoreceptors, and the downstream cAMP/PKA 

pathway [234]. 

Norepinephrinergic dysfunction in the cerebellum 

results in increased ROS production and possibly damage 

to mitochondrial functioning. In an AD experimental 

model overexpressing APP, cerebellar NE dysfunction 

was correlated with upregulation of NAPDH oxidases on 

the cell membrane [235]. The NADPH oxidases produced 

more ROS through stimulating Ca2+/calmodulin-

dependent protein kinases II (CaMKII) and PKC [235]. 

The NADPH oxidase-induced CaMKII/PKC pathway 

activation then led to mtDNA damage and ETC activity 

through oxidative stress [236]. Although current studies 

have not reported the precise mechanisms of damage to 

mitochondria, it is possible that mitochondrial 

dysfunction might be caused by NE depletion due to loss 

of norepinephrinergic neurones at the LC.  

On the other hand, high concentrations of NE were 

found to elevate cytosolic and mitochondrial ROS levels 

[237, 238], which were found to decrease mitochondrial 

transmembrane potential and energy metabolism in cell 

culture studies [238], and potentially enhances the 

neurotoxicity. Given that NE exhibits neuroprotective and 

neurotoxic effects according to the brain region, neuronal 

type, and NE concentration, in-depth studies are needed 

to investigate how NE insufficiency leads to 

mitochondrial dysfunction in AD according to the 

location, different stimuli, and NE levels.  

 

 
 
Figure 4. Relationships between mitochondrial and norepinephrine dysfunctions. (1) NE deficiency leads to loss of its 

protective effects on postsynaptic neurons. Normally, β-AR activation leads to cAMP and pCREB production, reducing 

mitochondrial aggregation, fission, and membrane permeabilisation. These prevent mitochondrial morphology changes and 

mitochondrial-mediated caspases-activated apoptosis. (2) NE deficiency at presynaptic terminals lowers the level of 

glutathione and PPAR-γ activation, increasing O2•- via a receptor-independent pathway and predisposes to mtDNA damage. 

(3) DOPEGAL accumulates due to undermined ADH and ALDH2, generating both oxidative stress and mPTP opening. The 

mPTP opening facilitates release of pro-apoptotic cyt c and subsequent apoptosis. (4) Enhanced activity of MAO-A causes 

overproduction of H2O2 and along with oxidative stress from DOPEGAL stimulates mtDNA damage and ETC 

damage. (5) NE deficiency in cerebellum also causes mtDNA damage through the activation of NOX, CAMKII/PKCα 

signalling cascade, and ROS production. (6) Apoptosis of NE neurones at the locus coeruleus is associated with oxidative 

stress and mitochondrial-mediated caspases-dependent apoptosis due to Ca2+ influx upon neuronal activation, leading to 

reduced NE production. Arrows indicate stimulation, whereas a line with an end bar indicates inhibition. Dotted line 

represents a series of biochemical reactions. Abbreviations: ADH, alcohol dehydrogenase; ALDH 2, aldehyde 

dehydrogenase 2; C3, caspase3; C9, caspase 9; Ca, calcium ions; CAMKII/PKC, calmodulin-dependent protein kinase 

II/protein kinase C signalling cascade; cAMP, cyclic AMP; cyt c, cytochrome c; DA, dopamine; DBH, dopamine beta-

hydroxylase; DOPEGAL, 3,4-dihydroxyphenylglycolaldehyde; ETC, electron transport chain; H2O2, hydrogen peroxide; 

MAO-A, monoamine oxidase A; MOPEGAL, 3-methoxy-4-hydroxyphenylglycolaldehyde; mPTP, mitochondrial 

permeability transitional pores; mtDNA, mitochondrial deoxyribonucleic acid; NE, norepinephrine; NET, norepinephrine 

transporter; NOX, NADPH oxidase; O2•-, superoxide radicals; OXPHOS, oxidative phosphorylation; pCREB, 

phosphorylated cyclic AMP response element binding; PPAR-γ, peroxisome proliferator-activated receptor gamma; ROS, 

reactive oxygen species; VMA, vanillylmandelic acid; β-AR, beta-2 adrenergic receptor. 
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5.4.2. Toxic NE metabolites induce mitochondrial 

dysfunction  

 

Following DA synthesis, DA is converted into NE in 

synaptic vesicles via DA beta-hydroxylase (DBH). The 

majority of NE diffuses out of the vesicles and enters the 

cytosol for other cellular functions. Cytosolic NE is 

broken down to 3,4-dihydroxyphenylglycolaldehyde 

(DOPEGAL) by MAO-A, and further broken down to 

vanillylmandelic acid (VMA) via aldehyde 

dehydrogenase 2 (ALDH2) on the outer mitochondrial 

membrane or by serial reactions of alcohol dehydrogenase 

(ADH), COMT and ALDH2.  

In AD, the activity of MAO-A is enhanced and 

cleaves more NE into DOPEGAL [239], which is a 

neurotoxic metabolite that induces various mitochondrial 

dysfunctions, such as inducing oxidative stress [240, 241] 

and causing Ca2+-induced mPTP opening and apoptosis 

[239-241]. Ten-fold higher level of DOPEGAL is 

cytotoxic, causing mitochondrial dysfunction and ATP 

insufficiency in neurones [242]. In addition, DOPEGAL 

is formed in close proximity to the outer mitochondrial 

membrane and can have toxic effects on mitochondria 

before being broken down by ALDH2 or ADH [239]. In 

most cases, DOPEGAL accumulates intracellularly due to 

defective axonal transport at LC axonal terminals [239] 

and decreased levels of ALDH2 [243, 244]. Furthermore, 

ALDH2 deficiency in an experimental model of AD 

disabled the clearance of toxic aldehyde DOPEGAL, 

resulting in oxidative stress [245, 246] and cascade-

dependent apoptosis [246]. Overall, NE dysfunction 

results in accumulation of DOPEGAL, leading to 

oxidative damage of mitochondria and inducing excessive 

mitochondrial membrane permeability. 

 

 
 
Figure 5. Relationships between mitochondrial and histaminergic dysfunctions. (1) Histamine content 

in the synaptic cleft increases due to microglial release. (2) Increased HA concentration stimulates H1R and 

H4R, and subsequent NADPH oxidase, which enhances ROS production and leads to mtDNA damage and 

ETC damage. (3) Increased HA content at the synapse also induces the NF kappa-B/AP-1 signalling pathway 

facilitating iNOS synthesis of NO, which in turn leads to glutamate excitotoxicity, nitrosylation and 

nitrosation of proteins, particularly in OXPHOS (ETC damage) and TCA cycle. (4) Excessive H2O2 produced 

from upregulated MAO-B leads to damage in mtDNA and the TCA cycle. These mechanisms ultimately 

damage mitochondrial bioenergy production in the brain. Arrows indicate stimulation, whereas a line with 

an end bar indicates inhibition. Abbreviations: AP-1, activating protein-1 transcription factor; ETC, electron 

transport chain; H1R, histaminergic 1 receptor; H2O2, hydrogen peroxide; H4R, histaminergic 4 receptor; 

HA, histamine; HDC, histidine decarboxylase; iNOS, induced nitric oxide synthase; MAO-B, monoamine 

oxidase B; mtDNA, mitochondrial deoxyribonucleic acid; N-MIAA, N-methyl indole acetic acid; NF-

kappaB, nuclear factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide; NOX, NADPH 

oxidase; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; TCA cycle, tricarboxylic acid 

cycle; VMAT2, vesicular monoamine transporter 2.  
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5.5. Histaminergic system and mitochondrial dysfunction 

in AD 

 

The histaminergic system originates from the 

tuberomammillary nucleus (TMN) at the posterior 

hypothalamus and projects to diverse brain regions such 

as the neocortex, thalamus, basal ganglia, amygdala, and 

hippocampus [247]. Histamine levels in the brain are 

associated with cognition, attention, learning, memory, 

sensory, and motor functioning [248, 249]. Although 

histaminergic neurones in the TMN are known to be 

affected in the early stages of AD [250-252], the changes 

in HA levels have varied across studies. Some studies 

reported a reduction in HA levels in the hypothalamus, 

hippocampus, and temporal cortex of post-mortem AD 

brains [252-254], whereas one study reported elevated 

levels in the cortical and subcortical structures, except the 

globus pallidus and corpus callosum [247]. This 

discrepancy might be due to elevated HA production from 

microglia in the central nervous system [255]. Unlike 

cholinergic and other monoaminergic systems, to our 

knowledge, the relationship between the mitochondrial-

mediated apoptotic pathway and neuronal death in the 

TMN is still unclear. 

 

5.5.1. HA activates microglia-mediated mitochondrial 

dysfunction   

 

Histamine is an important inflammatory modulator that 

causes oxidative stress and mitochondrial dysfunction at 

pre- and postsynaptic terminals. It activates HA 1 and 4 

receptors on microglial membranes to activate the 

NADPH oxidase signalling pathway and ROS production 

[256], leading to possible mtDNA damage. Moreover, HA 

also induces NO synthesis in microglia by upregulating 

iNOS via extracellular signalling to activate transcription 

factors like NF-KappaB and activator protein 1 [257]. The 

iNOS-induced NO can stimulate glutamate excitotoxicity 

and modify proteins by nitrosylation and nitrosation [258, 

259]. Overall, HA induces ROS and NO in microglia that 

promotes oxidative stress and mitochondrial damage. 

 

6. Neuroinflammation, mitochondrial dysfunction, 

and neurotransmission failure  

 

Another important mechanism is that mitochondrial 

dysfunction mediates neuroinflammation, which possibly 

leads to synaptic deficits. An important source of 

neuroinflammation in neurodegenerative diseases is via 

mtDNA damage. Evidence indicates that mtDNA 

damage, which can be non-specific and specific, activates 

the canonical inflammatory pathway by stimulating both 

microglia and astrocytes [5, 260]. This eventually leads to 

increased expression of proinflammatory cytokines such 

as tumour necrosis factor-α, interleukin (IL)-1, IL-6, and 

IL-10, as well as nuclear factor-B and toll-like receptors 

[261]. Stimulated microglia increase ROS and reactive 

nitrogen species levels, which subsequently activates glial 

inflammatory mechanisms [262]. The oxidative stress 

from mitochondrial dysfunction is potentiated by 

microglial-mediated oxidative stress, which 

pathologically induces oxidative damage in mtDNA, 

which again activates the above process [262]. Therefore, 

neuroinflammation likely occurs and is amplified due to 

mtDNA damage and oxidative stress, which are 

predominant in mitochondria in AD.  

 

Table 2. Common mitochondrial dysfunctions associated with neurotransmission in Alzheimer’s 

disease. 
 

Mitochondrial dysfunctions Acetylcholine Serotonin Dopamine Norepinephrine Histamine 

TCA cycle disturbance ++ + N.A. N.A. +? 

ETC impairment +? + + + +? 

Oxidative stress +? +? +? + + 

mtDNA damage N.A. N.A. + + +? 

Ca2+ dysregulation + N.A. N.A. + + 

Morphological change N.A. N.A. + + N.A. 

Transportation dysfunction N.A. + +? N.A. N.A. 

Membrane permeabilisation ++ + +? ++ +? 

 
 

The ‘+’ indicates that the mitochondrial dysfunction is relevant and ‘++’ indicates that the mitochondrial dysfunction is 
particularly relevant, with neurotransmission in Alzheimer’s disease. A ‘?’ indicates that the complete mechanism has not been 

clearly identified. Abbreviations: Ca2+, calcium ions; ETC, electron transport chain; N.A., not avaliable; mtDNA, 

mitochondrial deoxyribonucleic acid; TCA, tricarboxylic acid. 
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Upon neuroinflammation, the axonal transport of 

mitochondria, especially retrograde trafficking, is 

disrupted [263]. This causes local energy depletion, which 

triggers impaired synaptic vesicle release and 

neurotransmission failure [44, 264], leading to cognitive 

deficits in AD. Overall, there is increasing evidence to 

support neurotransmitter deficits In AD due to 

mitochondrial dysregulation (oxidative stress and mtDNA 

damage) and induced neuroinflammation. However, so 

far there is no evidence of a system-specific association, 

which needs to be investigated. 

 

7. Conclusion and future perspectives 

 

Mitochondrial impairments in AD appear to occur 

upstream and downstream simultaneously. In fact, it 

appears that mitochondrial dysfunctions are connected to 

defective synaptic transmission and leads to changes in 

cholinergic and monoaminergic systems. Neuro-

transmission dysfunctions, such as 5-HT and DA deficit, 

also affect mitochondrial trafficking. All these 

pathological events act as a self-fuelling vicious cycle 

which ultimately leads to the disease progression in AD 

patients, culminating in clinical symptoms of memory 

deficit, depression, anxiety, and agitation. Table 2 

summarizes the relationships reported in the literature and 

possible mechanisms that have not yet been proven or 

require further study.  

Our current understanding not only sheds light on 

the pathological mechanisms, but also gives us clues for 

potential treatments that emphasise mitochondrial 

protection. In addition to biologics, drug and gene 

therapies, the major therapeutic approaches appear to be 

caloric restriction and exercise. Caloric restriction has 

been shown to reduce ROS and improve ATP/ROS ratio 

in mitochondria [265]. Exercise induces mitohormesis 

[266] and improves cognitive functions by promoting 

neurogenesis and synaptogenesis [267]. Available 

biologics such as engineered human mitochondrial 

transcription factor A has been shown to inhibit Aβ 

aggregation [268] and protect mtDNA function to 

improve cognitive function in animal models [269]. Drug 

therapies including mitochondrial-targeting bioenergetics 

(e.g., mitovitE, coenzyme Q10) can potentially rescue 

mitochondrial functions and improve AD conditions 

[270]. Recently, mtDNA functions in AD have been 

restored through gene therapy techniques called 

transcription activator-like effector nucleases and 

clustered regularly interspaced short palindromic repeats 

/ associated protein 9 (CRISPR/Cas9) technology [110]. 

Although all of these approaches can improve 

mitochondrial dysfunction and AD pathology, none of 

them can completely rescue the condition.  

A more accurate characterisation of the mechanisms 

underlying the complicated cross-talk between 

mitochondrial dysfunction and failure of cholinergic and 

monoaminergic systems could lead to a better 

understanding of how mitochondrial dysfunction affects 

the symptomology of AD, which could advance our 

knowledge of the molecular mechanisms and facilitate 

neuroprotective strategies aimed at interrupting the 

mitochondrial cascade to successfully treat patients with 

AD.  
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