Article

Nickel/Brønsted Acid-Catalyzed Chemo- and
Enantioselective Intermolecular Hydroamination of Conjugated Dienes
(1.0 equiv)

Jiao Long, Peng Wang, Wang
Wang, Yuqiang Li,
Guoyin Yin
yinguoyin@whu.edu.cn
HIGHLIGHTS
Nickel/Brønsted acidcatalyzed asymmetric hydroamination of conjugated dienes

High regio-, chemo-, and enantioselectivity

Broad range of substrate scope

Wide functional group tolerance

[^0]
Article

Nickel/Brønsted Acid-Catalyzed Chemo- and Enantioselective Intermolecular Hydroamination of Conjugated Dienes

Jiao Long, ${ }^{1}$ Peng Wang, ${ }^{1}$ Wang Wang, ${ }^{1}$ Yuqiang Li, ${ }^{1}$ and Guoyin Yin ${ }^{1,2, *}$

Abstract

SUMMARY A novel nickel/Brønsted acid-catalyzed asymmetric hydroamination of acyclic 1,3-dienes has been established. A wide array of primary and secondary amines can be transformed into allylic amines with high yields and high enantioselectivities under very mild conditions. Moreover, our method is compatible with various functional groups and heterocycles, allowing for late-stage functionalization of biologically active complex molecules. Remarkably, this protocol exhibits good chemoselectivity with respect to amines bearing two different nucleophilic sites. Mechanistic studies reveal that the enantioselective carbon-nitrogen bond-forming step is reversible.

INTRODUCTION

Chiral amines represent a privileged pharmacophore and are present in a myriad of natural products and drugs (Figure 1A) (Francotte and Lindner, 2006; Lough and Wainer, 2002; Nugent, 2010). Therefore, organic chemists have made considerable efforts toward their synthesis during the last decade (Grogan, 2018; Li and Zhang, 2014; Nugent and El-Shazly, 2010; Patil et al., 2018; Robak et al., 2010). Among them, asymmetric hydroamination of unsaturated C-C bonds serves as an efficient and powerful tool in organic synthesis, particularly hydroamination using free amines (Aillaud et al., 2007; Clement and Jerome, 2017; Dondoni, 2015; Hannedouche and Schulz, 2013, 2018; Hii, 2006; Huang et al., 2015; Huo et al., 2019; Jerome, 2018; Müller et al., 2008; Patel et al., 2017; Pirnot et al., 2016; Reznichenko and Hultzsch, 2016; Zi, 2009, 2011). In this context, transition-metal-catalyzed intermolecular asymmetric hydroamination of allenes (Berthold and Breit, 2018, 2019; Cooke et al., 2012; Dion and Beauchemin, 2011; Lin et al., 2019; Parveen et al., 2017; Xu et al., 2016), alkynes (Athira et al., 2018; Liu et al., 2011; Lutete et al., 2004; Patil et al., 2006; Xu et al., 2019), and conjugated dienes (Adamson et al., 2017; Dion and Beauchemin, 2011; Lin et al., 2019; Löber et al., 2001; Park and Malcolmson, 2018; Xiong et al., 2018; Yang and Dong, 2017; Zhou and Hartwig, 2008) has been extensively studied (Figure 1B). Nevertheless, the use of noble transition metals such as rhodium and palladium are often mandatory (Adamson et al., 2017; Aillaud et al., 2007; Athira et al., 2018; Berthold et al., 2019; Berthold and Breit, 2018; Clement and Jerome, 2017; Cooke et al., 2012; Dion and Beauchemin, 2011; Dondoni, 2015; Hannedouche and Schulz, 2013, 2018; Hii, 2006; Huang et al., 2015; Huo et al., 2019; Jerome, 2018; Lin et al., 2019; Liu et al., 2011; Löber et al., 2001; Lutete et al., 2004; Müller et al., 2008; Park and Malcolmson, 2018; Parveen et al., 2017; Patel et al., 2017; Patil et al., 2006; Pirnot et al., 2016; Reznichenko and Hultzsch, 2016; Xiong et al., 2018; Xu et al., 2016, 2019; Yang and Dong, 2017; Zhou and Hartwig, 2008; Zi, 2009, 2011); in addition, these methods suffer from limited amine scope (Adamson et al., 2017; Dion and Beauchemin, 2011; Lin et al., 2019; Löber et al., 2001; Park and Malcolmson, 2018; Xiong et al., 2018; Yang and Dong, 2017; Zhou and Hartwig, 2008), as well as excessive quantities of the unsaturated substrate are always required to achieve a high level of efficiency (Adamson et al., 2017; Dion and Beauchemin, 2011; Lin et al., 2019; Löber et al., 2001; Park and Malcolmson, 2018; Yang and Dong, 2017; Zhou and Hartwig, 2008).

In recent years, research toward nickel-catalyzed oxidative addition with $\mathrm{X}-\mathrm{H}(\mathrm{X}=\mathrm{C}, \mathrm{O} \ldots$) bonds has become a hot theme owing to earth-abundance of nickel and its great potential in oxidative addition (Ananikov, 2015; Tasker et al., 2014; Wang, 2016; Figure 1C). Significant progress has been made in the asymmetric hydrofunctionalization of alkenes through nickel-catalyzed reactions (Bezzenine-Lafollee et al., 2017; Cai et al., 2019; Chen and Lu, 2018; Cheng et al., 2018, 2019, Diesel et al., 2018, 2019; Donets and Cramer, 2013; Li et al., 2018, 2019a; Lv et al., 2018; Richmond and Moran, 2018; Woźniak and Cramer,
${ }^{1}$ The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
${ }^{2}$ Lead Contact
*Correspondence: yinguoyin@whu.edu.cn
https://doi.org/10.1016/j.isci. 2019.11.008

A Representative Drugs Containing Chiral Amines:

Rivastigmine

Sibutramine

Fendiline
B Towards Chiral Allylic Amines by Asymmetric Intermolecular Hydroamination:

C Ni-Catalyzed Asymmmetric Hydrofunctionalization:
(phis work:

Figure 1. Reaction Design
(A) Representative drugs containing chiral amines.
(B) Toward chiral allylic amines by asymmetric intermolecular hydroamination.
(C) Ni-catalyzed asymmetric hydrofunctionalization.
(D) Nickel/Brønsted acid-catalyzed chemo- and enantioselective intermolecular hydroamination of conjugated dienes.

2019; Xiao et al., 2016, 2018; Zhang et al., 2019). Chiral centers are generally induced via a carbon-carbon bond-forming process, involving the direct oxidative addition of C-H bonds (Cai et al., 2019; Cheng et al., 2018, 2019, Diesel et al., 2018, 2019; Donets and Cramer, 2013; Li et al., 2019a; Lv et al., 2018; Woźniak and Cramer, 2019; Zhang et al., 2019) or an external stoichiometric reductant, such as alcohol (Chen et al., 2019) or hydrosiloxane (Ahlin and Cramer, 2016). However, nickel-catalyzed asymmetric hydrofunctionalization of unsaturated compounds involving a carbon-heteroatom bond formation has not been studied much (Tran et al., 2019). As an extension of our studies with nickel-catalyzed carbon-carbon bond formations (Li et al., 2019b; Wang et al., 2019), we turned our attention to carbon-heteroatom bonds. Inspired by the recent reports on metal/Brønsted acid dual catalysis (Adamson et al., 2017; Dion and Beauchemin, 2011; Han et al., 2018; Kathe and Fleischer, 2019; Lin et al., 2019; Liu and Feng, 2018; Löber et al., 2001; Park and Malcolmson, 2018; Yang and Dong, 2017; Zhou and Hartwig, 2008), we have developed a novel, room temperature nickel/Brønsted acid-catalyzed asymmetric hydroamination using conjugated dienes as a limiting reagent (Figure 1D). This protocol can transform a wide array of primary and secondary amines into allylic amines in high yields with excellent enantioselectivities. Significantly, good regio-, chemo-, and enantioselectivity have been achieved using amines bearing potentially competitive nucleophilic sites. It is noteworthy that the nickel-catalyzed racemic hydroamination of cyclic dienes has only been reported by the Hartwig group before, wherein they also demonstrated the challenge for the development of an enantioselective variant (Pawlas et al., 2002).

Figure 2. Reaction Optimization
Reactions were conducted at 0.2 mmol scale, see Supplemental Information for reaction details. See also Tables S1-S3.

RESULTS

Optimization Reaction Conditions

We initiated this study by choosing phenyl-1,3-diene (1a) and morpholine (2a) as model substrates. Ligand evaluations were conducted using $\mathrm{Ni}(C O D) 2$ as the precatalyst and $\mathrm{TsOH} \cdot \mathrm{H} 2 \mathrm{O}$ as a cocatalyst. As shown in Figure 2, a series of bisphosphine ligands were examined; the 1,2-hydroamination product 3a (Wang et al., 2014) was obtained in a moderate yield with a low enantiomeric excess (ee) when chiral BINAP (L1) or SEGPHOS (L2) was used, which demonstrated the feasibility of this hydroamination reaction. Unfortunately, (S)-SKP (L3), (R)-SDP (L4), and (R)-DIOP (L5) as ligand were not effective for this transformation, although (S, S)-BDPP (L6), a flexible bisphosphine ligand, yielded 3a in an excellent yield, but with low enantioselectivity (23% ee). However, both high yields and enantioselectivities were achieved by (R_{C}, S_{P})-DuanPhos (L7). To our delight, excellent ee (95% ee) was obtained when (S, S)-Me-DuPhos (L8), as a more rigid ligand, was used. In addition, the Brønsted acid cocatalyst can also affect the efficiency and enantioselectivity of this hydroamination reaction. Further studies demonstrated that the desired product can also be obtained in high yields without a decrease in enantioselectivity when switching the acid cocatalyst to phenylphosphonic acid (A3) or phthalic acid (A4). To easily weighout, we selected A4 as cocatalyst. Moreover, control experiments indicated that both nickel catalysts and the Brønsted acids were crucial to the success of this reaction. Notably, no other regioisomers were detected in these reactions.

Substrate Scope Study

With the optimal conditions in hand, we shifted our attention to investigate the generality of this Ni -catalyzed asymmetric hydroamination reaction. Utilizing 1a, we examined the scope of the amines. As illustrated in Figure 3, a series of primary amines bearing various functional groups produced the

Figure 3. Scope of Primary and Secondary Amines
Reactions were conducted at 0.2 mmol scale, see Supplemental Information for reaction condition details. ${ }^{\text {a Reactions }}$ were conducted at 5 mmol scale. ${ }^{\mathrm{b}} 12 \mathrm{~h} ;{ }^{\mathrm{c}} 36 \mathrm{~h} ;{ }^{\mathrm{d}} 48 \mathrm{~h}$. See also Scheme S 3 .

3ad: $\mathrm{R}=\mathrm{MeO}$

Figure 4. Scope of Conjugated Dienes
Reactions were conducted at 0.2 mmol scale, see Supplemental Information for reaction condition details. See also Scheme S3.
corresponding hydroamination products $3 \mathrm{~b}-31$ with good to excellent yields with excellent enantioselectivities. Notably, (R)-(+)-1-Phenylethylamine, a chiral amine, also gave the hydroamination product in a moderate yield with an excellent diastereomeric ratio ($d r>20: 1,3 \mathrm{~m}$). In addition to the aliphatic amines, primary arylamines were also suitable for the reaction to generate the chiral amine products with excellent enantioselectivities, albeit in lower yields under the current reaction conditions. It is noteworthy that the aryl bromide is compatible with this nickel-catalyzed reaction (3p). To assess the practicality of this

Figure 5. Substrates Containing Two Nucleophilic Sites
Reactions were conducted at 0.2 mmol scale, see Supplemental Information for reaction condition details. See also Scheme S3.
asymmetric hydroamination reaction, a gram-scale experiment was conducted. When the reaction of 1a with $\mathbf{2 g}$ was performed on a 5 mmol scale, it still was able to furnish 3 g without loss of reaction efficiency and optical enantioselectivities, even in the presence of $1 \mathrm{~mol} \%$ catalysts.

Next, the scope of secondary amines was tested. Various secondary cyclic amines afforded the chiral allylic amines in both remarkable yields and enantioselectivities (3a-3v). Moreover, acyclic secondary amines were also able to produce the desired hydroamination products with excellent enantioselectivities under the same reaction conditions (3w-3aa). Interestingly, although catalytic amount of Brønsted acid was used as a cocatalyst, amines containing other nitrogen atoms did not affect this asymmetric transformation (3 j and $3 v$). Additionally, a series of functional groups, including ethers (3 i and 3 a), esters (3 I), thioethers $(3 q)$, terminal alkenes ($3 h$ and $3 w$), and heterocycles such as furan ($3 f$) and pyrimidines ($3 v$), all were well tolerated in this reaction.

Subsequently, the scope of 1,3-dienes was studied. A set of aryl-substituted linear 1,3-butadienes were examined with both primary and secondary amines under the optimal conditions. As shown in Figure 4, both electron-rich and deficient substituents did not affect the efficiency or enantioselectivity. Alkylsubstituted butadienes were also capable of producing the Markovnikov hydroamination products (3ai, 3aj, 3ar, 3as, and 3at) in excellent yields with an excellent ee value. Notably, no other regioisomers were detected in these reactions. Furthermore, the hydroamination product (3au) could also be synthesized from 1,3-cyclohexadiene, albeit in low yields and enantioselectivity under the current conditions.

As we have highlighted earlier, both primary and secondary alkyl and aryl amines can produce satisfactory results in this nickel/Brønsted acid-catalyzed reaction. We were curious about the chemoselectivity when using one substrate containing two different nucleophilic sites. Guided by this idea, a set of more complex amines were tested under the optimal conditions and the results have been displayed in Figure 5. With aminoethanol, only the 1,2-hydroamination product (3av) was isolated with an excellent yield and ee value. Notably, the less sterically encumbered primary amine was found to be more reactive than the secondary amine when N -benzylethylediamine was used (3aw). Interestingly, the acidic phenol did not affect the amination (3ax), and the hydroamination reaction of the aryl amine (3ay) was not affected by the presence of an alcohol. Moreover, a single isomer with both excellent ee and yield could be obtained from tryptamine (3az). Finally, high chemoselectivity was shown at the aliphatic amine part when 4-aminobenzylamine was used (3ba). Collectively, these results suggest that this nickel-catalyzed reaction exhibits

Scheme 1. Amine Exchange Experiment
(1) Exchange experiment of secondary amine-based product (3t) with secondary amine (morpholine).
(2) Exchange experiment of secondary amine-based product (3t) with primary amine (furfuryl amine).
(3) Exchange experiment of primary amine-based product (3k) with secondary amine (morpholine).
(4) Exchange experiment of primary amine-based product (3k) with primary amine (furfuryl amine).

Data are represented as mean value of three times; see also Scheme S5.
good chemoselectivity toward hydroamination and also demonstrates the potential of this method in the late-stage diversification of biomolecules.

DISCUSSION

Mechanism Study

To get more details of this transformation, a preliminary mechanistic investigation was conducted. In Hartwig's reaction, a reversible carbon-nitrogen bond formation was observed. To determine if this phenomenon also exists in our reaction, amine exchange experiments were performed first. When the enantioenriched $3 t$ and stoichiometric morpholine were subjected to the optimal conditions, both $3 t$ and 3 a were detected (Scheme 1-1). A similar phenomenon was also observed in the reaction of 3 t with a primary amine (Scheme 1-2). This reversible effect was also found when a primary amine-based product was used (Schemes 1-3 and 1-4). These findings strongly suggested that a reversibility of carbon-nitrogen bond formation was involved in this reaction. These results are in consistence with Hartwig's results (Pawlas et al., 2002) but inconsistent with the results of Mazet's conditions (Tran et al., 2019).

Furthermore, a decrease in enantioselectivity over time has been observed in the palladium-catalyzed hydroamination reactions (Löber et al., 2001; Pawlas et al., 2002). To determine if this phenomenon also exists in our reaction, time course experiments were conducted for both primary and secondary amines (Figure 6). To our surprise, significant racemization was observed for the reaction with a secondary amine

Figure 6. Reaction Profiles
(A) Time course experiments of secondary amine.
(B) Time course experiments of primary amine.

Data are represented as mean value of three times; see also Scheme S6 and Figure S246.
(Figure 6A), whereas there was nearly no alteration of enantioselectivity in a reaction with a primary amine (Figure 6B). Moreover, similar results were also obtained switching A4 to A3.

Finally, based on precedent studies (Adamson et al., 2017; Dion and Beauchemin, 2011; Lin et al., 2019; Löber et al., 2001; Park and Malcolmson, 2018; Xiong et al., 2018; Yang and Dong, 2017; Zhou and Hartwig, 2008) and the above-mentioned findings (see Supplemental Information for more results), a mechanistic profile is proposed for this transformation. As illustrated in Scheme 2, the reaction is initiated by a $\mathrm{Ni}(0)$ species (I), which undergoes oxidative addition to form a Ni (II)-H species (II). Subsequently, a 1,3-diene migratory insertion leads to the formation of a π-allylNi(II) intermediate (III). The hydroamination product 3 is ultimately generated from the π-allylNi(II) complex by an amine nucleophilic attack (McDonald et al., 2011), accompanied by releasing of a $\mathrm{Ni}(0)$ species and regeneration of the acid cocatalyst.

Conclusion

In summary, we have developed a novel nickel and Brønsted acid-cocatalyzed asymmetric hydroamination reaction. The choice of chiral bisphosphine ligand and the use of a suitable Brønsted acid in catalytic amount are crucial to the success of this transformation. This protocol allows access to a series of

Scheme 2. Proposed Mechanism
enantiopure secondary and tertiary allylic amines from linear conjugated dienes and free amines. This method provides high enantioselectivity and a broad substrate scope for the synthesis of various chiral amines. Importantly, a set of complex amines have been accomplished with excellent chemo- and enantioselectivity in this system. The good functional group tolerance and the scalability demonstrates the potential of this method in the synthesis of enantiopure amines. Mechanistic studies indicate that the C-N bond formation is a reversible step. Moreover, racemization over time exists in the reaction with secondary amines but not for primary amines. We believe this chemistry will greatly benefit medicinal chemistry and further reaction development.

Limitations of the Study

The disubstituted diene was not suitable in this methodology.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

All data and methods can be found in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.11.008.

ACKNOWLEDGMENTS

We thank Profs. Xumu Zhang, Hui Lv, and Xiuqin Dong at Wuhan University for lending laboratory space and sharing the basic instruments. We are grateful for the financial support from National Natural Science Foundation of China $(21702151,21871211)$ and the Fundamental Research Funds for Central Universities (2042019kf0208).

AUTHOR CONTRIBUTIONS

G.Y. conceived the project and designed the experiments. J.L. discovered the reported process and designed and carried out almost all the experiments. P.W. participated in synthesizing partial substrates. W.W. helped in executing isotopic labeling studies, and Y.L. helped in analyzing the data. G.Y. wrote the manuscript. J.L. wrote Supplemental Information. All the authors discussed the results and commented on the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 10, 2019
Revised: November 2, 2019
Accepted: November 5, 2019
Published: December 20, 2019

REFERENCES

Adamson, N.J., Hull, E., and Malcolmson, S.J. (2017). Enantioselective intermolecular addition of aliphatic amines to acyclic dienes with a PdPHOX catalyst. J. Am. Chem. Soc. 139, 7180 7183.

[^1]activated carbon-carbon multiple bonds. Dalton Trans. 5105-5118.

Ananikov, V.P. (2015). Nickel: the "spirited horse" of transition metal catalysis. ACS Catal. 5, 19641971.

Athira, C., Changotra, A., and Sunoj, R.B. (2018). Rhodium catalyzed asymmetric hydroamination of internal alkynes with indoline: mechanism, origin of enantioselectivity, and role of additives J. Org. Chem. 83, 2627-2639.

Berthold, D., and Breit, B. (2018). Chemo-, regioand enantioselective rhodium-catalyzed
allylation of triazoles with internal alkynes and terminal allenes. Org. Lett. 20, 598-601.

Berthold, D., Geissler, A.G.A., Giofre, S., and Breit, B. (2019). Rhodium-catalyzed asymmetric intramolecular hydroamination of allenes Angew. Chem. Int. Ed. 58, 9994-9997.

Bezzenine-Lafollee, S., Gil, R., Prim, D., and Hannedouche, J. (2017). First-Row late transition metals for catalytic alkene hydrofunctionalisation: recent advances in $\mathrm{C}-\mathrm{N}$, C-O and C-P bond formation. Molecules 22, 1901-1930.

Cai, Y., Ye, X., Liu, S., and Shi, S.-L. (2019). Nickel/ NHC-Catalyzed asymmetric C-H alkylation of fluoroarenes with alkenes: synthesis of enantioenriched fluorotetralins. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie. 201907387.

Chen, J., and Lu, Z. (2018). Asymmetric hydrofunctionalization of minimally functionalized alkenes via earth abundant transition metal catalysis. Org. Chem. Front. 5, 260-272.

Chen, Y.-G., Shuai, B., Xu, X.-T., Li, Y.-Q., Yang, Q.-L., Qiu, H., Zhang, K., Fang, P., and Mei, T.-S. (2019). Nickel-catalyzed enantioselective hydroarylation and hydroalkenylation of styrenes. J. Am. Chem. Soc. 141, 3395-3399.

Cheng, L., Li, M.-M., Xiao, L.-J., Xie, J.-H., and Zhou, Q.-L. (2018). Nickel(0)-Catalyzed hydroalkylation of 1,3-dienes with simple ketones. J. Am. Chem. Soc. 140, 11627-11630.

Cheng, X., Lu, H., and Lu, Z. (2019).
Enantioselective benzylic C-H arylation via photoredox and nickel dual catalysis. Nat. Commun. 10, 3549.

Clement, L., and Jerome, H. (2017). First-Row late transition metals for catalytic (formal) hydroamination of unactivated alkenes. Synthesis 49, 1158-1167.

Cooke, M.L., Xu, K., and Breit, B. (2012). Enantioselective rhodium-catalyzed synthesis of branched allylic amines by intermolecular hydroamination of terminal allenes. Angew. Chem. Int. Ed. 51, 10876-10879.

Diesel, J., Finogenova, A.M., and Cramer, N. (2018). Nickel-catalyzed enantioselective pyridone $\mathrm{C}-\mathrm{H}$ functionalizations enabled by a bulky N-heterocyclic carbene ligand. J. Am. Chem. Soc. 140, 4489-4493.

Diesel, J., Grosheva, D., Kodama, S., and Cramer, N. (2019). A bulky chiral N-heterocyclic carbene nickel catalyst enables enantioselective C-H functionalizations of indoles and pyrroles.
Angew. Chem. Int. Ed. 58, 11044-11048.
Dion, I., and Beauchemin, A.M. (2011).
Asymmetric brønsted acid catalysis enabling hydroaminations of dienes and allenes. Angew. Chem. Int. Ed. 50, 8233-8235.

Dondoni, A. (2015). New feats of alkene and alkyne asymmetric hydroamination catalyzed by copper and rhodium hydrides. Asymmetric Catal. 2, 51-54.

Donets, P.A., and Cramer, N. (2013).
Diaminophosphine oxide ligand enabled asymmetric nickel-catalyzed
hydrocarbamoylations of alkenes. J. Am. Chem. Soc. 135, 11772-11775.

Francotte, E., and Lindner, W. (2006). Chirality in Drug Research (Wiley-VCH Verlag Gmbh).

Grogan, G. (2018). Synthesis of chiral amines using redox biocatalysis. Curr. Opin. Chem. Biol. 43, 15-22.

Han, X.-W., Zhang, T., Zheng, Y.-L., Yao, W.-W., Li, J.-F., Pu, Y.-G., Ye, M., and Zhou, Q.-L. (2018). Bronsted acid enabled nickel-catalyzed hydroalkenylation of aldehydes with styrene and

Its derivatives. Angew. Chem. Int. Ed. 57, 50685071.

Hannedouche, J., and Schulz, E. (2013). Asymmetric hydroamination: a survey of the most recent developments. Chem 19, 4972-4985.

Hannedouche, J., and Schulz, E. (2018). Hydroamination and hydroaminoalkylation of alkenes by group 3-5 elements: recent developments and comparison with late transition metals. Organometallics 37, 43134326.

Hii, K.K. (2006). Development of palladium catalysts for asymmetric hydroamination reactions. Pure Appl. Chem. 78, 341-349.

Huang, L., Arndt, M., Gooßen, K., Heydt, H., and Gooßen, L.J. (2015). Late transition metalcatalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596-2697.

Huo, J., He, G., Chen, W., Hu, X., Deng, Q., and Chen, D. (2019). A minireview of hydroamination catalysis: alkene and alkyne substrate selective, metal complex design. BMC Chem. 13, 89-101.

Jerome, H. (2018). Mechanistic insights into firstrow late transition metal-catalysed (formal) hydroamination of unactivated alkenes. Chimia 72, 635-641.

Kathe, P., and Fleischer, I. (2019). Cooperative use of brønsted acids and metal catalysts in tandem isomerization reactions of olefins.
ChemCatChem 11, 3343-3354.
Li, R., Ju, C.-W., and Zhao, D. (2019a). Rhodium(III) vs. Cobalt(III): a mechanistically distinct threecomponent $\mathrm{C}-\mathrm{H}$ bond addition cascade using a Cp*RhIII catalyst. Chem. Commun. (Camb.) 55, 695-698.

Li, K., Li, M.-L., Zhang, Q., Zhu, S.-F., and Zhou, Q.-L. (2018). Highly enantioselective nickelcatalyzed intramolecular hydroalkenylation of N and O-tethered 1,6-dienes to form sixmembered heterocycles. J. Am. Chem. Soc. 140, 7458-7461.

Li, Y., Pang, H., Wu, D., Li, Z., Wang, W., Wei, H., Fu, Y., and Yin, G. (2019b). Nickel-catalyzed 1,1alkylboration of electronically unbiased terminal alkenes. Angew. Chem. Int. Ed. 58, 8872-8876.

Li, W., and Zhang, X. (2014). Stereoselective Formation of Amines (springer verlag).

Lin, J.-S., Li, T.-T., Jiao, G.-Y., Gu, Q.-S., Cheng, J.-T., Lv, L., and Liu, X.-Y. (2019). Chiral brønsted acid catalyzed dynamic kinetic asymmetric hydroamination of racemic allenes and asymmetric hydroamination of dienes. Angew. Chem. Int. Ed. 58, 7092-7096.

Liu, W., Chen, C., and Zhang, Q. (2011). Highly stereoselective synthesis of tetrasubstituted alkenes via hydroamination of alkynes and C-H acetoxylation. Org. Biomol. Chem. 9, 6484-6486.

Liu, X., and Feng, X. (2018). Dual nickel and brønsted acid catalysis for hydroalkenylation. Angew. Chem. Int. Ed. 57, 16604-16605.

Löber, O., Kawatsura, M., and Hartwig, J.F. (2001). Palladium-catalyzed hydroamination of 1,3dienes: a colorimetric assay and enantioselective additions. J. Am. Chem. Soc. 123, 4366-4367.

Lough, W.J., and Wainer, I.W. (2002). Chirality in Natural and Applied Science (Oxford University Press).

Lutete, L.M., Kadota, I., and Yamamoto, Y. (2004). Palladium-catalyzed intramolecular asymmetric hydroamination of alkynes. J. Am. Chem. Soc. 126, 1622-1623.

Lv, H., Xiao, L.-J., Zhao, D., and Zhou, Q.-L. (2018). Nickel(0)-Catalyzed linear-selective hydroarylation of unactivated alkenes and styrenes with aryl boronic acids. Chem. Sci. 9, 6839-6843.

McDonald, R.I., Liu, G., and Stahl, S.S. (2011). Palladium(II)-Catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981-3019.

Müller, T.E., Hultzsch, K.C., Yus, M., Foubelo, F., and Tada, M. (2008). Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795-3892.

Nugent, T.C. (2010). Chiral Amine Synthesis: Methods, Developments and Applications (Wiley-VCH Verlag Gmbh).

Nugent, T.C., and El-Shazly, M. (2010). Chiral amine synthesis - recent developments and trends for enamide reduction, reductive amination, and imine reduction. Adv. Synth. Catal. 352, 753-819.

Park, S., and Malcolmson, S.J. (2018).
Development and mechanistic investigations of enantioselective Pd-catalyzed intermolecular hydroaminations of internal dienes. ACS Catal. 8, 8468-8476.

Parveen, S., Li, C., Hassan, A., and Breit, B. (2017). Chemo-, regio-, and enantioselective rhodiumcatalyzed allylation of pyridazinones with terminal allenes. Org. Lett. 19, 2326-2329.

Patel, M., Saunthwal, R.K., and Verma, A.K. (2017). Base-mediated hydroamination of alkynes. Acc. Chem. Res. 50, 240-254.

Patil, M.D., Grogan, G., Bommarius, A., and Yun, H. (2018). Oxidoreductase-catalyzed synthesis of chiral amines. ACS Catal. 8, 10985-11015.

Patil, N.T., Lutete, L.M., Wu, H., Pahadi, N.K., Gridnev, I.D., and Yamamoto, Y. (2006). Palladium-catalyzed intramolecular asymmetric hydroamination, hydroalkoxylation, and hydrocarbonation of alkynes. J. Org. Chem. 71, 4270-4279.

Pawlas, J., Nakao, Y., Kawatsura, M., and Hartwig, J.F. (2002). A general nickel-catalyzed hydroamination of 1,3-dienes by alkylamines: catalyst selection, scope, and mechanism. J. Am. Chem. Soc. 124, 3669-3679.

Pirnot, M.T., Wang, Y.M., and Buchwald, S.L. (2016). Copper hydride catalyzed hydroamination of alkenes and alkynes. Angew. Chem. Int. Ed. 55, 48-57.

Reznichenko, A.L., and Hultzsch, K.C. (2016). Hydroamination of alkenes. Organic Reactions 88, 1-554.

Richmond, E., and Moran, J. (2018). Recent advances in nickel catalysis enabled by
stoichiometric metallic reducing agents. Synthesis 50, 499-513.

Robak, M.T., Herbage, M.A., and Ellman, J.A. (2010). Synthesis and applications of tertbutanesulfinamide. Chem. Rev. 110, 3600-3740.

Tasker, S.Z., Standley, E.A., and Jamison, T.F (2014). Recent advances in homogeneous nickel catalysis. Nature 509, 299-309.

During we are preparing this manuscript, a Nicatalyzed enantioselective hydroamination of branched 1,3-dienes has been reported: Tran, G. Shao, W., and Mazet, C. (2019). Ni-catalyzed enantioselective intermolecular hydroamination of branched 1,3-dienes using primary aliphatic amines J. Am. Chem. Soc. https://doi.org/10. 1021/jacs.9b07253.

The absolute configuration of compound 3a was assigned by comparison of the optical rotation with that reported in the literature: Wang, T.-T., Wang, F.-X., Yang, F.-L., and Tian, S.-K. (2014). Palladium-catalyzed aerobic oxidative coupling of enantioenriched primary allylic amines with sulfonyl hydrazides leading to optically active allylic sulfones Chem. Commun. (Camb.) 50, 3802-3805.

Wang, W., Ding, C., Li, Y., Li, Z., Li, Y., Peng, L., and Yin, G. (2019). Migratory arylboration of unactivated alkenes enabled by nickel catalysis. Angew. Chem. Int. Ed. 58, 4612-4616.

Wang, Z. (2016). Nickel-based catalysts. RSC Green Chemistry Series 38, 407-468.

Woźniak, Ł., and Cramer, N. (2019).
Enantioselective C-H bond functionalizations by 3d transition-metal catalysts. Trends Chem. 1, 471-484.

Xiao, L.-J., Fu, X.-N., Zhou, M.-J., Xie, J.-H., Wang, L.-X., Xu, X.-F., and Zhou, Q.-L. (2016). Nickelcatalyzed hydroacylation of styrenes with simple aldehydes: reaction development and mechanistic insights. J. Am. Chem. Soc. 138, 2957-2960.

Xiao, L.-J., Ye, M.-C., and Zhou, Q.-L. (2018). Nickel-catalyzed highly atom-economical C-C coupling reactions with π components. Synlett 30, 361-369.

Xiong, Y., Sun, Y., and Zhang, G. (2018). Recent advances on catalytic asymmetric difunctionalization of 1,3-dienes. Tetrahedron Lett. 59, 347-355.

Xu, C., Feng, Y., Li, F., Han, J., He, Y.-M., and Fan, Q.-H. (2019). A synthetic route to chiral benzofused N -heterocycles via sequential intramolecular hydroamination and asymmetric hydrogenation of anilino-alkynes.
Organometallics. https://doi.org/10.1021/acs. organomet. 9b00183.

Xu, K., Wang, Y.H., Khakyzadeh, V., and Breit, B. (2016). Asymmetric synthesis of allylic amines via hydroamination of allenes with benzophenone imine. Chem. Sci. 7, 3313-3316.

Yang, X.-H., and Dong, V.M. (2017). Rhodiumcatalyzed hydrofunctionalization:
enantioselective coupling of indolines and 1,3dienes. J. Am. Chem. Soc. 139, 1774-1777.

Zhang, W.-B., Yang, X.-T., Ma, J.-B., Su, Z.-M., and Shi, S.-L. (2019). Regio- and enantioselective C-H cyclization of pyridines with alkenes enabled by a nickel/N-heterocyclic carbene catalysis. J. Am. Chem. Soc. 141, 5628-5634.

Zhou, J., and Hartwig, J.F. (2008). Intermolecular, catalytic asymmetric hydroamination of bicyclic alkenes and dienes in high yield and enantioselectivity. J. Am. Chem. Soc. 130, 1222012221.

Zi, G. (2009). Asymmetric hydroamination/ cyclization catalyzed by organolanthanide complexes with chiral biaryl-based ligands. Dalton Trans. 42, 9101-9109.

Zi, G.F. (2011). Asymmetric hydroamination/ cyclization catalyzed by group 4 metal complexes with chiral biaryl-based ligands. J. Organomet. Chem. 696, 68-75.

Supplemental Information

Nickel/Brønsted Acid-Catalyzed

Chemo- and Enantioselective Intermolecular

Hydroamination of Conjugated Dienes

Jiao Long, Peng Wang, Wang Wang, Yuqiang Li, and Guoyin Yin

Supplemental figures for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$-NMR spectra of substrate $1 \mathrm{a}-1 \mathrm{j}$.

1a

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1a, related to Figure 2.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1a, related to Figure 2.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1 b , related to Figure 4.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1 b , related to Figure 4.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1c, related to Figure 4.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1c, related to Figure 4.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1d, related to Figure 4.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1d, related to Figure 4.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1e, related to Figure 4.

```
ONM
N~O%%
ll
```


Figure S10. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1 e , related to Figure 4.

Abstract

Figure S11. ${ }^{19} \mathrm{~F}$ NMR spectra of substrate 1e, related to Figure 4.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1f, related to Figure 4.

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1 f , related to Figure 4.

Figure S14. ${ }^{19}$ F NMR spectra of substrate 1f, related to Figure 4.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1 g , related to Figure 4.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1 g , related to Figure 4.

1h

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectra of substrate $\mathbf{1 h}$, related to Figure 4.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1 h , related to Figure 4.

$1 i$

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectra of substrate 1 i , related to Figure 4.

$1 i$

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1i, related to Figure 4.

1j

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectra of substrate $\mathbf{1 j}$, related to Figure 4.

1j

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectra of substrate 1j, related to Figure 4.

Supplemental figures for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$-NMR spectra of products 3a-3bd.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectra of 3a, related to Figure 3.

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectra of 3a, related to Figure 3.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b}$, related to Figure 3.

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b}$, related to Figure 3.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 c}$, related to Figure 3.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c}$, related to Figure 3.

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectra of 3d, related to Figure 3.

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectra of 3d, related to Figure 3.

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 e}$, related to Figure 3.

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 e}$, related to Figure 3.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 f}$, related to Figure 3.

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 f}$, related to Figure 3.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 g}$, related to Figure 3.

$$
\begin{aligned}
& \text { O-M }
\end{aligned}
$$

$$
\begin{aligned}
& \text {-ivirin } \\
& \text { No } \\
& \text { N }
\end{aligned}
$$

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 g}$, related to Figure 3.

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 h}$, related to Figure 3.

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 h}$, related to Figure 3.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 i}$, related to Figure 3.

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 i}$, related to Figure 3.

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 j}$, related to Figure 3.

Figure S42. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 j}$, related to Figure 3.

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 k}$, related to Figure 3.

Figure S44. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 k}$, related to Figure 3.

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectra of 3 II , related to Figure 3.

Figure S46. ${ }^{13} \mathrm{C}$ NMR spectra of 3 I , related to Figure 3.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 m}$, related to Figure 3.

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 m}$, related to Figure 3.

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 n}$, related to Figure 3.

Figure S50. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 n}$, related to Figure 3.

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectra of 30 , related to Figure 3.

Figure S52. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 o}$, related to Figure 3.

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 p}$, related to Figure 3.

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 p}$, related to Figure 3.

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 q}$, related to Figure 3.

Figure S56. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 q}$, related to Figure 3.

Figure S57. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 r}$, related to Figure 3.

Figure S58. ${ }^{13} \mathrm{C}$ NMR spectra of 3 r , related to Figure 3.

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectra of 3 s , related to Figure 3.

Figure S60. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 s}$, related to Figure 3.

Figure S61. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 t}$, related to Figure 3.

Figure S62. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 t}$, related to Figure 3.

Figure S63. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 u}$, related to Figure 3.

Figure S64. ${ }^{13} \mathrm{C}$ NMR spectra of $3 \mathbf{u}$, related to Figure 3.

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 v}$, related to Figure 3.

Figure S66. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 v}$, related to Figure 3.

Figure S67. ${ }^{1} \mathrm{H}$ NMR spectra of 3 w , related to Figure 3.

Figure S68. ${ }^{13} \mathrm{C}$ NMR spectra of 3 w , related to Figure 3.

Figure S69. ${ }^{1} \mathrm{H}$ NMR spectra of 3 x , related to Figure 3.

Figure S70. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 x}$, related to Figure 3.

Figure S71. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 y}$, related to Figure 3.

Figure S72. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 y}$, related to Figure 3.

Figure S73. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 z}$, related to Figure 3.

Figure S74. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 z}$, related to Figure 3.

Figure S75. ${ }^{1} \mathrm{H}$ NMR spectra of 3aa, related to Figure 3.

Figure S76. ${ }^{1} \mathrm{H}$ NMR spectra of 3aa, related to Figure 3.

Figure S77. ${ }^{1} \mathrm{H}$ NMR spectra of 3ab, related to Figure 4.

Figure S78. ${ }^{13} \mathrm{C}$ NMR spectra of 3ab, related to Figure 4.

Figure S79. ${ }^{1} \mathrm{H}$ NMR spectra of 3ac, related to Figure 4.

Figure S80. ${ }^{13} \mathrm{C}$ NMR spectra of 3ac, related to Figure 4.

Figure S81. ${ }^{1} \mathrm{H}$ NMR spectra of 3ad, related to Figure 4.

Figure S82. ${ }^{13} \mathrm{C}$ NMR spectra of 3ad, related to Figure 4.

Figure S83. ${ }^{1} \mathrm{H}$ NMR spectra of 3ae, related to Figure 4.

Figure S84. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a e}$, related to Figure 4.

Abstract

 $3 a e$

Figure S85. ${ }^{19} \mathrm{~F}$ NMR spectra of 3ae, related to Figure 4.

Figure S86. ${ }^{1} \mathrm{H}$ NMR spectra of 3af, related to Figure 4.

Figure S87. ${ }^{13} \mathrm{C}$ NMR spectra of 3af, related to Figure 4.

Figure S88. ${ }^{19} \mathrm{~F}$ NMR spectra of 3af, related to Figure 4.

Figure S89. ${ }^{1} \mathrm{H}$ NMR spectra of 3ag, related to Figure 4.

Figure S90. ${ }^{13} \mathrm{C}$ NMR spectra of 3ag, related to Figure 4.

3ah

Figure S91. ${ }^{1} \mathrm{H}$ NMR spectra of 3ah, related to Figure 4.

Figure S92. ${ }^{13} \mathrm{C}$ NMR spectra of 3ah, related to Figure 4.

3ai

Figure S93. ${ }^{1} \mathrm{H}$ NMR spectra of 3ai, related to Figure 4.

Figure S94. ${ }^{13} \mathrm{C}$ NMR spectra of 3ai, related to Figure 4.

Figure S95. ${ }^{1} \mathrm{H}$ NMR spectra of 3aj, related to Figure 4.

Figure S96. ${ }^{13} \mathrm{C}$ NMR spectra of 3aj, related to Figure 4.

3ak

Figure S97. ${ }^{1} \mathrm{H}$ NMR spectra of 3ak, related to Figure 4.

Figure S98. ${ }^{13} \mathrm{C}$ NMR spectra of 3ak, related to Figure 4.

3al

Figure S99. ${ }^{1} \mathrm{H}$ NMR spectra of 3al, related to Figure 4.

Figure S100. ${ }^{13} \mathrm{C}$ NMR spectra of 3al, related to Figure 4.

Figure S101. ${ }^{1} \mathrm{H}$ NMR spectra of 3am, related to Figure 4.

Figure S102. ${ }^{13} \mathrm{C}$ NMR spectra of 3am, related to Figure 4.

Figure S103. ${ }^{1} \mathrm{H}$ NMR spectra of 3an, related to Figure 4.

Figure S104. ${ }^{13} \mathrm{C}$ NMR spectra of 3an, related to Figure 4.

Figure S105. ${ }^{19} \mathrm{~F}$ NMR spectra of 3an, related to Figure 4.

Figure S106. ${ }^{1} \mathrm{H}$ NMR spectra of 3ao, related to Figure 4.

Figure S107. ${ }^{13} \mathrm{C}$ NMR spectra of 3ao, related to Figure 4.

Figure S108. ${ }^{19}$ F NMR spectra of 3ao, related to Figure 4.

Figure S109. ${ }^{1} \mathrm{H}$ NMR spectra of 3ap, related to Figure 4.

Figure S110. ${ }^{13} \mathrm{C}$ NMR spectra of 3ap, related to Figure 4.

Figure S111. ${ }^{1} \mathrm{H}$ NMR spectra of 3aq, related to Figure 4.

Figure S112. ${ }^{13} \mathrm{C}$ NMR spectra of 3aq, related to Figure 4.

Figure S113. ${ }^{1} \mathrm{H}$ NMR spectra of 3ar, related to Figure 4.

Figure S114. ${ }^{13} \mathrm{C}$ NMR spectra of 3ar, related to Figure 4.

Figure S115. ${ }^{1} \mathrm{H}$ NMR spectra of 3as, related to Figure 4.

Figure S116. ${ }^{13} \mathrm{C}$ NMR spectra of 3as, related to Figure 4.

Figure S117. ${ }^{1} \mathrm{H}$ NMR spectra of 3at, related to Figure 4.

Figure S118. ${ }^{13} \mathrm{C}$ NMR spectra of 3at, related to Figure 4.

3au

Figure S119. ${ }^{1} \mathrm{H}$ NMR spectra of 3au, related to Figure 4.

Figure S120. ${ }^{13} \mathrm{C}$ NMR spectra of 3au, related to Figure 4.

Figure S121. ¹H NMR spectra of 3av, related to Figure 5.

Figure S122. ${ }^{13} \mathrm{C}$ NMR spectra of 3av, related to Figure 5.

Figure S123. ${ }^{1} \mathrm{H}$ NMR spectra of 3aw, related to Figure 5.

Figure S124. ${ }^{13} \mathrm{C}$ NMR spectra of 3aw, related to Figure 5.

Figure S125. ${ }^{1} \mathrm{H}$ NMR spectra of 3ax, related to Figure 5.

Figure S126. ${ }^{13} \mathrm{C}$ NMR spectra of 3ax, related to Figure 5.

Figure S127. ${ }^{1} \mathrm{H}$ NMR spectra of 3ay, related to Figure 5.

Figure S128. ${ }^{13} \mathrm{C}$ NMR spectra of 3ay, related to Figure 5.

					$\stackrel{\rightharpoonup}{\mathrm{H}} \underset{\mathrm{H}}{\mathrm{C}}$		$\begin{aligned} & \text { H } \\ & \stackrel{\circ}{8} \\ & \hline \end{aligned}$	$\stackrel{+}{8}$					$\underset{\sim}{\text { T }}$	$\frac{\stackrel{\pi}{\top}}{\square}$		$\begin{aligned} & \stackrel{4}{0} \\ & \stackrel{y}{0} \end{aligned}$						
J.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ (\mathrm{ppm} \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1

Figure S129. ${ }^{1} \mathrm{H}$ NMR spectra of 3az, related to Figure 5.

Figure S130. ${ }^{13} \mathrm{C}$ NMR spectra of 3az, related to Figure 5.

Figure S131. ${ }^{1} \mathrm{H}$ NMR spectra of 3ba, related to Figure 5.

Figure S132. ${ }^{13} \mathrm{C}$ NMR spectra of 3ba, related to Figure 5.

3bb

Figure S133. ${ }^{1} \mathrm{H}$ NMR spectra of 3ba.

Figure S134. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b a}$.

Figure S135. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b c}$.

Figure $\mathbf{S 1 3 6} .{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b c}$.

Figure S137. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 b d}$.

Figure S138. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b d}$.

Supplemental figures for ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}-\mathrm{NMR}$ spectra of deuterium labeling studies

Figure S139. ${ }^{1} \mathrm{H}$ NMR spectra of $d-3 \mathbf{t}$, related to Scheme S7.

Figure S140. ${ }^{2} \mathrm{H}$ NMR spectra of $d-3 \mathbf{t}$, related to Scheme $\mathbf{S 7}$.

Supplemental Figures for HPLC spectra

Data File D: \DATA GUAN YUQING LJJ-0306\LJ-0306 2019-03-06 14-33-09\002-0301.D
Sample Name: LJ-100-7-RAC

```
Acq. Operator : Seq. Line : 3
Acq. Instrument : Instrument 2 Location : Vial 2
Injection Date : 3/6/2019 3:06:17 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-0306\LJ-0306 2019-03-06 14-33-09\DAD-0D (1-2)-90-10-0
    .5ML-5UL-ALL-20MIN.M
Last changed : 1/20/2019 9:58:06 PM
Analysis Method : D:\METHOD\GUAN YUQING\LONGJIAO\DAD-OD(1-2)-95-5-1ML-5UL-ALL-20MIN.M
Last changed : 3/6/2019 3:50:27 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: DADl B, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [屰hU]	Area \%
1	11.192 BB	0.3028	1.02861 e 4	486.24136	50.2351
2	14.395 BB	0.3613	1.01898 e 4	408.17218	49.7649
Total	3 :		2.04759 e 4	894.41354	

Figure S141. HPLC spectra of rac-3a, related to Figure 3.

Data File D: \DATA GUAN YUQING LJT-0306\LJ-0306 2019-03-06 14-33-09\001-0201.D
Sample Name: LJ-100-7


```
Acq. Operator : Seq. Line : 2
Acq. Instrument : Instrument 2 Location : Vial l
Injection Date : 3/6/2019 2:45:19 PM Inj : 1
Acq. Method : D:\DATA\GUAN YUQING\LJ-0306\LJ-0306 2019-03-06 14-33-09\DAD-0D (1-2)-90-10-0
                .5ML-5UL-ALL-20MIN.M
Last changed : 1/20/2019 9:58:06 PM
AnalYsis Method : D: \METHOD\GUAN YUQING\LONGJIAO\DAD-0D(1-2)-95-5-1ML-5UL-ALL-2OMIN.M
Last changed : 3/6/2019 3:56:51 PM
```

 (modified after loading)
 Additional Info : Peak (s) manually integrated

Area Percent Report
$\begin{array}{lll}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000 \\ \text { Dilution } & : & 1.0000\end{array}$
Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DADl B, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.388 BB	0.4032	650.96808	23.07139	1.0541
2	14.400 BB	0.3453	6.11045 e 4	2707.21484	98.9459
Total	s :		6.17554 e 4	2730.28624	

Figure S142. HPLC spectra of 3a, related to Figure 3.

Data File D: \DATA \backslash LYH \backslash LYH-4-656-RAC \backslash LYH-4-656-RAC-FURAN 2019-04-12 14-40-53\027-3101.D
Sample Name: LJ-130-2

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak R } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.156		0.3458	1.21645 e 4	524.16223	44.6965
2	9.738		0.4121	1.50512 e 4	519.38824	55.3035
Totals	s :			2.72157 e 4	1043.55048	

Figure S143. HPLC spectra of rac-3b, related to Figure 3.

```
Data File D:\DATA\LYH\LYH-4-656-RAC\LYH-4-656-RAC-FURAN 2019-04-12 14-40-53\024-2801.D
```

Sample Name: LJ-108-7

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.060 VB	0.3911	1.24684 e 4	460.1209	0.0000
Total	s :		1.24684 e 4	460.1209	

Figure S144. HPLC spectra of 3b, related to Figure 3.

Data File D: \DATA \backslash LYH \backslash LYH-4-656-RAC \backslash LYH-4-656-RAC-FURAN 2019-04-12 14-40-53\028-3201.D
Sample Name: LJ-130-3

$==2$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTD

Signal 1: VWD A, Wavelength=254 nm

Figure S145. HPLC spectra of rac-3c, related to Figure 3.

```
Data File D:\DATA\LYH\LYH-4-656-RAC\LYH-4-656-RAC-FURAN 2019-04-12 14-40-53\025-2901.D
```

Sample Name: LJ-108-9


```
Acq. Operator : Seq. Line : }2
Acq. Instrument : Instrument l Location : Vial 25
Injection Date : 4/13/2019 7:20:36 AM
                                    Inj : l
    Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\LYH\LYH-4-656-RAC\LYH-4-656-RAC-FURAN 2019-04-12 14-40-53\VTDD-AD (1-
                    2)-99-1-0.6ML-5UL-254NM-40MIN.M
Last changed : 3/5/2019 3:34:42 PM
AnalYsis Method : D: \METHOD\LG\DAD-OD (1-2)-95-5-1ML-2UL-ALL-50MIN.M
Last changed : 4/15/2019 11:31:56 AM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area *
1	13.920 VV	0.4096	3.02696 e 4	1097.99194	96.0947
2	14.986 VB	0.4442	1230.14990	38.24589	3.9053

Totals : 3.14997 e 4 1136.23783

Figure S146. HPLC spectra of 3c, related to Figure 3.

Data File D: \DATA GUAN YUQING LJ-108\LJ-108 2019-03-11 22-35-19\002-0301.D
Sample Name: LJ-108-5-RAC

Acq. Operator	Seq. Line : 3
Acq. Instrument	Instrument 2 Location : Vial 2
Injection Date	: 3/11/2019 11:48:25 PM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA \backslash GUAN YUOING \backslash LJ-108\LJ-108 2019-03-11 22-35-19\DAD-0J (1-6)-95-5-0 5ML-5UL-ALL-60MIN.M
Last changed	: 3/7/2019 10:25:35 PM
Analysis Method	: D: \METHOD \YANG JIAXIN VWD-IA-(1-2)-85-15-1.OML-5UL-210NM-60MIN.M
Last changed	: 5/31/2019 8:36:13 PM

Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\&	Dilution
Factor	with	ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mind	Area *
1	10.494		0.2743	3832.56519	218.90829	43.3094
2	10.915	VB	0.3402	5016.70459	218.20282	56.6906
Totals :				8849.26978	437.11111	

Figure S147. HPLC spectra of rac-3d, related to Figure 3.

Data File D: \DATA GUAN YUQING LJ-108\LJ-108 2019-03-12 10-09-36\001-0201.D
Sample Name: LJ-108-5

Additional Info : Peak (s) manually integrated
(

Area Percent Report

$===$
Sorted BY
Multiplier
Dilution
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

Peak $\#$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{man}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.458 VB	0.3057	1.38817 e 4	687.0341	100.0000
Total	3 :		1.38817 e 4	687.0341	

Figure S148. HPLC spectra of 3d, related to Figure 3.

```
Data File D:\DATA\LGY\WSC-20190926\WSC-20190926 2019-09-26 16-36-45\081-0701.D
```

Sample Name: LJ-108-3-RAC

Additional Info : Peak (s) manually integrated


```
==========================================================================-
```

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTD

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	Area [mind*s]	Height [mAU]	Area \%
1	10.998 VV	0.3455	5517.50684	241.51408	49.7795
2	12.003 VB	0.3631	5566.38281	232.71924	50.2205
Total	s :		1.10839 e 4	474.23332	

Figure S149. HPLC spectra of rac-3e, related to Figure 3.

```
Data File D:\DATA\LGY\WSC-20190926\WSC-20190926 2019-09-26 16-36-45\082-0801.D
```

Sample Name: LJ-108-3

\qquad

Area Percent Report
\qquad

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nm

Figure S150. HPLC spectra of 3e, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LJ-137-3\LJ-137-3 2019-04-16 16-30-33\073-1501.D
```

Sample Name: LJ-137-5-RAC

Acq. Operator	: Seq. Line : 15
Acq. Instrument	: Instrument 2 Location : Vial 73
Injection Date	: 4/16/2019 8:30:00 PM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA \backslash GUAN YJOING \backslash LJ-137-3\LJ-137-3 2019-04-16 $16-30-33 \backslash D A D-0 D(1-2)-99-1-$ $\quad 0.5 M L-5 U L-A L L-60 M I N . M$
Last changed	: 4/16/2019 8:04:43 PM
Analysis Method	: D: \DATA \backslash GUAN YUQING \backslash LJ-137-3\LJ-137-3 2019-04-16 16-30-33\DAD-0D (1-2)-99-1-0.5ML-5UL-ALL-60MIN.M (Sequence Method)
Last changed	: 4/17/2019 8:22:42 PM

(loding)

Signal 1: DADl B, Sig=254, 4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madU]	Area \%
1	16.533		0.7913	8224.38672	151.04292	49.9715
2	20.312		0.9384	8233.77539	120.61980	50.0285
Total	3 :			1.64582 e 4	271.66273	

Figure S151. HPLC spectra of rac-3f, related to Figure 3.

Data File D: \DATA GUAN YUQING LJJ-137-3\LJ-137-3 2019-04-16 16-30-33\074-1601.D
Sample Name: LJ-137-5

Signal 1: DAD1 B, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mand	Area \%
1	17.012 BB	0.6427	203.91769	3.79637	0.6686
2	19.985 BB	0.9646	3.02947 e 4	436.01385	99.3314
Total	3 :		3.04986 e 4	439.81022	

Figure S152. HPLC spectra of 3f, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LK-A\LKB-190415 2019-04-15 08-56-25\082-1401.D
```

Sample Name: LJ-137-2-RAC

Acq. Operator	:	Seq. Line : 14
Acq. Instrument	: Instrument 1	Location : Vial 82
Injection Date	: 4/15/2019 4:32:13 PM	Inj : 1

5ML-5UL-254NM-20MIN. M
Last changed : 3/6/2019 6:07:05 PM
Analysis Method : D: \DATA GUAN YUQING LJ-137-3\LJ-137-3 2019-04-16 16-30-33\DAD-0J (1-6)-99-1-
1ML-5UL-ALL-40MIN. M
Last changed : 4/16/2019 5:10:13 PM
(modified after loading)
Andional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal l: VWD A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madU]	Area \%
1	11.003		0.2840	1.88847 e 4	1010.75867	47.4026
2	11.571		0.3170	2.09543 e 4	985.94733	52.5974
Total	3 :			3.98390 e 4	1996.70599	

Figure S153. HPLC spectra of rac-3g, related to Figure 3.

Data File D: \DATA \backslash GUAN YUQING LK-A \backslash LKB-190415 2019-04-15 08-56-25\081-1301.D
Sample Name: LJ-137-2

Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madU]	Area \%
1	11.049		0.2695	572.29053	32.96646	1.9854
2	11.593		0.3129	2.82527 e 4	1362.80029	98.0146
Total	3 :			2.88250 e 4	1395.76675	

Figure S154. HPLC spectra of 3g, related to Figure 3.

Data File D: \DATA GUAN YUQING LJ-143-3\LJ-143-3 2019-04-30 21-36-43\092-0201.D
Sample Name: LJ-143-3


```
Acq. Operator : Seq. Line : 2
Acq. Instrument : Instrument 2 Location : Vial 92
Injection Date : 4/30/2019 9:48:50 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-143-3\LJ-143-3 2019-04-30 21-36-43\DAD-0J (1-6)-99-1-
                                    0.5ML-5UL-ALL-60MIN. M
Last changed : 4/30/2019 10:09:25 PM
                                    (modified after loading)
AnalYsis Method : D: \DATA\GUAN YUQING\LJ-143-3\LJ-143-3 2019-04-30 21-36-43\DAD-0J(1-6)-99-1-
                                    0.5ML-5UL-ALL-60MIN.M (Sequence Method)
Last changed : 5/15/2019 6:54:22 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated
Additional Info : Peak (3) manually integrated

Area Percent Report
$===2$ Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.971 BV	0.3726	7039.42920	286.54825	45.4016
2	12.696 VB	0.4370	8465.38184	284.63971	54.5984

Figure S155. HPLC spectra of rac-3h, related to Figure 3.

Data File D: \DATA GUAN YUQING LJJ-141\LJ-141-3 2019-05-05 15-21-14\092-0201.D
Sample Name: LJ-141-3


```
Acq. Operator : Seq. Line : 2
Acq. Instrument : Instrument 2 Location : Vial 92
Injection Date : 5/5/2019 3:33:20 PM
Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-141\LJ-141-3 2019-05-05 15-21-14\DAD-0J(1-6)-99-1-0.
5ML-5UL-ALL-40MIN.M
Last changed : 5/5/2019 3:47:20 PM
(modified after loading)
AnalYsis Method : D: \DATA\GUAN YJQING\LJ-14l\LJ-141-3 2019-05-05 15-21-14\DAD-0J(1-6) -99-1-0.
5ML-5UL-ALL-40MIN.M (Sequence Me thod)
Last changed : 5/15/2019 6:58:10 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated
(

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254, 4 Ref=off

Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [maU]	Area \%
1	11.823 BB	0.4130	8336.08691	301.0865	0.0000
Total	:		8336.08691	301.0865	

Figure S156. HPLC spectra of 3h, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LK-A\LKB-190415 2019-04-15 08-56-25\084-2301.D
```

Sample Name: LJ-137-4-RAC

Acq. Operator	Seq. Line : 23
Acq. Instrument : Instrument 1	Location : Vial 84
Injection Date : 4/15/2019 8:20:08 PM	Inj
	Inj Volume : $5.000 \mu \mathrm{l}$

Acq. Method : D: \DATA GUAN YUOING $\operatorname{LK}-\mathrm{A} \backslash L K B-190415$ 2019-04-15 08-56-25 VID-AD (1-2)-99-1-0.
6ML-5UL-254NM-40MIN. M
Last changed : 3/5/2019 3:34:42 PM
Analysis Method : D: \DATA GUAN YUQING \backslash LJ-137-3\LJ-137-3 2019-04-16 16-30-33\DAD-0J (1-6)-99-1-
1ML-5UL-ALL-40MIN.M
Last changed : 4/16/2019 5:15:44 PM
(modified after loading)
Additional Info : Peak (s) manually integrated
(D:XATAMGAA YUOINGLK-ALLKB-190415 2019-041508-56-250842301.D)
$===1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=254 nim

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [midu]	Area
1	15.466	BV	0.5692	4599.29883	121.60919	24.3744
2	16.890		0.7248	4798.18164	98.42130	25.4284
3	19.776	BV	0.7116	4753.76123	100.00168	25.1929
4	21.663	VB	0.8876	4718.16992	77.89811	25.0043

Figure S157. HPLC spectra of rac-3i, related to Figure 3.

Data File D: \DATA \backslash GUAN YUQING LK-A \backslash LKB-190415 2019-04-15 08-56-25\083-1801.D
Sample Name: LJ-137-4

Acq. Operator	:	Seq. Line : 18
Acq. Instrument	: Instrument 1	Location : Vial 83
Injection Date	: 4/15/2019 6:25:42 PM	Inj : 1

 6ML-5UL-254NM-40MIN. M
Last changed : 3/5/2019 3:34:42 PM
Analysis Method : D: \DATA GUAN YUQING LJ-137-3\LJ-137-3 2019-04-16 16-30-33\DAD-0J (1-6)-99-1-1ML-5UL-ALL-40MIN.M
Last changed : 4/16/2019 5:17:35 PM (modified after loading)
Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nim

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\text { mants] }} \end{gathered}$	Height [mAU]	Area *
1	15.296 BB	0.6059	7013.24561	171.57776	49.3191
2	19.841 BV	0.5918	75.46820	1.71367	0.5307
3	21.224 VB	0.8378	7131.41895	125.51943	50.1502
Totals :			1.42201e4	298.81086	

Instrument $24 / 16 / 2019$ 5:19:31 PM
Figure S158. HPLC spectra of 3i, related to Figure 3.

Data File D: \DATA\GUAN YUQING LJJ-197\LJ-197 2019-06-21 11-59-17\082-0301.D
Sample Name: LJ-197-1

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	TYpe	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{2}\right]} \end{gathered}$	Height [mAU]	Area *
1	43.785	MF	2.7221	7444.35938	45.58009	48.0146
2	50.327		2.7315	8060.00781	49.17983	51.9854
Total	s :			1. 55044 e 4	94.75991	

Figure S159. HPLC spectra of rac-Bz-3j, related to Figure 3.

Data File D: \DATA \backslash GUAN YUQING $\operatorname{LK}-A \backslash L K-190625-5$ 2019-06-25 20-53-56\081-0601.D
Sample Name: LJ-201-2

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with

Signal 1: VWDl A, Wavelength=254 nm

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~A} \mathrm{~S}]} \end{gathered}$	Height [maU]	Area \%
1	43.070	MF	2.6495	2.66761 e 4	167.80351	98.2541
2	50.833		2.8864	474.00171	2.73700	1.7459
Total	s :			2.71501 e 4	170.54051	

Figure S160. HPLC spectra of Bz-3j, related to Figure 3.

```
Data File D:\DATA\LYH\LYH-5-899\LYH-5-899-RAC-1 2019-09-28 08-42-40\084-0901.D
```

Sample Name: LJ-2-48-RAC

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area \%
1	11.348 BV	0.2453	7554.13770	468.01944	49.9302
2	12.195 VB	0.2624	7575.27100	441.02200	50.0698
Total	s :		1.51294e4	909.04144	

Figure S161. HPLC spectra of rac-3k, related to Figure 3.

```
Data File D:\DATA\LYH\LYH-5-899\LYH-5-899-RAC-1 2019-09-28 08-42-40\083-0801.D
```

Sample Name: LJ-2-48

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area \%
1	11.334 BV	0.2461	1.52293e4	944.59326	97.5071
2	12.192 VB	0.2853	389.35504	20.52347	2.4929
Total	3 :		1.56187e4	965.11673	

Figure S162. HPLC spectra of 3k, related to Figure 3.

Data File D: \DATA\GUAN YUQING LJJ-165-VWD\LJ-165-AD 2019-05-17 09-17-21\003-0501.D
Sample Name: LJ-165-RAC

Figure S163. HPLC spectra of rac-3I, related to Figure 3.

Data File D: \DATA\GUAN YUQING LJJ-165-VWD\LJ-165-AD 2019-05-17 09-17-21\002-0401.D
Sample Name: LJ-165-2

Figure S164. HPLC spectra of 3I, related to Figure 3.

Data File D: \DATA GUAN YUQING $\mathrm{LJ}-106 \backslash L J-106$ 2019-03-06 23-11-49\002-0301.D
Sample Name: LJ-103-1-RAC


```
=========================================================================-
```

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\&	Dilution
Factor	with	IsTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \vdots \end{gathered}$	RetTime $[$ min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [minU]	Area \%
1	11.625	VV	0.3233	9037.16797	416.16431	49.3755
2	13.360	VB	0.3097	9265.78516	462.59473	50.6245
Totals:				1.83030 e 4	878.75903	

Figure S165. HPLC spectra of rac-3n, related to Figure 3.

Data File D: \DATA GUAN YUQING $\backslash \mathrm{LJ}-106 \backslash \mathrm{LJ}-106$ 2019-03-06 23-11-49\001-0201.D
Sample Name: LJ-103-1

Acq. Operator	Seq. Line :
Acq. Instrument : Instrument 2	Location : Vial 1
Injection Date : 3/6/2019 11:28:57 PM	Inj

Acq. Method : D: \DATA GUAN YUQING LJJ-106\LJ-106 2019-03-06 23-11-49\DAD-0D (1-2)-95-5-1ML-5UL-ALL-20MIN.M
Last changed : 3/5/2019 8:56:43 PM
Analysis Method : D: \METHOD ${ }^{\text {GUUAN YUQING }}$ LONGJIAO\DAD-IA (1-6)-95-5-0.5ML-5UL-ALL-40MIN. M
Last changed : 3/19/2019 9:58:51 PM (modified after loading)
Additional Info : Peak (s) manually integrated

==1
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area
1	11.559 BV	0.3120	3.36730 e 4	1609.93042	92.6141
2	13.391 VB	0.3181	2685.40967	129.39296	7.3859

Totals : $\quad 3.63584 \mathrm{e} 41739.32338$

Figure S166. HPLC spectra of 3n, related to Figure 3.

Data File D: \DATA GUAN YUQING $\backslash \mathrm{LJ}-124-7 \backslash \mathrm{LJ}-124-7-R A C \quad 2019-04-0811-06-38 \backslash 013-0201 . \mathrm{D}$
Sample Name: LJ-124-7-RAC
$===$
Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 4/8/2019 $11: 20: 11 \mathrm{AM}$

Acq. Method : D: \DATA GUAN YUQING $\backslash \mathrm{LJ}-124-7 \backslash \mathrm{LJ}-124-7-\mathrm{RAC}$ 2019-04-08 11-06-38\VID-AD (1-2)-95-5-0.5ML-5UL-254NM-60MIN.M
Last changed : 3/11/2019 10:31:45 PM
Analysis Method : D: \METHOD $\backslash \mathrm{LG} \backslash \mathrm{DAD}-0 \mathrm{~J}(1-6)-80-20-1 \mathrm{ML}-5 \mathrm{UL}-\mathrm{ALL}-60 \mathrm{MIN} . \mathrm{M}$
Last changed : 4/14/2019 9:50:19 PM
(modified after loading)
Additional Info : Peak (s) manually integrated

===2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\&	Dilution

Signal 1: VWD1 A, Wavelength=254 nim

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mind	Area *
1	14.740	BV	0.2928	6485.12012	339.57712	50.0335
2	16.718	BB	0.3248	6476.43945	304.93433	49.9665
Totals :				1.29616e4	644.51144	

Figure S167. HPLC spectra of rac-3o, related to Figure 3.

Data File D: \DATA GUAN YUQING LK-A\LKB-190410 2019-04-10 09-04-18\083-0701.D
Sample Name: LJ-124-7


```
Acq. Operator : Seq. Line : 7
Acq. Instrument : Instrument 1 Location : Vial 83
Injection Date : 4/10/2019 11:42:55 AM
                                    Inj : 1
Inj Volume : 5.000 \mul
ACq. Method : D:\DATA\GUAN YUQING\LK-A\LKB-190410 2019-04-10 09-04-18\ VWD-AD (1-2)-95-5-0.
                                    5ML-5UL-254NM-30MIN. M
Last changed : 4/9/2019 4:22:03 PM
AnalYsis Method : D: \METHOD\LG\DAD-0J(1-6)-80-20-1ML-5UL-ALL-6OMIN.M
Last changed : 4/14/2019 9:48:13 PM
```

 (modified after loading)
 Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area \%
1	14.580 BB	0.2905	8222.70313	435.13837	96.3629
2	16.495 BB	0.3246	310.35309	14.56537	3.6371
Total	s :		8533.05621	449.70374	

Figure S168. HPLC spectra of 3o, related to Figure 3.
Data File D: \DATA \backslash LGY \backslash LGY-3-132 $\$ LGY-3-132 2019-04-09 15-22-08\093-0701.D Sample Name: LJ-129-10-RAC

Figure S169. HPLC spectra of rac-3p, related to Figure 3.
Data File D: \DATA LGYY LGY-3-132\LGY-3-132 2019-04-09 15-22-08\092-0601.D
Sample Name: LJ-129-10

\qquad

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl A, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madu]	Area \%
1	13.504 BB	0.3190	496.94272	23.86341	4.0801
2	17.234 BB	0.4827	1.16826 e 4	365.71744	95.9199
Total	3 :		1.21796 e 4	389.58085	

Figure S170. HPLC spectra of 3p, related to Figure 3.

Data File D: \DATA GUAN YUQING LJJ-110\LJ-110-2 2019-03-14 22-06-29\021-0601.D
Sample Name: LJ-109-5


```
Acq. Operator : Seq. Line : 6
Acq. Instrument : Instrument 2 Location : Vial 21
Injection Date : 3/14/2019 11:32:48 PM
    Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-110\LJ-110-2 2019-03-14 22-06-29\DAD-0D (1-2)-90-10-0
                .5ML-5UL-ALL-30MIN.M
Last changed : 10/30/2018 1l:03:07 PM
Analysis Method : D: \METHOD\GUAN YUQING\LONGJIAO\DAD-IA(1-6) -95-5-0.5ML-5UL-ALL-4OMIN.M
Last changed : 3/19/2019 10:31:02 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl B, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[m i n]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.590		0.2446	9138.08984	542.15143	49.1392
2	9.706		0.2699	9458.22656	501.71347	50.8608
Total	s :			1.85963 e 4	1043.86490	

Figure S171. HPLC spectra of rac-3q, related to Figure 3.

Data File D: \DATA GUAN YUQING LJJ-110\LJ-110-2 2019-03-14 22-06-29\023-0801.D
Sample Name: LJ-110-5


```
Acq. Operator : Seq. Line : 8
Acq. Instrument : Instrument 2 Location : Vial 23
Injection Date : 3/15/2019 12:34:45 AM
                                    Inj : l
                                    Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-110\LJ-110-2 2019-03-14 22-06-29\DAD-0D (1-2)-90-10-0
                . 5ML-5UL-ALL-30MIN.M
Last changed : 10/30/2018 ll:03:07 PM
AnalYsis Method : D:\METHOD\GUAN YUQING\LONGJIAO\DAD-IA(1-6)-95-5-0.5ML-5UL-ALL-4OMIN.M
Last changed : 3/19/2019 10:29:50 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

$===1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DADl B, Sig=254, 4 Ref=off

Peak R \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~A} \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area \%
1	8.718		0.3143	527.30475	24.37941	2.1601
2	9.653		0.2483	2.38843 e 4	1404.88000	97.8399
Totals				2.44116 e 4	1429.25941	

Figure S172. HPLC spectra of 3q, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LJ-105-11-0D\LJ-106-6 2019-03-08 19-55-22\001-0201.D
```

Sample Name: LJ-106-6-RAC

Figure S173. HPLC spectra of rac-3r, related to Figure 3.

Data File D: \DATA GUAN YUQING LJ-105-11-0D\LJ-106-6 2019-03-08 19-55-22\002-0301.D
Sample Name: LJ-106-6

Figure S174. HPLC spectra of 3r, related to Figure 3.

Data File D: \DATA\GUAN YUQING $\mathrm{LJ}-155 \backslash \mathrm{LJ}-155$ 2019-05-03 17-00-25\065-0801.D
Sample Name: LJ-108-4-RAC

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl B, Sig=254, 4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area [血AU*s]	Height [mAU]	Area \%
1	7.395		0.2795	1492.07043	88.97803	52.1377
2	8.137	MM	0.2450	1369.72009	93.17516	47.8623
Totals	s :			2861.79053	182.15319	

Figure S175. HPLC spectra of rac-3s, related to Figure 3.

Data File D: \DATA\GUAN YUQING $\mathrm{LJ}-155 \backslash \mathrm{LJ}-155$ 2019-05-03 17-00-25\066-0901.D
Sample Name: LJ-108-4


```
Acq. Operator :
Seq. Line : 9
Acq. Instrument : Instrument 2 Location : Vial 66
Injection Date : 5/3/2019 10:13:18 PM
                                    Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-155\LJ-155 2019-05-03 17-00-25\DAD-0D (1-2)-95-5-0.
5ML-5UL-ALL-40MIN.M
Last changed : 5/3/2019 10:02:26 PM
(modified after loading)
AnalYsis Method : D: \DATA\GUAN YUQING\LJ-155\LJ-155 2019-05-03 17-00-25\DAD-0D(1-2)-95-5-0.
                                    5ML-5UL-ALL-40MIN.M (Sequence Me thod)
Last changed : 5/4/2019 9:54:17 AM
```

 (modified after loading)
 Additional Info : Peak (s) manually integrated
Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254, 4 Ref=off

Figure S176. HPLC spectra of 3s, related to Figure 3.

Data File D: \DATA GUAN YUQING LJJ-110\LJ-110-2 2019-03-14 22-06-29\013-0401.D
Sample Name: LJ-1l0-2-RAC

```
========================================================================
Acq. Operator : Seq. Line : 4
Acq. Instrument : Instrument 2 Location : Vial 13
Injection Date : 3/14/2019 11:00:40 PM
    Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-110\LJ-110-2 2019-03-14 22-06-29\DAD-0D (1-2)-95-5-0.
                    5ML-5UL-ALL-20MIN.M
Last changed : 3/4/2019 3:12:24 PM
AnalYsis Method : D:\METHOD\GUAN YUQING\LONGJIAO\DAD-IA(1-6)-95-5-0.5ML-5UL-ALL-4OMIN.M
Last changed : 3/19/2019 10:24:44 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

$===$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [madu]	Area *
1	13.786		0.2600	5142.11768	303.06146	50.4431
2	14.575	VB	0.2721	5051.77002	285.98007	49.5569
Totals :				1.01939 e 4	589.04153	

Figure S177. HPLC spectra of rac-3t, related to Figure 3.

Data File D: \DATA GUAN YUQING LJJ-110\LJ-110-2 2019-03-14 22-06-29\011-0201.D
Sample Name: LJ-110-2


```
Acq. Operator : Seq. Line : 2
Acq. Instrument : Instrument 2 Location : Vial ll
Injection Date : 3/14/2019 10:18:39 PM
                                    Inj : l
                                    Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-110\LJ-110-2 2019-03-14 22-06-29\DAD-0D(1-2)-95-5-0.
                                    5ML-5UL-ALL-20MIN.M
Last changed : 3/4/2019 3:12:24 PM
AnalYsis Method : D: \METHOD\GUAN YUQING\LONGJIAO\DAD-IA(1-6) -95-5-0.5ML-5UL-ALL-4OMIN.M
Last changed : 3/19/2019 10:26:50 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DADl A, Sig=254, 4 Ref=off

| Peak RetTime Type
 \# Width
 [min] | Area
 [min] | Height
 [mAU*S] | Area
 [mAU] | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |

Figure S178. HPLC spectra of 3t, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LJ-113-1\LJ-113-1 2019-03-23 12-44-07\083-0701.D
```

Sample Name: LJ-113-2-RAC

Signal 1: DADl A, Sig=254, 4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madU]	Area \%
1	10.975		0.4104	7225.67285	249.14714	50.1755
2	14.498		0.4295	7175.11523	240.88791	49.8245
Total	3 :			1.44008e4	490.03505	

Figure S179. HPLC spectra of rac-3u, related to Figure 3.

Data File D: \DATA GUAN YUQING $\mathrm{LJ}-113-1 \backslash L J-113-1$ 2019-03-23 12-44-07\084-0801.D
Sample Name: LJ-113-2

Figure S180. HPLC spectra of rac-3u, related to Figure 3.

Data File D: \DATA GUAN YUQING $\mathrm{LJ}-158-1 \backslash \mathrm{LJ}-158-1$ 2019-05-09 21-57-47\052-0401.D
Sample Name: LJ-158-1-RAC


```
Acq. Method : D:\DATA\GUAN YUQING\LJ-158-1\LJ-158-1 2019-05-09 21-57-47\VWD-AD (1-2)-95-5-
    0.5ML-5UL-254NM-30MIN.M
Last changed : 4/9/2019 4:22:03 PM
```

Analysis Method : D: \METHOD \backslash LG VVWD-AD (1-2)-100-0-0.2ML-1UL-220MM-100MIN.M
Last changed : 5/10/2019 2:56:18 PM
(modified after loading)
Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: VWDl A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.780 VB	0.3437	1.44385e4	631.57111	50.8506
2	15.034 BB	0.3822	1.39554 e 4	547.74023	49.1494
Total	s :		2.83939 e 4	1179.31134	

Figure S181. HPLC spectra of rac-3v, related to Figure 3.

Data File D: \DATA GUAN YUQING $\mathrm{LJ}-158-1 \backslash \mathrm{LJ}-158-1$ 2019-05-09 21-57-47\051-0301.D
Sample Name: LJ-158-1


```
Acq. Operator : Seq. Line : 3
Acq. Instrument : Instrument l Location : Vial 5l
Injection Date : 5/9/2019 10:31:48 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-158-1\LJ-158-1 2019-05-09 21-57-47\VWD-AD (1-2)-95-5-
    0.5ML-5UL-254NM-30MIN.M
Last changed : 4/9/2019 4:22:03 PM
AnalYsis Method : D: \METHOD\LG\VWD-AD (1-2)-100-0-0.2ML-1UL-220MM-100MIN.M
Last changed : 5/10/2019 2:57:58 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with IsTDs

Signal 1: VWD1 A, Wavelength=254 nm

| Peak RetTime Type
 \# Width
 [min] | Area
 [min] | Height
 [mAU*S] | Area
 [mAU] | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |

Totals : 4.17361e4 1824.79488

Figure S182. HPLC spectra of 3v, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LJ-137-3\LJ-137-3 2019-04-16 16-30-33\072-0601.D
```

Sample Name: LJ-137-3-RAC

Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254, 4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.975		0.3028	1296.12183	71.34225	49.9210
2	9.356		0.3030	1300.22363	71.51093	50.0790

Instrument 2 4/17/2019 8:16:00 PM
Figure S183. HPLC spectra of rac-3w, related to Figure 3.

Data File D: \DATA GUAN YUQING $\mathrm{LJ}-137-3 \backslash \mathrm{LJ}-137-3$ 2019-04-16 16-30-33\071-0701.D
Sample Name: LJ-137-3

Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254, 4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.985		0.2119	103.08399	7.24746	0.4068
2	9.342		0.2788	2.52373 e 4	1357.84119	99.5932

Instrument 2 4/17/2019 8:20:29 PM
Figure S184. HPLC spectra of 3w, related to Figure 3.

```
Data File D:\DATA\XZC\XZC-DATA-4\XZC-20190327-1 2019-03-27 13-36-36\061-1001.D
```

Sample Name: LJ-113-1-RAC

```
========================================================================
Acq. Operator : Seq. Line : }1
Acq. Instrument : Instrument 2 Location : Vial 61
Injection Date : 3/27/2019 11:37:02 PM Inj : 1
Acq. Method : D:\DATA\XZC\XZC-DATA-4\XZC-20190327-1 2019-03-27 13-36-36\DAD-0D (1-2)-90-10
    -1ML-5UL-ALL-20MIN.M
Last changed : 12/25/2018 5:4l:36 PM
AnalYsis Method : D:\METHOD\LG\DAD-0J(1-6)-80-20-1ML-5UL-ALL-60MIN.M
Last changed : 4/14/2019 9:23:10 PM
                                    (modified after loading)
```


Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl A, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	TYpe	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{+}{ }^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	4.862		0.1923	3595.02271	264.92239	49.8359
2	6.016		0.2090	3618.70410	249.76396	50.1641
Total	ls :			7213.72681	514.68636	

Figure S185. HPLC spectra of rac-3x, related to Figure 3.

```
Data File D:\DATA\XZC\XZC-DATA-4\XZC-20190327-1 2019-03-27 13-36-36\062-1101.D
```

Sample Name: LJ-113-1

```
========================================================================
Acq. Operator : Seq. Line : 11
Acq. Instrument : Instrument 2 Location : Vial 62
Injection Date : 3/27/2019 11:58:01 PM Inj : 1
Acq. Method : D:\DATA\XZC\XZC-DATA-4\XZC-20190327-1 2019-03-27 13-36-36\DAD-0D (1-2)-90-10
                                    -1ML-5UL-ALL-20MIN.M
Last changed : 12/25/2018 5:4l:36 PM
Analysis Method : D:\METHOD\LG\DAD-0J(1-6)-80-20-1ML-5UL-ALL-60MIN.M
Last changed : 4/14/2019 9:24:48 PM
                                    (modified after loading)
```


Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl A, Sig=254, 4 Ref=off

Peak	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{+}{ }^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	5.025 BB	0.2364	70.61983	4. 46831	1.0636
2	5.984 BB	0.1998	6568.77344	479.64868	98.9364
Total	s		6639.39326	484.11699	

Figure S186. HPLC spectra of 3x, related to Figure 3.

Data File D: \DATA GUAN YUQING LJ-106\LJ-106 2019-03-06 23-11-49\012-1001.D
Sample Name: LJ-103-4-RAC

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with

Signal 1: DADl A, Sig=254, 4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~A} \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area \%
1	7.597	MM	0.2056	5786.62988	469.13281	50.3232
2	10.533		0.2510	5712.29883	379.24442	49.6768
Total	s :			1.14989 e 4	848.37723	

Figure S187. HPLC spectra of rac-3y, related to Figure 3.

Data File D: \DATA GUAN YUQING\LJ-106\LJ-106 2019-03-06 23-11-49\011-0901.D
Sample Name: LJ-103-4

Acq. Operator	: Seq. Line : 9
Acq. Instrument	: Instrument 2 Location : Vial 11
Injection Date	: 3/7/2019 1:56:04 AM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	5ML-5UL-ALL-20MIN.M
Last changed	: 3/4/2019 3:12:24 PM
Analysis Method	: D: \METHOD \GUAN YUQING LONGJIAO\DAD-IA (1-6)-95-5-0.5ML-5UL-ALL-40MIN. M
Last changed	: 3/19/2019 10:11:39 PM

Additional Info : Peak (s) manually integrated

$===1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

| Peak RetTime Type
 \# Width
 [min] | Area
 [min] | Height
 [mAU*s] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [mAU] | | | |

Figure S188. HPLC spectra of 3y, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26-1 2019-08-14 19-54-25\081-0401.D
```

Sample Name: LJ-2-26-4-RAC

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution Factor with	ISTDs

Signal 1: VWDl A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	8.195 VV	0.1880	2979.72461	241.35216	47.5267
2	8.569 VV	0.2095	3289.85962	233.32156	52.4733
Totals			6269.58423	474.67372	

Figure S189. HPLC spectra of rac-3z, related to Figure 3.

Data File D: \DATA GUAN YUQING $\mathrm{LJ}-2-26 \backslash \mathrm{LJ}-2-26-1$ 2019-08-14 19-54-25\083-0601.D
Sample Name: LJ-2-26-3

```
=============================================================================-
Acq. Operator : Seq. Line : 6
Acq. Instrument : Instrument l Location : Vial 83
Injection Date : 8/14/2019 9:41:26 PM Inj : 1
Inj Volume : 1.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26-1 2019-08-14 19-54-25\VID-0J(1-2)-95-5-
                                    0.5ML-1UL-254NM-20MIN.M
Last changed : 8/14/2019 7:57:29 PM
Analysis Method : D: \METHOD\LWD\DAD-AD (1-6)-95-5-1ML-3UL-ALL-3OMIN-0813.M
Last changed : 8/15/2019 6:36:03 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Figure S190. HPLC spectra of 3z, related to Figure 3.

```
Data File D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26-1 2019-08-14 19-54-25\093-0301.D
```

Sample Name: LJ-2-26-1-RAC

Additional Info : Peak (s) manually integrated

\qquad

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nim

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.684		0.2247	1341.73059	91.71468	50.3192
2	14.587		1.0837	1324.70544	19.82213	49.6808
Total	3 :			2666. 43604	111.53681	

Figure S191. HPLC spectra of rac-3aa, related to Figure 3.

Data File D: \DATA GUAN YUQING LJJ-2-26\LJ-2-26-1 2019-08-14 19-54-25\092-0201.D
Sample Name: LJ-2-26-1

Signal 1: VWD A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madu]	Area \%
1	11.737	MM	0.2944	1.10028 e 4	622.86169	94.8180
2	15.007	MM	0.4183	601.32904	23.95970	5.1820
Total	3 :			1.1604le4	646.82139	

Figure S192. HPLC spectra of 3aa, related to Figure 3.

```
Data File D:\DATA\LWD\LWD-5-60\LWD-5-60-14 2019-05-06 09-32-49\072-0501.D
```

Sample Name: LJ-157-8-RAC

Acq. Operator : Seq. Line : 5
Acq. Instrument : Instrument 2 Location : Vial 72
Injection Date : 5/6/2019 11:23:57 AM
Inj : 1
Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method : D: \DATA \backslash LWD $\backslash L W D-5-60 \backslash L W D-5-60-14$ 2019-05-06 09-32-49\DAD-0J (1-6)-99-1-0. 5ML
-5UL-ALL -60MIN. M
Last changed : 3/10/2019 2:55:21 PM
Analysis Method : D: \DATA \backslash LWD \backslash LWD-5-60\LWD-5-60-14 2019-05-06 09-32-49\DAD-0J (1-6)-99-1-0. 5ML
-5UL-ALL-60MIN.M (Sequence Method)
Last changed : 5/16/2019 9:39:12 PM
(modified after loading)
Additional Info : Peak (s) manually integrated

$==2$ Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl B, Sig=254, 4 Ref=off

Figure S193. HPLC spectra of rac-3ab, related to Figure 4.

```
Data File D:\DATA\LWD\LWD-5-60\LWD-5-60-14 2019-05-06 09-32-49\071-0401.D
```

Sample Name: LJ-157-8

Acq. Operator : Seq. Line : 4
Acq. Instrument : Instrument 2 Location : Vial 71
Injection Date : 5/6/2019 10:22:58 AM
Inj : 1
Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method : D: \DATA \backslash LWD \backslash LWD-5-60\LWD-5-60-14 2019-05-06 09-32-49 \DAD-0J (1-6)-99-1-0. 5ML
-5UL-ALL-60MIN. M
Last changed : 3/10/2019 2:55:21 PM
Analysis Method : D: \DATA \backslash LWD \backslash LWD-5-60\LWD-5-60-14 2019-05-06 09-32-49\DAD-0J (1-6)-99-1-0. 5ML
-5UL-ALL-60MIN.M (Sequence Method)
Last changed : 5/16/2019 9:40:28 PM
(modified after loading)
Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl B, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area *
1	27.802 BB	0.6682	1.73284 e 4	385.6532	0.0000
Total	s :		1.73284 e 4	385.6532	

Figure S194. HPLC spectra of 3ab, related to Figure 4

```
Data File D:\DATA\GUAN YUQING\LJ-2-55\LJ-2-55-VWD 2019-10-01 21-45-03\082-0501.D
```

Sample Name: LJ-2-55-2

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Figure S195. HPLC spectra of rac-3ac, related to Figure 4.

```
Data File D: \DATA\GUAN YUQING\LJ-2-55\LJ-2-55-VWD 2019-10-01 21-45-03\084-0601.D
```

Sample Name: LJ-2-56-2


```
Acq. Operator : Seq. Line : 6
Acq. Instrument : Instrument l Location : Vial 84
Injection Date : 10/2/2019 12:02:43 AM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-55\LJ-2-55-VWD 2019-10-01 21-45-03\VWD-AD (1-2)-99-
    1-0.5ML-5UL-254NM-40MIN.M
Last changed : 10/1/2019 10:33:36 PM
(modified after loading)
AnalYsis Method : D: \METHOD\LGY\VWD-AS (1-6)-99-1-1ML-5UL-254MM-35MIN.M
Last changed : 10/2/2019 9:57:02 AM
                                    (modified after loading)
```

(S) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal l: VWD A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	28.004 BB	0.5997	1.01024 e 4	256.95374	99.7409
2	29.891 MM	0.4877	26.24809	$8.96930 \mathrm{e}-1$	0.2591
Total	3 :		1.01286 e 4	257.85067	

Figure S196. HPLC spectra of 3ac, related to Figure 4.

Data File D: \DATA \backslash LYH \backslash LYH-4-740\LYH-4-740-1 2019-05-03 15-55-01
Sample Name: LJ-150-1-RAC

Acq. Operator	: Seq. Line : 13
Acq. Instrument	: Instrument 1 Location : Vial 85
Injection Date	: 5/3/2019 11:26:13 PM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	$\begin{aligned} & : ~ D: \ D A T A \backslash L Y H \backslash L Y H-4-740 \backslash L Y H-4-740-1 \quad 2019-05-0315-55-01 \backslash V W D-A D(1-2)-99-1-0 . \\ & 5 M L-5 U L-254 N M-60 M I N . \mathrm{M} \end{aligned}$
Last changed	: 4/16/2019 4:38:17 PM
Analysis Method	: D: \METHOD \GUAN YUQING LONGJIAO\VWD-AD (1-2)-70-30-0.5ML-5UL-254MM-40MIN.M
Last changed	: 5/4/2019 10:06:22 AM

Additional Info : Peak (s) manually integrated

$===1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ {[m i n]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	33.842		0.7749	5006.37842	98.67974	47.8643
2	35.408		0.8798	5453.14893	92.50365	52.1357
Total	s :			1.04595 e 4	191.18340	

Figure S197. HPLC spectra of rac-3ad, related to Figure 4.

```
Data File D:\DATA\ LYH\LYH-4-740\LYH-4-740-1 2019-05-03 15-55-01\086-1401.D
```

Sample Name: LJ-150-1

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	33.479 BB	0.7929	3.00404 e 4	571.8536	0.0000
Total	s :		3.00404 e 4	571.8536	

Figure S198. HPLC spectra of 3ad, related to Figure 4.

```
Data File D:\DATA\LSL\LSL-4-45\LSL-4-45 2019-04-28 17-54-38\072-1201.D
```

Sample Name: LJ-15l-2

Acq. Operator	:	Seq. Line : 12
Acq. Instrument	: Instrument 2	Location : Vial 72
Injection Date	: 4/28/2019 11:25:07 PM	Inj : 1
		Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA $\backslash \mathrm{LSL} \backslash \mathrm{LSL}-4-45 \backslash L S L-4-45$ 5UL-ALL-60MIN.M	2019-04-28 17-54-38\DAD-0J (1-6)-99-1-0.5ML-
Last changed	: 3/10/2019 2:55:21 PM	
Analysis Method	: D: \DATA $\backslash \mathrm{LSL} \backslash L S L-4-45 \ L S L-4-45$ 5UL-ALL-60MIN.M (Sequence Meth	2019-04-28 17-54-38\DAD-0J (1-6)-99-1-0.5MLod)
Last changed	: 5/3/2019 5:50:12 PM (modified after loading)	

Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DADl B, Sig=254, 4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madU]	Area \%
1	25.028		0.5388	7893.84473	215.79332	49.4747
2	27.365		0.6179	8061.46973	191.99297	50.5253
Total	3 :			1.59553 e 4	407.78629	

Figure S199. HPLC spectra of rac-3ae, related to Figure 4.

```
Data File D:\DATA\LSL\LSL-4-45\LSL-4-45 2019-04-28 17-54-38\062-1301.D
```

Sample Name: LJ-150-2

Acq. Operator	:	Seq. Line : 13
Acq. Instrument	: Instrument 2	Location : Vial 62
Injection Date	: 4/29/2019 12:26:10 AM	Inj : 1
		Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA $\backslash \mathrm{LSL} \backslash \mathrm{LSL}-4-45 \backslash L S L-4-45$ 5UL-ALL-60MIN.M	2019-04-28 17-54-38\DAD-0J (1-6)-99-1-0.5ML-
Last changed	: 3/10/2019 2:55:21 PM	
Analysis Method	: D: \DATA $\backslash \mathrm{LSL} \backslash L S L-4-45 \ L S L-4-45$ 5UL-ALL-60MIN.M (Sequence Meth	2019-04-28 17-54-38\DAD-0J (1-6)-99-1-0.5MLod)
Last changed	: 5/3/2019 5:51:46 PM (modified after loading)	

Additional Info : Peak (s) manually integrated
(D:DATANLSLILSL-4-45LSL-4-45 2019-0428 17-54380062-1301.D)

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl B, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area *
1	25.072 BB	0.5086	3.41880 e 4	1005.6047	0.0000
Total			3.41880 e 4	1005.6047	

Figure S200. HPLC spectra of 3ae, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-162\LJ-162(VWD) 2019-05-13 18-18-55\064-0601.D
```

Sample Name: LJ-162-2-RAC

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution Factor with ISTDs	

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~A} \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area \%
1	11.394 BB	0.3691	2954.75879	121.35410	49.4600
2	12.985 BB	0.3738	3019.27490	122.38118	50.5400
Total	s :		5974.03369	243.73528	

Figure S201. HPLC spectra of rac-3af, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-162\LJ-162(VWD) 2019-05-13 18-18-55\063-0501.D
```

Sample Name: LJ-162-2

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with ISTDs	

Signal 1: VWD A, Wavelength=254 nm

Peak $\#$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAN} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [maU]	Area \%
1	11.486		0.3762	1.30095 e 4	524.87543	98.0807
2	13.008		0.4413	254.57536	8.31177	1.9193
Total	s :			1.3264le4	533.18720	

Figure S202. HPLC spectra of 3af, related to Figure 4

Data File D: \DATA $\backslash G U A N$ YUQING $\backslash \mathrm{LJ}-150 \backslash \mathrm{LJ}-150(151)$ 2019-04-28 17-43-31\083-0401. D
Sample Name: LJ-15l-3


```
Acq. Operator : Seq. Line : 4
Acq. Instrument : Instrument l Location : Vial 83
Injection Date : 4/28/2019 7:07:00 PM
    Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-150\LJ-150(151) 2019-04-28 17-43-31\VND-AD (1-2)-99-1
-0.6ML-5UL-254NM-40MIN.M
Last changed : 4/28/2019 7:44:37 PM
                            (modified after loading)
AnalYsis Method : D:\DATA\GUAN YUQING\LJ-150\LJ-150(151) 2019-04-28 17-43-31\VWD-AD (1-2)-99-1
                                    -0.6ML-5UL-254NM-40MIN.M (Sequence Method)
Last changed : 5/3/2019 5:58:38 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated
Additional Info : Peak (s) manually int egrated

Area Percent Report
$===2$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mind	Area \%
1	29.794	BV	1.1567	1494.45447	18.30020	49.4599
2	32.657		1.3695	1527.09534	15.49839	50.5401

Figure S203. HPLC spectra of rac-3ag, related to Figure 4.

Data File D: \DATA $\backslash G U A N$ YUQING $\backslash \mathrm{LJ}-150 \backslash \mathrm{LJ}-150(151)$ 2019-04-28 17-43-31\087-0701. D
Sample Name: LJ-150-3


```
Acq. Operator : Seq. Line : 7
Acq. Instrument : Instrument l Location : Vial 87
Injection Date : 4/28/2019 9:09:34 PM
                                    Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-150\LJ-150(151) 2019-04-28 17-43-31\VND-AD (1-2)-99-1
-0.6ML-5UL-254NM-40MIN.M
Last changed : 4/28/2019 7:44:37 PM
                            (modified after loading)
AnalYsis Method : D:\DATA\GUAN YUQING\LJ-150\LJ-150(151) 2019-04-28 17-43-31\VWD-AD (1-2)-99-1
                                    -0.6ML-5UL-254NM-40MIN.M (Sequence Method)
Last changed : 5/3/2019 6:00:17 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

$==1$ Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	32.086 BB	1.1885	5973.43457	73.23915	100.0000
Total	s :		5973.43457	73.23915	

Figure S204. HPLC spectra of 3ag, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26 2019-08-13 22-15-46\084-0501.D
```

Sample Name: LJ-2-26-7-RAC


```
Acq. Operator : Seq. Line : 5
Acq. Instrument : Instrument l Location : Vial 84
Injection Date : 8/14/2019 12:19:21 AM
                                    Inj : l
                                    Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26 2019-08-13 22-15-46\ VWD-0J(1-2)-95-5-0.
                    5ML-5UL-254NM-40MIN. M
Last changed : 8/13/2019 10:44:25 PM
    (modified after loading)
Analysis Method : D: \METHOD\LG\VWD-AD(1-2)-80-20-1ML-3UL-210NM-60MIN.M
Last changed : 8/14/2019 10:07:13 AM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated
(D:LDATAGUAN YUOINGLL-2-26LL-2-262019-08-13 22-15-460840501.D)

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VWD A, Wavelength=254 nim

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	18.997		0.3724	4454.71484	181.45822	50.2576
2	24.353	BV	0.4114	4409.04004	164.66374	49.7424
Total	s :			8863.75488	346.12196	

Figure S205. HPLC spectra of rac-3ah, related to Figure 4.

Data File D: \DATA \backslash GUAN YUQING LJJ-2-26\LJ-2-26 2019-08-13 22-15-46\083-0401.D
Sample Name: LJ-2-26-7


```
Acq. Operator : Seq. Line : 4
Acq. Instrument : Instrument l Location : Vial 83
Injection Date : 8/13/2019 11:43:31 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26 2019-08-13 22-15-46\ VWD-0J(1-2)-95-5-0.
                    5ML-5UL-254NM-40MIN. M
Last changed : 8/13/2019 10:44:25 PM
    (modified after loading)
AnalYsis Method : D: \METHOD\LG\VWD-AD(1-2)-80-20-1ML-3UL-210NM-60MIN.M
Last changed : 8/14/2019 10:05:00 AM
    (modified after loading)
```


$===1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution Factor with ISTDs	

Signal 1: VWD1 A, Wavelength=254 nm

| Peak RetTime Type
 \# Width
 [min] | Area
 [min] | Height
 [mAU*s] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [mAU] | \% | | |

Figure S206. HPLC spectra of 3ah, related to Figure 4.

```
Data File D:\DATA\LSL\LSL-4-86-1\LSL-4-86-2 2019-06-29 09-08-43\093-3101.D
```

Sample Name: LJ-2-1-2

Last changed : 6/29/2019 10:12:37 PM
(modified after loading)

\qquad
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD A, Wavelength=220 nm

Peak R \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.750		0.2815	5251.89600	310.98474	49.1124
2	9.373	FM	0.2955	5441.73340	306.92697	50.8876
Totals	3 :			1.06936 e 4	617.91171	

Figure S207. HPLC spectra of rac-3ai, related to Figure 4.

```
Data File D:\DATA\LSL\LSL-4-86-1\LSL-4-86-2 2019-06-29 09-08-43\094-3501.D
```

Sample Name: LJ-2-2-2

Last changed : 6/29/2019 10:51:26 PM
(modified after loading)

Area Percent Report
$===$
Sorted BY
Multiplier
Dilution
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=220 nm

Peak $\#$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area [血AU**]	Height [maU]	Area \%
1	8.739		0.2663	7521.54541	433.75995	97.8275
2	9.394		0.2780	167.03423	8.62418	2.1725
Totals	s :			7688.57964	442.38413	

Figure S208. HPLC spectra of 3ai, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-58\LJ-2-58 2019-10-04 14-59-34\084-0601.D
```

Sample Name: LJ-2-58-2-RAC

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with IsTDs

Signal 1: VWDl A, Wavelength=220 nm

| Peak RetTime Type
 [min] | Width
 [min] | Area
 [mAU*s] | Height
 [mAU] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [min | | | | |

Figure S209. HPLC spectra of rac-3aj, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-58\LJ-2-58 2019-10-04 14-59-34\083-0501.D
```

Sample Name: LJ-2-58-2

Additional Info : Peak (s) manually integrated


```
Area Percent Report
```

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution Factor with ISTDs	

Signal 1: VWD1 A, Wavelength=220 nm

| Peak RetTime Type
 [min] | Width
 [min] | Area
 [mAU*s] | Height
 [mAU] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [m | | | | |

Figure S210. HPLC spectra of 3aj, related to Figure 4.

```
Data File D:\DATA\LWD\LWD-5-60\LWD-5-60-14 2019-05-06 09-32-49\074-1201.D
```

Sample Name: LJ-157-7-RAC

Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DAD1 B, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	22.065 BV	0.7619	1.03696 e 4	192.05229	47.7532
2	24.191 VB	0.8610	1.13454 e 4	183.57259	52.2468
Total	s :		2.17150 e 4	375.62488	

Figure S211. HPLC spectra of rac-3ak, related to Figure 4

```
Data File D:\DATA\LWD\LWD-5-60\LWD-5-60-14 2019-05-06 09-32-49\073-1101.D
```

Sample Name: LJ-157-7

Acq. Operator	: Seq. Line : 11
Acq. Instrument	: Instrument 2 Location : Vial 73
Injection Date	: 5/6/2019 3:10:06 PM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA \backslash LWD $\backslash L W D-5-60 \backslash L W D-5-60-14$ 2019-05-06 09-32-49\DAD-0D (1-2)-99-1-0.5ML -5UL-ALL-40MIN.M
Last changed	: 3/8/2019 11:06:52 AM
Analysis Method	: D: \DATA \backslash LWD $\backslash L W D-5-60 \ L W D-5-60-14$ 2019-05-06 09-32-49\DAD-0D (1-2)-99-1-0.5ML -5UL-ALL-40MIN.M (Sequence Method)
Last changed	: 5/16/2019 9:35:29 PM
	(modified after loading)

Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl B, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madu]	Area *
1	24.206 BB	0.8172	1.16287 e 4	196.2877	0.0000
Total			1. 16287 e 4	196.287	

Figure S212. HPLC spectra of 3ak, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-55\LJ-2-55-VWD 2019-10-01 21-45-03\081-0301.D
```

Sample Name: LJ-2-55-1

Area Percent Report
$==1$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTD

Signal 1: VWD1 A, Wavelength=254 nm

Figure S213. HPLC spectra of rac-3al, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-55\LJ-2-55-VWD 2019-10-01 21-45-03\083-0401.D
```

Sample Name: LJ-2-56-1


```
===========================================================================-2
```


Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nm

| Peak RetTime Type
 [min] | Width
 [min] | Area
 [mAU*s] | Height
 [mAU] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [min | | | | |

Figure S214. HPLC spectra of 3al, related to Figure 4.

```
Data File D:\DATA\ZX\XZC-190410-1 2019-04-12 19-18-12\064-1101.D
```

Sample Name: LJ-133-1

Acq. Method : D: \DATA $\backslash 2 X \backslash X Z C-190410-1$ 2019-04-12 19-18-12 $12 \mathrm{DAD}-0 \mathrm{~J}(1-6)-95-5-1 \mathrm{ML}-5 \mathrm{UL}-\mathrm{ALL}-$
60MIN.M
Last changed : 7/6/2018 10:36:38 PM
Analysis Method : D: \METHOD\LG\DAD-0J (1-6)-80-20-1ML-5UL-ALL-6OMIN.M
Last changed : 4/14/2019 9:57:24 PM
(modified after loading)
Additional Info : Peak (s) manually integrated
(

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with

Signal 1: DADl A, Sig=254, 4 Ref=off

Figure S215. HPLC spectra of rac-3am, related to Figure 4.

```
Data File D:\DATA\ZX\XZC-190410-1 2019-04-12 19-18-12\063-1001.D
```

Sample Name: LJ-132-1

Acq. Operator	:	Seq. Line : 10
Acq. Instrument	: Instrument 2	Location : Vial 63
Injection Date	: 4/13/2019 12:18:46 AM	Inj : 1

Acq. Method : D: \DATA $\backslash 2 X \backslash X Z C-190410-1$ 2019-04-12 19-18-12 $12 A D-0 J(1-6)-95-5-1 M L-5 U L-A L L-$
60MIN.M
Last changed : 7/6/2018 10:36:38 PM
Analysis Method : D: \METHOD\LG\DAD-0J (1-6)-80-20-1ML-5UL-ALL-6OMIN.M
Last changed : 4/14/2019 9:58:32 PM
(modified after loading)
Additional Info : Peak (s) manually integrated

$===1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	29.529 BB	1.1823	6790.98779	77.80267	100.0000
Total	:		6790.98779	77.80267	

Figure S216. HPLC spectra of 3am, related to Figure 4.

```
Data File D:\DATA\ZX\ZX-3-81\LSL-4-31-3 2019-04-13 13-34-06\062-0701.D
```

Sample Name: LJ-133-2
$==2$
Acq. Operator : Seq. Line : 7
Acq. Instrument : Instrument 2 Location : Vial 62
Injection Date : 4/13/2019 5:51:17 PM
Inj : 1
Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method : D: \DATA $\backslash 2 X \backslash Z X-3-81 \backslash L S L-4-31-3$ 2019-04-13 13-34-06\DAD-0J (1-6)-95-5-0.5ML-
5UL-ALL-30MIN.M
Last changed : 4/13/2019 3:13:40 PM
Analysis Method : D: \METHOD $\backslash \mathrm{LG} \backslash \mathrm{DAD}-0 \mathrm{~J}(1-6)-80-20-1 \mathrm{ML}-5 \mathrm{UL}-A L L-60 M I N . M$
Last changed : 4/14/2019 10:00:29 PM
(modified after loading)
Additional Info : Peak (s) manually integrated
(DAD A Sig=254,4Ref=off(D:DATAZZZZ-3-81LSL-431-32019-0413 13-34-06062-0701.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with

Signal 1: DADl A, Sig=254, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*S]	Height [mAU]	Area \%
1	15.952 BV	0.4176	8.50486e4	2641.95483	48.8532
2	17.541 VB	0.4580	8.90417e4	2473.26196	51.1468
Total	s :		1.74090 e 5	5115.21680	

Figure S217. HPLC spectra of rac-3an, related to Figure 4.

```
Data File D:\DATA\ZX\ZX-3-81\LSL-4-31-3 2019-04-13 13-34-06\061-0601.D
```

Sample Name: LJ-132-2

Acq. Operator : Seq. Line : 6
Acq. Instrument : Instrument 2 Location : Vial 61
Injection Date : 4/13/2019 5:20:17 PM
Inj : 1
Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method : D: \DATA $\backslash 2 X \backslash Z X-3-81 \backslash L S L-4-31-3$ 2019-04-13 13-34-06\DAD-0J (1-6)-95-5-0.5ML-
5UL-ALL-30MIN.M
Last changed : 4/13/2019 3:13:40 PM
Analysis Method : D: \METHOD $\backslash \mathrm{LG} \backslash \mathrm{DAD}-0 \mathrm{~J}(1-6)-80-20-1 \mathrm{ML}-5 \mathrm{UL}-A L L-60 M I N . M$
Last changed : 4/14/2019 10:01:44 PM
(modified after loading)
Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DADl A, Sig=254, 4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	17.978 BB	0.5250	1.86330 e 4	499.70447	100.0000
Total	s :		1.86330 e 4	499.70447	

Figure S218. HPLC spectra of 3an, related to Figure 4.

```
Data File D:\DATA\ GUAN YUQING\LJ-162\LJ-162(VID) 2019-05-13 18-18-55\062-0301.D
```

Sample Name: LJ-162-1-RAC

Additional Info : Peak (s) manually integrated

\qquad
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\&	Dilution
Factor	with	IsTDs

Signal 1: VWD1 A, Wavelength=254 nim

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mind	Area *
1	15.617		0.4432	9690.17578	327.45148	49.9852
2	18.207	BB	0.5098	9695.92480	285.80896	50.0148
Totals :				1.93861 e 4	613.26044	

Figure S219. HPLC spectra of rac-3ao, related to Figure 4.

Data File D: \DATA GUAN YUQING LJ-162\LJ-162 (VID) 2019-05-13 18-18-55\061-0201.D
Sample Name: LJ-162-1

```
Acq. Instrument : Instrument 1 Location : Vial 6l
Injection Date : 5/13/2019 6:30:45 PM
Seq. Line : 2
    Inj : l
    Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-162\LJ-162(VND) 2019-05-13 18-18-55\VWD-AD (1-2)-99-1
    -0.5ML-5UL-254NM-40MIN.M
Last changed : 5/13/2019 8:56:49 AM
AnalYsis Method : D: \METHOD\GUAN YUQING\LONGJIAO\VWD-AD (1-2)-99-1-0.5ML-5UL-254NM-40MIN.M
Last changed : 5/13/2019 9:43:18 PM
                                    (modified after loading)
```


Area Percent Report
$\begin{array}{lll}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000\end{array}$
$\begin{array}{lll}\text { Multiplier } & : & 1.0000 \\ \text { Dilution } & : & 1.0000\end{array}$
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nm

Figure S220. HPLC spectra of 3ao, related to Figure 4

```
Data File D:\DATA\LWD\LWD-5-45-5~9\LWD-5-45-5~9 2019-04-27 10-58-26\062-1101.D
```

Sample Name: LJ-150-5-RAC

```
Acq. Operator : Seq. Line : ll
Acq. Instrument : Instrument 2 Location : Vial 62
Injection Date : 4/27/2019 3:24:38 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\LWD\LWD-5-45-5~9\LWD-5-45-5~9 2019-04-27 10-58-26\DAD-0D (1-2) -99-1-
0.5ML-5UL-ALL-40MIN. M
Last changed : 3/8/2019 ll:06:52 AM
AnalYsis Method : D:\DATA\LWD\LWD-5-45-5~9\LWD-5-45-5~9 2019-04-27 10-58-26\DAD-0D (1-2)-99-1-
                    0.5ML-5UL-ALL-40MIN.M (Sequence Method)
Last changed : 4/28/2019 6:43:34 PM
                    (modified after loading)
```

Additional Info : Peak(s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal l: DADl A, Sig=220, 4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madu]	Area \%
1	19.090		0.7033	2.94362 e 4	576.84332	48.6728
2	21.261		0.8915	3.10416 e 4	458.71768	51.3272
Total	3 :			6.04778 e 4	1035.56100	

Figure S221. HPLC spectra of rac-3ap, related to Figure 4.

```
Data File D:\DATA\LWD\LWD-5-45-5~9\LWD-5-45-5~9 2019-04-27 10-58-26\061-1001.D
```

Sample Name: LJ-150-5

Acq. Operator	: Seq. Line : 10
Acq. Instrument	: Instrument 2 Location : Vial 61
Injection Date	: 4/27/2019 2:43:37 PM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	```D:\DATA\LWD\LWD-5-45-5~9\LWD-5-45-5~9 2019-04-27 10-58-26\DAD-0D (1-2)-99-1- 0.5ML-5UL-ALL-40MIN. M```
Last changed	: 3/8/2019 11:06:52 AM
Analysis Method	```D: \DATA\LWD\LWD-5-45-5~9\LWD-5-45-5~9 2019-04-27 10-58-26\DAD-0D (1-2)-99-1- 0.5ML-5UL-ALL-40MIN.M (Sequence Method)```
Last changed	4/28/2019 6:45:59 PM (modified after loading)

additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: DADl A, Sig=220, 4 Ref=off

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	19.462 BB	0.7553	3590.59058	56.51189100 .0000	
Total			3590.59058	56.5118	

Figure S222. HPLC spectra of 3ap, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26 2019-08-13 22-15-46\082-0301.D
```

Sample Name: LJ-2-26-8-RAC


```
Acq. Operator : Seq. Line : 3
Acq. Instrument : Instrument l Location : Vial 82
Injection Date : 8/13/2019 11:07:37 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26 2019-08-13 22-15-46\ VWD-0J(1-2)-95-5-0.
                    5ML-5UL-254NM-40MIN. M
Last changed : 8/13/2019 10:44:25 PM
    (modified after loading)
AnalYsis Method : D: \METHOD\LG\VWD-AD(1-2)-80-20-1ML-3UL-210NM-60MIN.M
Last changed : 8/14/2019 10:10:16 AM
    (modified after loading)
```


Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution Factor with IsTDs		

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	16.673 BB	0.3355	2905.79492	130.66414	50.0381
2	19.088 BB	0.3975	2901.36499	110.80025	49.9619
Total	s :		5807.15991	241.46439	

Figure S223. HPLC spectra of rac-3aq, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26 2019-08-13 22-15-46\081-0201.D
```

Sample Name: LJ-2-26-8


```
Acq. Operator : Seq. Line : 2
Acq. Instrument : Instrument l Location : Vial 81
Injection Date : 8/13/2019 10:31:48 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-26\LJ-2-26 2019-08-13 22-15-46\ VWD-0J(1-2)-95-5-0.
5ML-5UL-254NM-40MIN. M
Last changed : 8/13/2019 10:44:25 PM
(modified after loading)
AnalYsis Method : D: \METHOD\LG\VWD-AD(1-2)-80-20-1ML-3UL-210NM-60MIN.M
Last changed : 8/14/2019 10:13:25 AM
(modified after loading)
```


Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	16.608 BB	0.3357	430.80255	19.50537	1.8249
2	18.685 BB	0.4228	2.31767 e 4	822.39478	98.1751
Totals :			2.36075 e 4	841.90014	

Figure S224. HPLC spectra of 3aq, related to Figure 4.

Data File D: \DATA GUAN YUQING LJJ-2-34\LJ-2-34 2019-08-22 19-27-53\093-0401.D
Sample Name: LJ-2-34-RAC

Additional Info : Peak (s) manually integrated

$==$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with
ISTD		

Signal 1: VWDl A, Wavelength=254 nm

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mad]	Area \%
1	8.683		0.2682	7229.00488	410.94553	49.3700
2	9.518		0.2810	7413.50635	400.48196	50.6300
Totals	3 :			1. 46425 e 4	811.42749	

Figure S225. HPLC spectra of rac-3ar, related to Figure 4.

Data File D: \DATA GUAN YUQING LJJ-2-34\LJ-2-34 2019-08-22 19-27-53\092-0301.D
Sample Name: LJ-2-34

Additional Info : Peak (s) manually integrated

$==$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWDl A, Wavelength=254 nm

| Peak RetTime Type
 [min] | Width
 [min] | Area
 [mAU*s] | Height
 [mAU] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [m | | | | |

Figure S226. HPLC spectra of 3ar, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-58\LJ-2-58 2019-10-04 14-59-34\086-1001.D
```

Sample Name: LJ-2-58-3-RAC

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

| Peak RetTime Type
 \# Width
 [min] | Area
 [min] | Height
 [mAU*s] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [mAU] | \% | | |

Figure S227. HPLC spectra of rac-3as, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-58\LJ-2-58 2019-10-04 14-59-34\085-0901.D
```

Sample Name: LJ-2-58-3

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal l: VWD1 A, Wavelength=254 nm

*** End of Report ***

Figure S228. HPLC spectra of 3as, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-58\LJ-2-58 2019-10-04 14-59-34\082-0401.D
```

Sample Name: LJ-2-58-1-RAC

Additional Info : Peak (s) manually integrated

$==1$
$==2$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	13.061 BB	0.2980	1793.32349	91.35478	49.7739
2	14.443 VV	0.3104	1809.61426	87.80449	50.2261

Totals : 3602.93774179 .15927

Figure S229. HPLC spectra of rac-3at, related to Figure 4.

```
Data File D:\DATA\GUAN YUQING\LJ-2-58\LJ-2-58 2019-10-04 14-59-34\081-0301.D
```

Sample Name: LJ-2-58-1

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	Area [mind*s]	Height [mAU]	Area \%
1	14.335 BB	0.3155	3957.84790	188.12329	100.0000
Total	:		3957.84790	188.12329	

Figure S230. HPLC spectra of 3at, related to Figure 4.

Data File D: \DATA GUAN YUQING LJJ-2-28\LJ-2-28 2019-08-17 17-49-47\093-0301.D
Sample Name: LJ-2-28-RAC


```
Acq. Operator : Seq. Line : 3
Acq. Instrument : Instrument l Location : Vial 93
Injection Date : 8/17/2019 7:08:37 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-28\LJ-2-28 2019-08-17 17-49-47\VWD-AS (1-6)-99-1-0.
5ML-5UL-220NM-60MIN.M
Last changed : 4/29/2019 8:58:31 AM
Analysis Method : D:\METHOD\LWD\DAD-0D (1-2)-90-10-1ML-3ULALL-25MIN.M
Last changed : 8/19/2019 9:39:21 AM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

===2,
Area Percent Report
===2

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VWDl A, Wavelength $=220 \mathrm{~nm}$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [madu]	Area *
1	19.253 BB	0.7624	523.16156	10.09827	51.2498
2	22.072 BB	0.8799	497.64478	8.36683	48.7502
Total			1020.80634	18.46510	

Figure S231. HPLC spectra of rac-3au, related to Figure 4.

Data File D: \DATA GUAN YUQING LJJ-2-28\LJ-2-28 2019-08-17 17-49-47\092-0201.D
Sample Name: LJ-2-28


```
Acq. Operator : Seq. Line : 2
Acq. Instrument : Instrument 1 Location : Vial 92
Injection Date : 8/17/2019 6:07:48 PM Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-2-28\LJ-2-28 2019-08-17 17-49-47\ VWD-AS(1-6)-99-1-0.
                                    5ML-5UL-220NM-60MIN. M
Last changed : 4/29/2019 8:58:31 AM
AnalYsis Method : D: \METHOD\LWD\DAD-0D (1-2)-90-10-1ML-3ULALL-2 5MIN.M
Last changed : 8/19/2019 9:41:54 AM
```

 (modified after loading)
 Additional Info : Peak (s) manually integrated

$==1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \& Dilution	Factor with ISTDs	

Signal 1: VWD A, Wavelength=220 nm

| Peak RetTime Type
 \# Width
 [min] | Area
 [min] | Height
 [mAU*s] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [mAU] | \% | | |

Figure S232. HPLC spectra of 3au, related to Figure 4.

```
Data File D:\DATA\LG\201906\NAPH-VWD 2019-06-27 17-37-50\082-1701.D
```

Sample Name: LJ-2-4-RAC

	Area Percent Report	
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution		1.0000

Signal 1: VWD A, Wavelength=254 nm

Figure S233. HPLC spectra of rac-Bz-3av, related to Figure 5

```
Data File D:\DATA\LG\201906\NAPH-VWD 2019-06-27 17-37-50\081-1601.D
```

Sample Name: LJ-2-4

Acq. Operator	: Seq. Line : 16
Acq. Instrument	: Instrument 1 Location : Vial 81
Injection Date	: 6/28/2019 7:46:47 AM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA $\backslash \mathrm{LG} \backslash 201906 \backslash \mathrm{NAPH}-\mathrm{VWD} 2019-06-27$ 17-37-50\VWD-AS (1-6) -85-15-1ML-5UL-254NM-40MIN. M
Last changed	: 6/27/2019 10:00:11 PM
Analysis Method	
Last changed	: 6/28/2019 6:30:24 PM
	(modified after loading)

	Area Percent Report	
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution		1.0000

Signal 1: VWD A, Wavelength=254 nm

Figure S234. HPLC spectra of Bz-3av, related to Figure 5.

```
Data File D:\DATA\GUAN YUQING\LJ-2-16\LJ-2-16 2019-07-16 20-59-13\002-0301.D
```

Sample Name: LJ-2-16-RAC

Acq. Operator	: Seq. Line : 3
Acq. Instrument	: Instrument 1 Location : Vial 2
Injection Date	: 7/16/2019 9:56:06 PM Inj : 1
	Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA GUAN YUQING LJJ-2-16\LJ-2-16 2019-07-16 20-59-13 VWD-AD (1-2)-85-15-1ML-5UL-254NM-40MIN. M
Last changed	: 4/17/2019 5:00:46 PM
Analysis Method	: D: \METHOD $\mathrm{L}^{\text {S }}$ S $\backslash \mathrm{DAD}-0 \mathrm{D}(1-2)-97-3-1 \mathrm{ML}-5 \mathrm{UL}-\mathrm{ALL}-60 \mathrm{MIN} . \mathrm{M}$
Last changed	: 7/19/2019 8:11:26 PM
	(modified after loading)

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Figure S235. HPLC spectra of rac-Bz-3aw, related to Figure 5.

Data File D: \DATA GUAN YUQING LJJ-2-16\LJ-2-16 2019-07-16 20-59-13\001-0201.D
Sample Name: LJ-2-16

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madu]	Area *
1	24.391 BB	0.8115	127.46741	2.11982	1.0228
2	27.602 BB	0.9399	1.23356 e 4	199.90909	98.9772
Total	s :		1.24631 e 4	202.02891	

Figure S236. HPLC spectra of Bz-3aw, related to Figure 5.

```
Data File D:\DATA\LWD\LY-2-1-D IWU\LY-2-1DIWU 2019-04-16 15-39-34\081-1401.D
```

Sample Name: LJ-137-6-RAC

```
Oc. Operator - Seq. Line
Acq. Instrument : Instrument l Location : Vial 81
Injection Date : 4/16/2019 8:39:31 PM
                                    Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\LWD\LY-2-1-DIWU\LY-2-1DIWU 2019-04-16 15-39-34\VWD-AD (1-2)-99-1-0.
                    5ML-5UL-254NM-60MIN. M
Last changed : 4/16/2019 4:38:17 PM
AnalYsis Method : D: \DATA\LWD\LY-2-1-D IWU\LY-2-1DIWU 2019-04-16 15-39-34\VWD-AD (1-2)-99-1-0.
                    5ML-5UL-254NM-60MIN.M (Sequence Method)
Last changed : 4/17/2019 8:04:38 PM
                                    (modified after loading)
```

Additional Info : Peak(s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal l: VWD A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	32.701		2.4469	2520.65356	17.16935	50.3716
2	37.205		2.8903	2483.46680	14.32087	49.6284
Total	s :			5004.12036	31.49022	

Figure S237. HPLC spectra of rac-3ax, related to Figure 5.

```
Data File D:\DATA\LWD\LY-2-1-D IWU\LY-2-1DIWU 2019-04-16 15-39-34\082-1501.D
```

Sample Name: LJ-137-6

```
=========
Acq. Operator : Seq. Line : 15
Acq. Instrument : Instrument l Location : Vial 82
Injection Date : 4/16/2019 9:40:22 PM
                                    Inj : l
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\LWD\LY-2-1-DIWU\LY-2-1DIWU 2019-04-16 15-39-34\VWD-AD (1-2)-99-1-0.
                    5ML-5UL-254NM-60MIN. M
Last changed : 4/16/2019 4:38:17 PM
AnalYsis Method : D: \DATA\LWD\LY-2-1-D IWU\LY-2-1DIWU 2019-04-16 15-39-34\VWD-AD (1-2)-99-1-0.
                    5ML-5UL-254NM-60MIN.M (Sequence Method)
Last changed : 4/17/2019 8:07:01 PM
                                    (modified after loading)
```

Additional Info : Peak(s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{min}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madu]	Area *
1	31.888	BB	1.2270	1.51677 e 4	175.21049	98.5994
2	37.185		1.4597	215.46088	1.73517	1. 4006
Total	3 :			1.53832e4	176.94567	

Figure S238. HPLC spectra of 3ax, related to Figure 5.

```
Data File D:\DATA\LSL\LSL-4-45\LSL-4-45 2019-04-28 17-54-38\093-1801.D
```

Sample Name: LJ-148-4-RAC

Acq. Operator	:	Seq. Line : 18
Acq. Instrument	: Instrument 2	Location : Vial 93
Injection Date	: 4/29/2019 4:26:23 AM	Inj : 1
		Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method	: D: \DATA $\backslash \mathrm{LSL} \backslash \mathrm{LSL}-4-45 \backslash L S L-4-45$ 5UL-ALL-45MIN.M	$2019-04-28 \quad 17-54-38 \backslash D A D-0 D(1-2)-80-20-0.5 M L-$
Last changed	: 4/28/2019 10:10:52 PM	
Analysis Method	: D: \DATA $\backslash \mathrm{LSL} \backslash L S L-4-45 \ L S L-4-45$ 5UL-ALL-45MIN.M (Sequence Meth	$2019-04-28 \quad 17-54-38 \backslash \mathrm{DAD}-0 \mathrm{D}(1-2)-80-20-0.5 \mathrm{ML}-$ od)
Last changed	: 5/3/2019 5:44:15 PM (modified after loading)	
Additional Info	: Peak (s) manually integrated	

DAD1 A Sig=254,4 Reffoff(D:DATALLSLILSL-4-45LSLL-445 201

\qquad

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	24.760		0.7097	2.01640 e 4	429.50250	49.8858
2	28.836		0.8000	2.02563 e 4	381.19202	50.1142
Total	3 :			4.04203e4	810.69452	

Figure S239. HPLC spectra of rac-3ay, related to Figure 5.

```
Data File D:\DATA\LSL\LSL-4-45\LSL-4-45 2019-04-28 17-54-38\092-1701.D
```

Sample Name: LJ-148-4

ad

\qquad

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254, 4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	24.745	MM	0.7688	1.20418 e 4	261.04971	95.6714
2	28.885		0.7354	544.82092	12.34704	4.3286
Total	s :			1.25866 e 4	273.39676	

Figure S240. HPLC spectra of 3ay, related to Figure 5.

Data File D: \DATA GUAN YUQING $\backslash \mathrm{LJ}-141 \backslash \mathrm{LJ}-141$ 2019-05-05 $15-18-34 \backslash 062-0401 . \mathrm{D}$
Sample Name: LJ-143-2

Acq. Method : D: \DATA GUAN YUQING $\backslash \mathrm{LJ}-141 \backslash L J-141$ 2019-05-05 15-18-34 VWD-AS (1-6) -99-1-0. 5ML-5UL-254NM-80MIN. M
Last changed : 5/5/2019 3:41:41 PM
(modified after loading)
Analysis Method : D: \METHOD YANG JIAXIN VWD-IA-(1-2)-85-15-1.0ML-5UL-210MM-60MIN.M
Last changed : 5/31/2019 8:42:20 PM (modified after loading)
Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m} \mathrm{AU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [madu]	Area \%
1	69.320		4.3691	2.31027 e 4	88.12956	45.4710
2	75.300		5.2276	2.77048 e 4	88.32815	54.5290
Total	3 :			5.08076 e 4	176.45771	

Figure S241. HPLC spectra of rac-3az, related to Figure 5.

Data File D: \DATA GUAN YUQING $\backslash \mathrm{LJ}-141 \backslash L J-141$ 2019-05-05 $15-18-34 \backslash 061-0301 . D$
Sample Name: LJ-141-2


```
Acq. Operator : Seq. Line : 3
Acq. Instrument : Instrument l Location : Vial 6l
Injection Date : 5/5/2019 3:41:19 PM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-141\LJ-141 2019-05-05 15-18-34\VWD-AS(1-6) -99-1-0.
5ML-5UL-254NM-80MIN. M
Last changed : 5/5/2019 3:4l:41 PM
(modified after loading)
AnalYsis Method : D:\DATA\GUAN YUQING\LJ-141\LJ-141 2019-05-05 15-18-34\VJD-AS (1-6)-99-1-0.
5ML-5UL-254NM-80MIN.M (Sequence Method)
Last changed : 5/6/2019 10:41:26 AM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated
Additional Info : Peak (s) manually integrated

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with IsTDs

Signal 1: VWD A, Wavelength=254 nm

Figure S242. HPLC spectra of 3az, related to Figure 5.

Data File D: \DATA GUAN YUQING LJJ-148-7\LJ-148-7-AS 2019-05-31 11-42-32\082-0301.D
Sample Name: LJ-148-7-RAC

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with

Signal 1: VWDl A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area [mAU*S]	Height [madu]	Area \%
1	25.863		1.3984	1.34952 e 4	145.05293	47.2055
2	28.818		1.5954	1.50930e4	137.95860	52.7945
Total	s :			2.85882 e 4	283.01154	

Figure S243. HPLC spectra of rac-3ba, related to Figure 5.

Data File D: \DATA\GUAN YUQING LJJ-148-7\LJ-148-7-AS 2019-05-31 11-42-32\081-0201.D
Sample Name: LJ-148-7


```
Acq. Operator : Seq. Line : 2
Acq. Instrument : Instrument l Location : Vial 81
Injection Date : 5/31/2019 11:54:19 AM Inj : 1
Inj Volume : 5.000 \mul
Acq. Method : D:\DATA\GUAN YUQING\LJ-148-7\LJ-148-7-AS 2019-05-31 11-42-32\VWD-AS(1-6) -90
    -10-0.5ML-5UL-254NM-60MIN.M
Last changed : 5/30/2019 9:54:14 PM
AnalYsis Method : D: \METHOD\YANG JIAXIN\VWD-IA-(1-2)-85-15-1.0ML-5UL-210NM-60MIN.M
Last changed : 5/31/2019 8:09:16 PM
                                    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier	\& Dilution	Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	25.781 BB	1.4723	1.84618 e 4	184.2086	100.0000
Total	s :		1.84618 e 4	184.2086	

Figure S244. HPLC spectra of 3ba, related to Figure 5.

Transparent Methods

General Information

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers (Energy Chemical, Adamas-beta®, J\&K and so on) and used without further purification. All reactions were performed under a dry argon atmosphere fitted on a glass tube or vial unless otherwise specified. All new compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and HRMS. The known compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19}$ F NMR data were recorded with Bruker 400 MHz with TMS as the internal standard. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constants and integration. All chemical shifts (δ) were reported in ppm and coupling constants (J) in Hz . All chemical shifts were reported relative to TMS (0.00 ppm) for ${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR, respectively. High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument. GC-MS spectra were recorded on a Varian GC-MS 3900-2100 T. GC analysis was performed on an Agilent 7890B gas chromatograph with an FID detector using a J \& W DB-1 column ($10 \mathrm{~m}, 0.1 \mathrm{~mm}$ I.D.). Optical rotation was determined using a Perkin Elmer 343 polarimeter. HPLC analysis was conducted on an Agilent 1260 Series instrument. Column Chromatography was performed with silica gel Merck 60 (300-400 mesh). Purification of the product amine were performed on deactivated silica gel. The deactivated silica gel was prepared by washing the silica gel with petroleum ether/triethylamine (20:1 v / v) prior to purification.

General Procedures for the Synthesis of Conjugated Dienes

Dienes 1a-1i were prepared from commercially available cinnamic acids or cinnamaldehydes, the following scheme shows general procedures (Preuß et al, 2013; Sardini \& Brown, 2017):

Scheme S1 (related to Figure 4):

Step A: A mixture of aldehyde ($125 \mathrm{mmol}, 1.0$ equiv) and malonic acid ($28.7 \mathrm{~g}, 275 \mathrm{mmol}, 2.2$ equiv) was suspended in 65 mL pyridine. Piperidine (2.0 mL) was added and the mixture was
heated to $100^{\circ} \mathrm{C}$ until no more gas formation was observed through a gas-washing bottle. The reaction mixture was then poured into ice-cold aqueous HCl solution ($2 \mathrm{M}, 500 \mathrm{~mL}$) under continuous stirring. The pH -value was checked and adjusted with additional aqueous HCl solution to be strong acidic. The resulting suspension was filtered and the solid cinnamic acid was washed with aqueous $\mathrm{HCl}(2 \mathrm{M})$ until no basic reaction of the filtrate was observed. The cinnamic acid was obtained as a white solid which was dried under reduced pressure.

Step B: The cinnamic acid ($50 \mathrm{mmol}, 1.0$ equiv) was suspended in 100 mL MeOH (2 mL per mmol acid) and $\mathrm{SOCl}_{2}(5.4 \mathrm{~mL}, 75 \mathrm{mmol}, 1.5$ equiv) was added. The reaction mixture was heated to $65^{\circ} \mathrm{C}$ for 2 h . Subsequently, the MeOH was removed under reduced pressure and the resulting solid was dissolved in dry n-hexane under an atmosphere of N_{2}. The solution was cooled to $-50^{\circ} \mathrm{C}$ and a solution of DIBAL-H in n-hexane ($1 \mathrm{M}, 100 \mathrm{~mL}, 100 \mathrm{mmol}, 2.0$ equiv) was added slowly. After complete addition, the reaction mixture was stirred for 2.5 h at $-50^{\circ} \mathrm{C}$. Then 10 mL MeOH and 50 mL aqueous NaHCO_{3} solution were added slowly and the mixture was allowed to reach room temperature. The resulting slurry was carefully acidified with aqueous $\mathrm{HCl}(1 \mathrm{M})$ until all solid was dissolved. The layers were separated and the aqueous layer was extracted with n-hexane $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure.

Step C: The resulting crude allylic alcohol was dissolved in $400 \mathrm{~mL} n$-hexane. Then manganese dioxide ($65.2 \mathrm{~g}, 750 \mathrm{mmol}$, 20.0 equiv) was added and the reaction mixture was stirred under an atmosphere of N_{2}. The progress of the reaction was monitored by thin layer chromatography and after complete conversion, the reaction mixture was filtered through silica gel. The solid residue was washed with EtOAc and the solvent was removed under reduced pressure. Finally, the crude product was purified by flash column chromatography to give the corresponding cinnamaldehyde.

Step D: To a flame-dried round bottom flask was added phosphonium (1.25 equiv) and KOt $\mathrm{Bu}\left(1.3\right.$ equiv). The flask was evacuated and backfilled with N_{2} three times. THF (0.25 M) was then added via syringe. The solution was allowed to stir at ambient temperature for 30 min before adding aldehyde (1.0 equiv) dropwise over 10 minutes. The reaction was then allowed to stir at room temperature for 12 h . The reaction was then quenched with 100 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the aqueous layer was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine $(1 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and gravity filtered. The solvent was removed under reduced pressure, and the crude product was purified via silica gel column chromatography to give the desired diene.
(E)-buta-1,3-dien-1-ylbenzene (1a) (Preuß et al, 2013): colorless liquid, 88% yield, step $\mathbf{D} .{ }^{1} \mathbf{H}$

(m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 137.2,137.1,132.8,129.6,128.6,127.6,126.4$, 117.6 ppm.
(E)-1-(buta-1,3-dien-1-yl)-2-methoxybenzene (1b) (Davenport \& Fernandez, 2018): colorless liquid, 80% yield, step D. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ (dd, $J=7.7$,
 $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{dt}, J=16.9,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.12(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,137.9,130.2,128.6,127.6,126.4,126.0,120.6,117.0,110.8,55.4$ ppm.
(E)-1-(buta-1,3-dien-1-yl)-3-methoxybenzene (1c) (Preuß et al, 2013): colorless solid, 41\%
 yield, steps A-D. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.01-$ $6.99(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.45$ (m, 2H), 5.36-5.31 (m, 1H), 5.19-5.16 (m, 1H), $3.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.8,138.6,137.1,132.7,129.9,129.5,119.2$, 117.8, 113.4, 111.6, 55.19 ppm.
(E)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (1d) (Preuß et al, 2013): colorless solid, 85\% yield, step D. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.88-$
 $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.44(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,137.3,132.4,129.9,127.6,116.5,114.0,55.3 \mathrm{ppm}$.
(E)-1-(buta-1,3-dien-1-yl)-4-fluorobenzene (1e) (Hu et al, 2018): colorless liquid, 90% yield, step D. ${ }^{1}$ H NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 7.37-7.34 (m, 2H), 7.03-6.97 (m,
 $2 \mathrm{H})$, 6.73-6.66 (m, 1H), 6.53-6.43 (m, 2H), $5.32(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3$ (d, $J=247.2 \mathrm{~Hz}), 136.9,133.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 131.5,129.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, 117.7, $115.5(\mathrm{~d}, J=21.7 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-114.18 \mathrm{ppm}$.
(E)-1-(buta-1,3-dien-1-yl)-4-(trifluoromethyl)benzene (1f) (Adamson \& Malcolmson, 2017):
 colorless liquid, 28% overall yield, steps B-D. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.57-7.55 (m, 2H), 7.49-7.47 (m, 2H), 6.85 (dd, $J=15.7$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.43-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.25(\mathrm{~m}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5(\mathrm{q}, J=1.4 \mathrm{~Hz}$), 136.6, 131.9, 131.2, $129.2(\mathrm{q}, J$ $=32.4 \mathrm{~Hz}), 126.5,125.5(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.2(\mathrm{q}, J=271.5 \mathrm{~Hz}), 119.4 \mathrm{ppm} ;{ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.40 \mathrm{ppm}$.
(E)-4-(buta-1,3-dien-1-yl)-N,N-dimethylaniline (1g) (Davenport \& Fernandez, 2018): yellow solid, 37% yield, step D. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.29$ (m, 2 H), 6.69-6.67 (m, 2H), 6.63 (dd, $J=15.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.44$ (m, 2H), 5.25-5.20 (m, 1H), $5.04(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 150.0, 137.8, 133.1, 127.5, 125.6, 115.0, 112.4, 40.5 ppm .
(E)-2-(buta-1,3-dien-1-yl)furan (1h) (Preuß et al, 2013): slight yellow liquid, 75\% yield, step D. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73-6.67 (m, 1H), 6.48-6.41 (m, 1H), 6.39-6.34 (m, 2H), 6.27 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.30$ (m, 1H), 5.17-5.14 (m, 1H) ppm; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9$, 142.2, 136.7, 128.2, 120.4, 117.8, 111.6, 108.5 ppm.
(E)-buta-1,3-dien-1-ylcyclohexane (1i) (Preuß et al, 2013): colorless liquid, 32\% overall yield, steps A-D. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.35-6.25(\mathrm{~m}, 1 \mathrm{H}), 6.05-5.98$ (m,
 1 H), 5.66 (dd, $J=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.94(\mathrm{~m}, 1 \mathrm{H})$, 2.04-1.95 (m, 1H), 1.75-1.70 (m, 4H), 1.67-1.62 (m, 1H), 1.33-1.03 (m, 5H)
ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.3,137.6,128.3,114.7,40.6,32.7,26.1,26.0 \mathrm{ppm}$.

Scheme S2 (related to Figure 4):

Synthesis of (E)-hexa-3,5-dien-1-ylbenzene (1j) (Adamson \& Malcolmson, 2017): To a solution of diethyl allylphosphonate ($4.28 \mathrm{~g}, 24 \mathrm{mmol}$, 1.2 equiv) in anhydrous THF (45 mL) was added dropwise $n \mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ in hexanes, 9.6 mL , $24 \mathrm{mmol}, 1.2$ equiv) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 45 min , a solution of phenylpropyl aldehyde ($2.6 \mathrm{~mL}, 20 \mathrm{mmol}, 1.0$ equiv $)$ in DMPU (2.4 mL , $20 \mathrm{mmol}, 1.0$ equiv) was added dropwise via cannula. The resulting solution was stirred for 2 h at $-78^{\circ} \mathrm{C}$, and then allowed to warm to room temperature. Stirring was continued overnight at room temperature before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with diethyl ether $(3 \times 45 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford the crude product. Purification by flash chromatography (PE as eluent) gave the desired diene $\mathbf{1 j}$ ($1.23 \mathrm{~g}, 39 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) δ 7.30-7.26 (m, 2H), 7.20-7.17 (m, 3H), 6.35-6.26 (m, 1H), 6.12$6.05(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.96(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.44-$ 2.38 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 141.7,137.1,134.2,131.4,128.4,128.3$, 125.8, 115.2, 35.6, 34.4 ppm.

Reaction Optimization

A reaction vial was charged with $\mathrm{Ni}(C O D)_{2}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05$ equiv vs amine), ligand ($0.01 \mathrm{mmol}, 0.05$ equiv vs amine), morpholine ($17 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1.0$ equiv), 1phenylbutadiene ($40 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv), and 1.0 mL of solvent (toluene, THF, MTBE, EA, n-hexane, i - $\mathrm{PrOH}, \mathrm{CH}_{3} \mathrm{CN}$ or PhCN) in an argon-filled glovebox, then acid (0.00-0.20 equiv vs amine) was added. The reaction vessel was sealed using a PTFE septum and removed from the glovebox, and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . Yields were determined by gas chromatogram analysis, using naphthalene as the internal standard. The ee values were determined by HPLC on a chiral stationary phase.

Table S1. Solvent screening for the Ni-catalyzed asymmetric hydroamination of 1a, related to
Figure 2. ${ }^{[a]}$

[a] Unless otherwise noted, all reactions were carried out with 0.10 mmol amine, 0.15 mmol diene, $5.0 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}$, $5.0 \mathrm{~mol} \%(S, S)$-BDPP, $5.0 \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in 1 mL solvent at $25^{\circ} \mathrm{C}$ for 24 h . [b] Yield was determined by gas chromatogram analysis, using naphthalene as the internal standard. [c] Determined by HPLC analysis using a chiral stationary phase. [d] Not determined. [e] No product.

Table S2. Ligand screening for Ni-catalyzed asymmetric hydroamination of 1a, related to Figure 2. ${ }^{[a]}$

Entry	Ligand	Yield [\%] $]^{[b]}$	ee [\%] ${ }^{[\text {c] }]}$
1	L1	65	30
2	L2	42	21

3	L3	trace	ND $^{[d]}$
4	$\mathbf{L 4}$	trace	ND
5	$\mathbf{L 5}$	24	12
6	$\mathbf{L 6}$	90	23
7	$\mathbf{L 7}$	86	84
8	$\mathbf{L 8}$	30	98
$9^{[\text {e] }]}$	$\mathbf{L 8}$	$69^{[f]}$	98

[a] Unless otherwise noted, all reactions were carried out with 0.10 mmol amine, 0.15 mmol diene, $5.0 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}$, $5.0 \mathrm{~mol} \%$ ligand, $5.0 \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in 1 mL toluene at $25^{\circ} \mathrm{C}$ for 24 h . [b] Yield was determined by gas chromatogram analysis, using naphthalene as the internal standard. [c] Determined by HPLC analysis using a chiral stationary phase. [d] Not determined. [e] The catalyst was stirred at room temperature one hour in advance. [f] Isolated yield.

L1: (S)-BINAP

L2: (S)-SegPhos

L3: (S)-SKP
L4: (R)-SDP

L6: (S,S)-BDPP
L7: $\left(R_{C}, S_{P}\right)$-DuanPhos
L5: (R)-DIOP
\qquad
L8: (S, S)-Me-DuPhos

Table S3. Acid additives screening for Ni-catalyzed asymmetric hydroamination of 1a, related to Figure 2. ${ }^{[a]}$

Entry	Acid	Yield[\%] ${ }^{[b]}$	ee[\%] ${ }^{[c]}$
1	A1	86	86
2	A2	86	98
3	A3	98	98
4	A4	$944^{[d]}$	96

5	A5	85	95
6	$\mathbf{A 6}$	89	96
7	$\mathbf{A 7}$	72	90
8	$\mathbf{A 8}$	83	93
$9^{[\mathrm{e}]}$	$\mathbf{A 3}$	99	98
$10^{[\mathrm{e}]}$	$\mathbf{A 4}$	99	96

[a] Unless otherwise noted, all reactions were carried out with 0.20 mmol diene, 0.40 mmol amine, $5.0 \mathrm{~mol} \%$ $\mathrm{Ni}(C O D)_{2} /(S, S)-M e-D u P h o s, 5.0 \mathrm{~mol} \%$ acid in 1 mL toluene at $25^{\circ} \mathrm{C}$ for 24 h ; The catalyst was stirred at room temperature one hour in advance. [b] Yield was determined by gas chromatogram analysis, using naphthalene as the internal standard. [c] Determined by HPLC analysis using a chiral stationary phase. [d] Isolated yield. [e] With 0.30 mmol amine.

General Procedure for Ni-catalyzed Asymmetric Hydroamination of Conjugated Dienes

Scheme S3 (related to Figure 3, Figure 4 and Figure 5):

A stock solution was made by mixing $\mathrm{Ni}(C O D)_{2}$ with L 8 in a $1: 1$ molar ratio in toluene $(0.01$ M) at room temperature for 1 h in a argon-filled glovebox. An aliquot of the catalyst solution (1.0 $\mathrm{mL}, 0.01 \mathrm{mmol}$) was transferred by syringe into the vials charged with different 1,3-dienes (0.2 mmol for each) and amines (0.3 mmol for each), and then 0.01 mmol A4 was added. The reaction vessel was sealed using a PTFE septum and removed from the glovebox, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for $12-48 \mathrm{~h}$. The product was purified by column chromatography on deactivated silica gel using PE/EtOAc. The ee values of all compounds 3 were determined by HPLC on a chiral stationary phase.
(S,E)-4-(4-phenylbut-3-en-2-yl)morpholine (3a): with A3, 12 h , obtained pale yellow oil 43.4
 mg ; Isolated yield: 99\%; 98\% ee; $[\alpha]^{25}=-72.0$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=90: 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=11.4 \mathrm{~min}$ (minor), 14.4 min (major); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.39-7.36 (m, 2H), 7.33-7.29 (m, 2H), 7.25-7.21 (m, 1H), 6.47 (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (dd, J $=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.8,132.0,131.2,128.6,127.5,126.2,67.2$, 63.1, 50.8, 17.8 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}=240.1359$, found: 240.1359.
(S,E)-N-butyl-4-phenylbut-3-en-2-amine (3b): with A4, 24 h , obtained colorless oil 37.7 mg ;

Isolated yield: 93\%; > 99\% ee; [a]d ${ }^{25}=-60.3$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=9.2 \mathrm{~min}$ (major), 9.7 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, \mathrm{J}=15.9$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.25$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1,134.4$, 129.7, 128.5, 127.2, 126.2, 56.4, 47.3, 32.4, 22.0, 20.5, 14.0 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NNa}=226.1566$, found: 226.1565.
(S,E)-N-phenethyl-4-phenylbut-3-en-2-amine (3c): with A4, 24 h , obtained pale yellow oil
 50.3 mg ; Isolated yield: 99%; $92 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{25}=-76.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm , $\mathrm{t}_{\mathrm{R}}=13.9 \mathrm{~min}$ (major), 15.0 min (minor); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, \mathrm{J}=15.9$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.79(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.9,136.9,133.9,129.9,128.7,128.5,128.4,127.3,126.2,126.1,56.2,48.8$, 36.4, 21.9 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNa}=274.1566$, found: 274.1563.
(S,E)-N-(4-phenylbut-3-en-2-yl)cyclopropanamine (3d): with A4, 24 h , obtained colorless oil
 22.9 mg ; Isolated yield: 61%; > 99\% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-91.8$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.5 \mathrm{~min}$ (major), 10.9 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.39-7.37 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 1H), $6.49(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=15.9,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, ~ J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{br}, \mathrm{s} 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.47-0.33 (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,134.4,129.4,128.5,127.2,126.2$, 56.5, 28.6, 21.8, 6.6, 6.4 ppm; HRMS (ESI) calculated [$\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNa}=210.1253$, found: 210.1254 .
(S,E)-N-(4-phenylbut-3-en-2-yl)cyclohexanamine (3e): with A4, 24 h , obtained pale yellow
 oil 34.9 mg ; Isolated yield: 76\%; 92\% ee; [$\alpha \mathrm{D}^{25}=-66.1$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.0 \mathrm{~min}$ (major), 12.1 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.49-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.97(\mathrm{~m}$, 1 H), 1.84-1.58 (m, 3H), 1.69 (br, s, 1H), 1.26-0.98 (m, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.1, 134.8, 129.3, 128.5, 127.2, 126.2, 53.5, 52.5, 34.4, 33.2, 26.1, 25.3, 25.0, 22.5 ppm. HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNa}=252.1723$, found: 252.1722.
(S,E)-N-(furan-2-ylmethyl)-4-phenylbut-3-en-2-amine (3f): with A4, 24 h , obtained pale
 yellow oil 45.5 mg ; Isolated yield: 99\%; 99\% ee; $[\alpha]{ }_{\mathrm{D}}{ }^{25}=-49.2$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=17.0 \mathrm{~min}$ (minor), 20.0 min (major); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.40-7.36 (m, 3H), 7.33-7.30 (m, 2H), 7.25-7.21 (m, 1H), $6.49(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}$, $J=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 1 \mathrm{H})$,
$1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.9,141.8,137.0,133.7,130.5$, 128.5, 127.4, 126.3, 110.1, 106.8, 55.3, 43.8, 22.0 ppm; HRMS (ESI) calculated [M+H] ${ }^{+}$for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}=228.1383$, found: 228.1380 .
(S,E)-N-(2-(cyclohex-1-en-1-yl)ethyl)-4-phenylbut-3-en-2-amine (3g): with A4, 24 h ,
 obtained pale yellow oil 50.9 mg ; Isolated yield: 99\%; 96% ee; [a]d ${ }^{25}=-66.1$ ($c=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.0 \mathrm{~min}$ (minor), 11.6 min (major); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) ס 7.39-7.36 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, $1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.45(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}$, $1 \mathrm{H}), 2.74-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.64-$ $1.51(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.1$, 135.4, 134.4, 129.7, 128.5, 127.2, 126.2, 122.8, 56.2, 45.2, 38.4, 28.1, 25.2, 22.9, 22.4, 22.1 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}=256.2060$, found: 256.2057.
(S,E)-N-allyl-4-phenylbut-3-en-2-amine (3h): with A4, 24 h , obtained pale yellow oil 29.1 mg ; Isolated yield: 78\%; > 99\% ee; [a]D25 = -60.4 (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=11.9 \mathrm{~min}$ (major), 12.7 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.39-7.37 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 1H), 6.46 (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.06 (dd, J $=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H})$, 3.34-3.28 (m, 1H), 3.24-3.18 (m, 1H), $1.86(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0,136.8,133.9,130.1,128.5,127.3,126.2,115.9,55.6,50.0,22.0$ ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNa}=210.1253$, found: 210.1258.
(2S,E)-4-phenyl-N-((tetrahydrofuran-2-yl)methyl)but-3-en-2-amine (3i): with A4, 24 h ,
 obtained pale yellow oil 46.4 mg ; Isolated yield: 99%; 99% ee; $d r=1: 1$; $[\alpha] D^{25}=-53.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 99:1, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R} 1}=15.3 \mathrm{~min}$ (major), 16.9 min (minor), $\mathrm{t}_{\mathrm{R} 2}=19.8 \mathrm{~min}$ (minor), 21.2 min (major); 3i: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dd, $J=8.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.38$ (m, 1H), 2.77 (dd, $J=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.46$ (m, 1H), $1.29(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 136.9, 133.7, 130.4, 128.5, 127.3, 126.3, 78.5, 67.9, 56.8, 52.3, 29.4, 25.7, $21.9 \mathrm{ppm} ; 3 \mathrm{i}^{\prime}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.39-7.37 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 1H), $6.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=$ 8.1, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08-3.98(m, 1H), 3.88-3.82 (m, 1H), 3.78-3.72 (m, 1H), 3.45-3.38(m, 1H),
$2.70(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=11.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,133.7,130.2,128.5,127.3,126.3$, 77.9, 67.9, 56.2, 51.7, 29.3, 25.7, 21.8 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}=$ 232.1696, found: 232.1693.
(S,E)- $\mathbf{N}^{1}, \mathrm{~N}^{1}$-dimethyl- \mathbf{N}^{2}-(4-phenylbut-3-en-2-yl)ethane-1,2-diamine (3j): with A4, 24 h ,
 obtained pale yellow oil 42.0 mg ; Isolated yield: 96%; 97% ee; $[\alpha]{ }^{25}{ }^{25}=-$ 71.1 ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by (converting it to compound Bz-3j) HPLC on Chiralpak AS-H column, hexane: isopropanol $=90: 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=43.1 \mathrm{~min}$ (major), 50.8 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.39-7.37 (m, 2H), 7.32-7.29 (m, 2H), 7.24-7.20 (m, 1H), $6.47(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J$ $=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 1.27$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0,134.0,130.0,128.5,127.3,126.2$, 59.0, 56.5, 45.4, 44.7, 22.0 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2}=219.1856$, found: 219.1856.
(S,E)-N-benzyl-4-phenylbut-3-en-2-amine (3k): with A4, 24 h , obtained pale yellow oil 43.3 mg ; Isolated yield: 91%; 95% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-99.5$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=11.3 \mathrm{~min}$ (major), 12.2 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.40-7.38 (m, 2H), 7.33-7.30 (m, 6H), 7.27-7.20 (m, 2H), $6.48(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J$ $=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}) 3.73(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 1 \mathrm{H}), 1.27$ $(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,137.1,134.2,130.1,128.5,128.4$, 128.1, 127.3, 126.9, 126.3, 55.5, 51.5, 22.1 ppm ; HRMS (ESI) calculated [M+Na] for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNa}=260.1410$, found: 260.1405 .
methyl (S,E)-(4-phenylbut-3-en-2-yl)glycinate (3I): with A3, 48 h , obtained pale yellow oil
 35.1 mg ; Isolated yield: 80%; > 99\% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-154.7$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=27.2 \mathrm{~min}$ (major), 28.4 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.01 (dd, $J=15.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.17$ (br, s, 1H), 1.27 (d, J = 6.5 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 173.2,136.8,133.2$, 130.7, 128.5, 127.5, 126.3, 56.2, 51.8, 48.4, 22.0 ppm; HRMS (ESI) calculated [M+H] ${ }^{+}$for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}=220.1332$, found: 220.1331 .
(S,E)-4-phenyl-N-((R)-1-phenylethyl)but-3-en-2-amine (3m): with A4, 48 h , obtained pale yellow oil 28.2 mg ; Isolated yield: 56%; > 20:1 dr; $[\alpha]_{\mathrm{D}}{ }^{25}=-55.3(\mathrm{c}=1.0$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.19(\mathrm{~m}$, $2 \mathrm{H}), 6.42$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.90$ (m, 1H), 3.38-3.31 (m, 1H), 1.76 (br, s, 1H), $1.37(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.8,137.1,134.6,129.2,128.5,127.2$, 126.8, 126.5, 126.2, 54.8, 53.0, 23.7, 21.2 ppm; HRMS (ESI) calculated [M+Na] ${ }^{+}$for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNa}$ $=274.1566$, found: 274.1566 .
(S,E)-N-(4-phenylbut-3-en-2-yl)aniline (3n): with A3, 24 h , obtained colorless oil 34.7 mg ;
 Isolated yield: 78\%; 86\% ee; [$\alpha]_{\mathrm{D}}{ }^{25}=-80.6$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.6 \mathrm{~min}$ (major), 13.4 min (minor); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) ס 7.36-7.34 (m, 2H), 7.30-7.27 (m, 2H), 7.22-7.13 (m, 3H), 6.70-6.63 (m, 3H), $6.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 147.4,136.9,133.2,129.2,129.1,128.5,127.3$, 126.3, 117.3, 113.4, 50.8, 22.1 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNa}=246.1253$, found: 246.1253.
(S,E)-4-methyl-N-(4-phenylbut-3-en-2-yl)aniline (30): with A4, 48 h , obtained reddish orange oil 10.8 mg (or with A3, 36 h , obtained reddish orange oil 43.9 mg); Isolated yield: 23\% (or 93\%); 93\% (or 73\%) ee; [a]d ${ }^{25}=-99.5$ (c = $1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.6 \mathrm{~min}$ (major), 16.5 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.59-6.55 (m, 3H), $6.21(\mathrm{dd}, J=16.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,136.9,133.4,129.6,129.1,128.5,127.3$, 126.5, 126.3, 113.6, 51.1, 22.1, 20.4 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNa}=$ 260.1410, found: 260.1405 .
(S,E)-4-bromo-N-(4-phenylbut-3-en-2-yl)aniline (3p): with A3, 36 h , obtained reddish orange
 oil 29.2 mg ; Isolated yield: 48\%; 92\% ee; [a]d25 ${ }^{25}=-111.6$ (c = 1.0, $\left.\mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=95: 5$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=13.5 \mathrm{~min}$ (minor), 17.2 min (major); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 7.35-7.32 (m, 2H), 7.31-7.27 (m, 2H), 7.24-7.19 (m, 3H), 6.56-6.49 (m, 3H), $6.16(\mathrm{dd}, \mathrm{J}=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.40(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 146.3,136.7,132.5,131.8,129.5,128.5$,
127.5, 126.3, 114.9, 108.8, 50.9, 22.0 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}=$ 302.0539, found: 302.0524 .
(S,E)-4-(4-phenylbut-3-en-2-yl)thiomorpholine (3q): with A4, 24 h , obtained colorless oil 42.9
 mg ; Isolated yield: 92\%; 96\% ee; [a]d ${ }^{25}=-59.0$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=90: 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=8.7 \mathrm{~min}$ (minor), 9.7 min (major); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=16.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,131.7,130.9,128.5,127.4,126.2,62.7,51.6$, 28.3, 16.3 ppm; HRMS (ESI) calculated [M+Na] ${ }^{+}$for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaS}=256.1130$, found: 256.1130.
(S,E)-1-(4-phenylbut-3-en-2-yl)piperidine (3r): with A4, 24 h , obtained pale yellow oil 40.8 mg ;
 Isolated yield: 95\%; 95\% ee; [a]d ${ }^{25}=-55.7$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}($ minor $), 9.8 \mathrm{~min}$ (major); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-$ 7.37 (m, 2H), 7.32-7.29 (m, 2H), $7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=$ $15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.11-3.05 (m, 1H), 2.52-2.50 (m, 4H), 1.63-1.57 (m, 4H), 1.46-1.42 (m, 2H), $1.26(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,132.7,130.5,128.5,127.2$, 126.2, 63.0, 51.0, 26.2, 24.6, 17.7 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNa}=$ 238.1566, found: 238.1568.
(S,E)-1-(4-phenylbut-3-en-2-yl)pyrrolidine (3s): with A4, 24 h , obtained pale yellow oil 36.7 mg; Isolated yield: 91\%; 97\% ee; $[\alpha]^{25}=-92.4$ (c = 1.0, CHCl_{3}); The
 enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm , $\mathrm{t}_{\mathrm{R}}=7.6 \mathrm{~min}$ (minor), 8.1 min (major); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.36$ (m, 2H), 7.32-7.28 (m, 2H), 7.23-7.19 (m, 1H), 6.47 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.24 (dd, $J=15.8,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 137.1,133.9,129.6,128.5,127.2,126.2,63.1,52.2,23.3,21.0$ ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNa}=224.1410$, found: 224.1410.
(S,E)-1-(4-phenylbut-3-en-2-yl)indoline (3t): with A3, 24 h , obtained pale yellow oil 43.6 mg ;
 Isolated yield: 87\%; 97\% ee; [$\alpha]^{25}=-109.4$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$; UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=13.8 \mathrm{~min}$ (major), 14.6 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.34 (m, 2H), 7.31-7.27 (m, 2H), 7.23-7.19 (m, 1H), 7.07-7.02 (m, 2H), 6.64-6.60 (m, 1H),
6.57-6.52 (m, 2H), $6.32(\mathrm{dd}, \mathrm{J}=16.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.95$ ($\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.40(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.0,136.9$, 130.7, 130.4, 130.3, 128.5, 127.4, 127.2, 126.3, 124.4, 117.2, 107.6, 52.2, 47.3, 28.2, 16.1 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNa}=272.1410$, found: 272.1412 .
(S,E)-2-(4-phenylbut-3-en-2-yl)-1,2,3,4-tetrahydroisoquinoline (3u): with A4, 24 h , obtained
 pale yellow oil 52.6 mg ; Isolated yield: 99\%; > 99\% ee; [$\alpha]_{D^{25}}=-51.5$ (c = $\left.1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.0 \mathrm{~min}$ (minor), 14.5 min (major); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) δ 7.41-7.39 (m, 2H), 7.34-7.30 (m, 2H), 7.24$7.22(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, \mathrm{J}=16.0$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.73(\mathrm{~m}, 1 \mathrm{H}), 1.37$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 137.0,134.9,134.4,132.3,130.9,128.6$, 128.5, 127.4, 126.8, 126.3, 126.0, 125.5, 61.9, 53.0, 47.3, 29.4, 17.9 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNa}=286.1566$, found: 286.1563 .
(S,E)-2-(4-(4-phenylbut-3-en-2-yl)piperazin-1-yl)pyrimidine (3v): with A4, 48 h , obtained
 pale yellow oil 58.9 mg ; Isolated yield: 99\%; 95\% ee; [$\alpha]_{\mathrm{D}}{ }^{25}=-68.1$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=12.7 \mathrm{~min}$ (major), 15.2 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.36$ (m, 2H), 7.33-7.29 (m, $2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.49-6.45(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,157.7,136.9,132.1,131.1,128.6,127.4$, 126.3, 109.7, 62.6, 49.9, 43.9, 17.8 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{Na}=$ 317.1737, found: 317.1730.
(S,E)-N-allyl-N-methyl-4-phenylbut-3-en-2-amine (3w): with A4, 24 h, obtained pale yellow
 oil 33.2 mg ; Isolated yield: 82%; 99% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-49.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm , $\mathrm{t}_{\mathrm{R}}=8.0 \mathrm{~min}$ (minor), 9.3 min (major); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.36$ $(\mathrm{m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=16.0,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.93-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.03$ (m, 1H), 2.25 (s, 3H), 1.25 (d, J = 6.7 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 137.2,136.3$, 131.9, 130.8, 128.5, 127.3, 126.3, 117.3, 60.4, 57.4, 37.7, 17.2 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNa}=224.1410$, found: 224.1412 .
(S,E)-N-benzyl-N-methyl-4-phenylbut-3-en-2-amine (3x): with A3, 24 h , obtained pale yellow oil 44.2 mg ; Isolated yield: 88%; 98% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-91.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The
 enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=5.0 \mathrm{~min}$ (minor), 6.0 min (major); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, \mathrm{J}=16.0$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39-3.32 (m, 1H), 2.22 (s, 3 H), 1.30 ($\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8,137.2,132.0,130.8$, 128.9, 128.5, 128.2, 127.3, 126.8, 126.2, 60.4, 58.2, 37.9, 16.9 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNa}=274.1566$, found: 274.1563.
(S,E)-N,N-dibenzyl-4-phenylbut-3-en-2-amine (3y): with A3, 24 h, obtained pale yellow oil
 34.6 mg ; Isolated yield: 53\%; 96\% ee; [$\alpha]_{\mathrm{D}}{ }^{25}=-193.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=7.6 \mathrm{~min}$ (major), 10.5 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.38 (m, 6H), 7.34-7.29 (m, 6H), 7.24-7.20 (m, 3H), $6.43(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, \mathrm{J}$ $=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 1 \mathrm{H}), 1.29$ (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.6,137.3,131.6,130.9,128.52$, 128.50, 128.2, 127.2, 126.7, 126.2, 54.8, 53.7, 15.8 ppm; HRMS (ESI) calculated [M+Na] ${ }^{+}$for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NNa}=350.1879$, found: 350.1873 .
(S,E)-N,N-diethyl-4-phenylbut-3-en-2-amine (3z): with A3, 36 h , obtained pale yellow oil 11.0
 mg ; Isolated yield: 27%; 96% ee; $[\alpha]{ }_{\mathrm{D}}{ }^{25}=-26.8$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.7 \mathrm{~min}$ (minor), 8.0 min (major); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}$, 1 H), 6.24 (dd, $J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, 3 H), 1.06 (t, J = 7.2 Hz, 6H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,133.0,130.0,128.5$, 127.2, 126.2, 57.5, 43.4, 17.4, 12.8 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NNa}=$ 226.1566, found: 226.1568.
(S,E)-N-methyl-N-(4-phenylbut-3-en-2-yl)aniline (3aa): with A3, 36 h , obtained pale yellow
 oil 10.4 mg ; Isolated yield: 22%; 90% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-169.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.7 \mathrm{~min}$ (major), 15.0 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.35$ (m , $2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=16.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.30 (dd, $J=16.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.62(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,137.1,131.3,130.0,129.2,128.6,127.4,126.3,116.8$, 113.4, 54.9, 31.7, 16.2 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]+$ for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNa}=260.1410$, found: 260.1411.
(S,E)-N-(furan-2-ylmethyl)-4-(2-methoxyphenyl)but-3-en-2-amine (3ab): with A4, 24 h ,
 obtained pale yellow oil 51.5 mg ; Isolated yield: 99%; > 99\% ee; [$\alpha]_{\mathrm{D}}{ }^{25}$ $=-114.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=27.5 \mathrm{~min}$ (major), 32.5 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (dd, $J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (dd, $J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H})$, 6.87 (dd, $J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}$, $J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=16.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.6,154.1,141.7,134.3,128.4,126.7,126.0,125.2,120.6,110.8,110.0,106.8$, 55.7, 55.4, 43.8, 22.1 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}=258.1489$, found: 258.1484 .
(S,E)-N-(furan-2-ylmethyl)-4-(3-methoxyphenyl)but-3-en-2-amine (3ac): with A4, 24 h ,
 obtained pale yellow oil 51.0 mg ; Isolated yield: 99\%; > 99\% ee; $[\alpha]_{D}{ }^{25}=-104.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=28.0 \mathrm{~min}$ (major), 29.9 min (minor); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.99-6.96 (m, 1H), 6.93-6.92 (m, 1H), 6.79 (ddd, $J=8.2,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.9,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 1 \mathrm{H}), 1.88$ (br, s, 1H), $1.26(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,153.8,141.8$, 138.4, 133.9, 130.4, 129.5, 119.0, 113.2, 111.4, 110.1, 106.8, 55.2, 43.7, 21.9 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]+$ for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}=258.1489$, found: 258.1481.
(S,E)-N-(furan-2-ylmethyl)-4-(4-methoxyphenyl)but-3-en-2-amine (3ad): with A4, 24 h ,
 obtained pale yellow oil 51.5 mg ; Isolated yield: 99\%; > 99\% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-159.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=33.8 \mathrm{~min}$ (major), 35.4 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, \mathrm{J}=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.88-$ $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.1,0.8 \mathrm{~Hz}$,

1H), 5.93 (dd, $J=15.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.39-3.33 (m, 1H), $1.86(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.0,153.9,141.8,131.4,130.0,129.7,127.4,113.9,110.1,106.8,55.33,55.29$, 43.8, 22.1 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{2}=280.1308$, found: 280.1310.
(S,E)-4-(4-fluorophenyl)-N-(furan-2-ylmethyl)but-3-en-2-amine (3ae): with A4, 24 h ,
 obtained pale yellow oil 49.1 mg ; Isolated yield: 99%; > 99\% ee; $[\alpha]{ }^{25}=-137.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm , $t_{R}=25.0 \mathrm{~min}$ (major), 27.4 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.31 (dd, $J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=15.8,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.25(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.1(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 153.8,141.8,133.4$ (d, $J=2.2 \mathrm{~Hz}), 133.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.3,127.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 110.1$, 106.8, 55.2, 43.8, 22.0 ppm ; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ - 114.82 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNNaO}=268.1108$, found: 268.1103.
(S,E)-N-(furan-2-ylmethyl)-4-(4-(trifluoromethyl)phenyl)but-3-en-2-amine (3af): with A4,
 24 h , obtained pale yellow oil 59.2 mg ; Isolated yield: 99\%; 96\% ee; $[\alpha]{ }_{\mathrm{D}}{ }^{25}=-99.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=11.5 \mathrm{~min}$ (major), 13.0 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (dd, $J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.15(\mathrm{~m}$, $2 \mathrm{H}), 3.82(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$, $1.27(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,141.8,140.5(\mathrm{q}, \mathrm{J}=1.6 \mathrm{~Hz})$, $136.5,129.11$ (q, $J=32.2 \mathrm{~Hz}$), 129.09, $126.4,125.5(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.2(\mathrm{q}, J=270.5 \mathrm{~Hz})$, 110.1, 106.9, 55.1, 43.8, $21.8 \mathrm{ppm} ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.36 \mathrm{ppm}$; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}=296.1257$, found: 296.1250.
(S,E)-4-(3-((furan-2-ylmethyl)amino)but-1-en-1-yl)-N,N-dimethylaniline (3ag): with A4, 24 h ,
 obtained pale yellow oil 49.8 mg ; Isolated yield: 92%; > 99\% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-167.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=29.8 \mathrm{~min}$ (minor), 32.1 min (major); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, \mathrm{J}=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.70-$
$6.67(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.1,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.85(\mathrm{dd}, J=15.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-$ 3.31 (m, 1H), 2.95 (s, 6H), 2.24 (br, s, 1H), 1.25 (d, J = 6.4 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ б 153.9, 150.0, 141.7, 130.6, 129.1, 127.2, 125.4, 112.5, 110.0, 106.8, 55.5, 43.6, 40.6, 22.1 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}=271.1805$, found: 271.1805.
(S,E)-4-(furan-2-yl)-N-(furan-2-ylmethyl)but-3-en-2-amine (3ah): with A4, 36 h , obtained
 pale yellow oil 37.0 mg ; Isolated yield: 85\%; 96\% ee; [a]d ${ }^{25}=-124.5$ (c $=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}, ~ U V$ detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=19.1 \mathrm{~min}$ (major), 24.9 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.30(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.0,152.6,141.8,141.7,132.5,118.9,111.2,110.1,107.2,106.8,54.9$, 43.8, 22.0 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}=218.1176$, found: 218.1177.
(S,E)-4-cyclohexyl-N-(furan-2-ylmethyl)but-3-en-2-amine (3ai): with A4, 24 h , obtained pale
 yellow oil 45.4 mg ; Isolated yield: 97%; 96% ee; $[\alpha]{ }_{\mathrm{D}}{ }^{25}=-51.0$ ($c=1.0$, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.7 \mathrm{~min}$ (major), 9.4 min (minor); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J$ $=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=3.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=15.4,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.24-5.18 \mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.09(\mathrm{~m}$, $1 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.11-1.02 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,141.6,137.9,130.9$, 110.0, 106.6, 55.1, 43.6, 40.4, 33.1, 33.0, 26.2, 26.0, 22.1 ppm; HRMS (ESI) calculated [M+H] ${ }^{+}$ for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}=234.1852$, found: 234.1853 .
(S,E)-N-(furan-2-ylmethyl)-6-phenylhex-3-en-2-amine (3aj): with A4, 24 h , obtained pale
 yellow oil 51.0 mg ; Isolated yield: 99\%; 99\% ee; $[\alpha]_{D^{25}}=-41.1$ ($\mathrm{c}=1.0$, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=17.6 \mathrm{~min}$ (minor), 18.7 min (major); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (dd, $J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29-7.25 (m, 2H), 7.19-7.15 (m, 3H), 6.29 (dd, $J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=3.2,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.55(\mathrm{dt}, J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{ddt}, J=15.4,8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.12$
(d, J=6.4 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.2,141.8,141.6,134.6,130.7,128.5$, 128.3, 125.8, 110.0, 106.6, 54.9, 43.6, 35.8, 34.0, 22.0 ppm; HRMS (ESI) calculated [M+H] ${ }^{+}$ for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}=256.1696$, found: 256.1691 .
(S,E)-4-(4-(2-methoxyphenyl)but-3-en-2-yl)morpholine (3ak): with A4, 24 h , obtained pale
 yellow oil 49.5 mg ; Isolated yield: 99\%; > 99\% ee; $[\alpha]_{D^{25}}=-61.6(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}, ~ U V$ detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=22.1 \mathrm{~min}$ (minor), 24.2 min (major); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23-7.19 (m, 1H), 6.93-6.89 (m, 1H), 6.86 (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (dd, $J=16.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.52(\mathrm{~m}$, 4H), 1.26 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,132.5,128.5,126.6$, 125.9, 125.8, 120.6, 110.9, 67.2, 63.6, 55.4, 50.8, 17.9 ppm; HRMS (ESI) calculated [M+H] ${ }^{+}$ for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}=248.1645$, found: 248.1641 .
(S,E)-4-(4-(3-methoxyphenyl)but-3-en-2-yl)morpholine (3al): with A4, 24 h , obtained pale yellow oil 49.5 mg ; Isolated yield: 99\%; 98\% ee; $[\alpha]_{D^{25}}=-58.7$ (c $\left.=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=21.2 \mathrm{~min}$ (major), 24.6 min (minor); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23$ (t, J $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.06-$ $2.99(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.{ }_{3}\right) \delta$ 159.8, 138.3, 132.3, 131.1, 129.5, 118.9, 113.2, 111.4, 67.1, 63.0, 55.1, 50.7, 17.6 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}=248.1645$, found: 248.1637 .
(S,E)-4-(4-(4-methoxyphenyl)but-3-en-2-yl)morpholine (3am): with A4, 24 h , obtained pale
 yellow oil 49.3 mg ; Isolated yield: 99%; > 99\% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-80.8$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.6 \mathrm{~min}$ (minor), 29.0 min (major); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.9,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.1,130.8,129.6,129.5,127.4,113.9,67.10$, 63.2, 55.3, 50.7, 17.8 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}=270.1465$, found: 270.1464 .
(S,E)-4-(4-(4-fluorophenyl)but-3-en-2-yl)morpholine (3an): with A4, 24 h , obtained pale
 yellow oil 47.2 mg ; Isolated yield: 99\%; > 99\% ee; $[\alpha]^{25}=-70.3$ ($c=$ $1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=16.0 \mathrm{~min}$ (minor), 17.5 min (major); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.31$ (m, 2H), 7.03-6.97 (m, 2H), 6.43 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dd, $J=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.04-$ $2.97(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) δ $162.2(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 130.0,127.7(\mathrm{~d}, J=7.9$ $\mathrm{Hz}), 115.4(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 67.2,63.0,50.7,17.7 \mathrm{ppm} ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.64$ ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]+$ for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FNO}=236.1445$, found: 236.1442 .
(S,E)-4-(4-(4-(trifluoromethyl)phenyl)but-3-en-2-yl)morpholine (3ao): with A4, 24 h ,
 obtained pale yellow oil 57.1 mg ; Isolated yield: 99%; 93% ee; $[\alpha]_{D_{2}}^{25}=-48.3\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm , $\mathrm{t}_{\mathrm{R}}=15.0 \mathrm{~min}$ (major), 17.8 min (minor); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=16.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.55(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3(\mathrm{q}, J=1.9 \mathrm{~Hz}), 135.0,129.9,129.2(\mathrm{q}, J=32.4 \mathrm{~Hz})$, 126.4, 125.5 (q, $J=3.8 \mathrm{~Hz}$), 124.1 (q, $J=270.9 \mathrm{~Hz}$), 67.1, $62.9,50.7,17.5 \mathrm{ppm} ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.38 \mathrm{ppm}$; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}=286.1413$, found: 286.1418.
(S,E)-N,N-dimethyl-4-(3-morpholinobut-1-en-1-yl)aniline (3ap): with A4, 24 h , obtained pale
 yellow oil 38.8 mg ; Isolated yield: 74%; $>99 \%$ ee; $[\alpha]^{25}=-98.5$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 99:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=19.5 \mathrm{~min}$ (major), 21.3 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.25$ (m, 2H), 6.69-6.67 (m, 2H), 6.37 (d, J=15.8Hz, 1H), 5.94 (dd, J $=15.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 4 \mathrm{H})$, $1.25(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,131.2,127.5,127.1,125.4$, 112.5, 67.2, 63.4, 50.8, 40.6, 18.0 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}=$ 261.1961, found: 261.1960.
(S,E)-4-(4-(furan-2-yl)but-3-en-2-yl)morpholine (3aq): with A4, 36 h , obtained pale yellow oil 41.4 mg ; Isolated yield: 99%; 96\% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-73.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OJH column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=16.6 \mathrm{~min}$ (minor), 18.7 min (major); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}$, 1 H), 6.31-6.27 (m, 1H), $6.20(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (dd, $J=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=4.7$ $\mathrm{Hz}, 4 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5,141.7,130.7,119.7,111.2,107.3,67.2,62.7,50.5,17.5 \mathrm{ppm}$; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}=$ 208.1332, found: 208.1333.
(S,E)-2-(4-(4-cyclohexylbut-3-en-2-yl)piperazin-1-yl)pyrimidine (3ar): with A4, 24 h ,
 obtained colourless oil 34.7 mg ; Isolated yield: 58\%; 96\% ee; [a]d ${ }^{25}=-17.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.8 \mathrm{~min}$ (minor), 9.5 min (major); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J$ $=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.31(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.81(\mathrm{~m}, 4 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 1 \mathrm{H})$, 2.62-2.49 (m, 4H), 1.99-1.90 (m, 1H), 1.72-1.69 (m, 4H), 1.66-1.62 (m, 1H), 1.28-1.22 (m, 3H), $1.18(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.02(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б 161.6, 157.7, 138.5, 128.7, 109.6, 62.5, 49.6, 43.8, 40.4, 33.04, 32.97, 26.1, 26.0, 18.1 ppm; HRMS (ESI) calculated [$\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{4}=301.2387$, found: 301.2380
(S,E)-2-(4-(6-phenylhex-3-en-2-yl)piperazin-1-yl)pyrimidine (3as): with A4, 24 h , obtained
 colorless oil 63.5 mg ; Isolated yield: 98\%; > 99\% ee; $[\alpha]^{25}=-14.2$ (c $=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=19.2 \mathrm{~min}$ (major), 21.7 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=$ $15.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (ddt, $J=15.4,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.78(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 4 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,157.7,141.7,132.6,131.2,128.5$, 128.2, 125.8, 109.6, 62.3, 49.6, 43.8, 35.6, 34.0, 17.9 ppm; HRMS (ESI) calculated [M+H] ${ }^{+}$for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{4}=323.2230$, found: 323.2224 .
(S,E)-4-(6-phenylhex-3-en-2-yl)morpholine (3at): with A4, 24 h , obtained colorless oil 43.1
 mg ; Isolated yield: 88\%; > 99\% ee; $[\alpha]_{D^{25}}=-21.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min}$ (minor), 14.4 min (major); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{dt}, J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (ddt, $J=15.3,8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.79-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 6 \mathrm{H})$, $1.10(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.7,132.8,131.3,128.5,128.3$, 125.8, 67.2, 62.8, 50.5, 35.7, 34.0, 17.8 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}=$ 246.1852, found: 246.1847.
(S)-N-(furan-2-ylmethyl)cyclohex-2-en-1-amine (3au): with A4, 24 h , obtained pale yellow oil
 17.4 mg ; Isolated yield: $28 \% ; 22 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-13.5$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=19.0 \mathrm{~min}$ (major), 21.9 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=$ $3.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.66(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.17(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.96 (m, 2H), 1.90-1.85 (m, 1H), 1.78-1.71 (m, 1H), 1.60-1.41 (m, 2H) ppm; ${ }^{13}$ C NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.0,141.7,129.4,129.2,110.1,106.7,52.0,43.4,29.2,25.2,20.1 \mathrm{ppm} ;$ HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]+$ for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}=178.1226$, found: 178.1221.
(S,E)-2-((4-phenylbut-3-en-2-yl)amino)ethan-1-ol (3av): with A4, 24 h , obtained pale yellow oil 34.8 mg ; Isolated yield: 91%; > 99\% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=-54.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$;
 The enantiomeric excess was determined by (converting it to compound Bz3av) HPLC on Chiralpak AS-H column, hexane: isopropanol $=85: 15$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.0 \mathrm{~min}$ (major), 24.7 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.21 (m, 1H), $6.50(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H})$, 3.53-3.41 (m, 1H), 3.41 (br, s, 1H), 3.32 (br, s, 1H), 2.93-2.79 (m, 2H), 1.35 (d, J=6.5 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,131.6,131.5,128.5,127.7,126.4,60.3,56.3,48.5$, 21.2 ppm; HRMS (ESI) calculated [M+H]+ for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}=192.1383$, found: 192.1381.
(S,E)-N1-benzyl-N1-(4-phenylbut-3-en-2-yl)ethane-1,2-diamine (3aw): with A4, 24 h ,
 obtained pale yellow oil 46.5 mg ; Isolated yield: 83%; 98% ee; $[\alpha]_{D^{25}}=$ -56.6 ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by (converting it to compound Bz-3aw) HPLC on Chiralpak AD-H column, hexane: isopropanol $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=24.4 \mathrm{~min}$ (minor), 27.6 min (major); ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.37-7.35 (m, 2H), 7.32-7.28 (m, 6H), 7.25-7.19 (m, 2H), $6.44(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.05(\mathrm{dd}, J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.65(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{br}, \mathrm{s}$, 2H), 1.25 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,137.0,134.2,129.9$, 128.5, 128.4, 128.1, 127.3, 126.9, 126.3, 56.3, 53.8, 48.8, 46.9, 22.0 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2}=281.2012$, found: 282.2011 .
(S,E)-2-(((4-phenylbut-3-en-2-yl)amino)methyl)phenol (3ax): with A4, 24 h , obtained pale
 yellow oil 47.6 mg ; Isolated yield: 94\%; 97\% ee; $[\alpha]^{25}=-110.6$ (c = 1.0, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=31.9 \mathrm{~min}$ (major), 37.2 min (minor); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H})$, 6.96-6.94 (m, 1H), $6.84(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.03 (dd, $J=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.38$ (m, 1H), $1.32(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,136.5,131.7,131.5$, 128.6, 128.6, 128.3, 127.7, 126.3, 122.7, 119.1, 116.4, 55.1, 50.0, 21.7 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]+$ for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}=276.1359$, found: 276.1361 .
(S,E)-2-(2-((4-phenylbut-3-en-2-yl)amino)phenyl)ethan-1-ol (3ay): with A3, 24 h , obtained
 white solid 31.4 mg ; Isolated yield: 59\%; 91\% ee; [$\alpha]_{\mathrm{D}}{ }^{25}=-114.1$ ($\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$); The enantiomeric excess was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol $=80: 20$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=24.7 \mathrm{~min}$ (major), 28.9 min (minor); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}$, 2H), 7.23-7.19 (m, 1H), 7.03-7.00 (m, 2H), 6.63-6.60 (m, 2H), 6.57 (dd, $J=15.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 146.0, 136.9, 133.2, 129.8, 129.2, 128.5, 127.3, 126.7, 126.3, 113.6, 63.9, 51.0, 38.2, 22.1 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}=290.1532$, found: 290.1531.
(S,E)-N-(2-(1H-indol-3-yl)ethyl)-4-phenylbut-3-en-2-amine (3az): with A4, 24 h , obtained
 pale yellow oil 58.2 mg ; Isolated yield: 99\%; > 99\% ee; [$\alpha]_{D^{25}}=-76.2$ ($\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$; The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol $=99: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=69.3 \mathrm{~min}$ (minor), 75.3 min (major); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.92$ (m, 4H), 1.97 (br, s, 1H), $1.22(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0$, 136.4, 134.1, 129.9, 128.5, 127.4, 127.3, 126.2, 122.02, 121.98, 119.2, 118.9, 113.8, 111.1,
56.2, 47.4, 25.8, 22.0 ppm ; HRMS (ESI) calculated [$\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Na}=313.1675$, found: 313.1675 .
(S,E)-4-(((4-phenylbut-3-en-2-yl)amino)methyl)aniline (3ba): with A3, 24 h , obtained pale
 yellow oil 20.4 mg ; Isolated yield: 40\%; > 99\% ee; [a] ${ }^{25}=-148.5$ ($c=1.0$, CHCl_{3}); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol $=90: 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}$ (major), 28.8 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H})$, 7.12-7.09 (m, 2H), 6.67-6.63 (m, 2H), $6.47(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}$, $J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43-3.36 (m, 1H), $1.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,137.1$, 134.2, 130.4, 130.1, 129.3, 128.5, 127.3, 126.2, 115.1, 55.3, 51.0, 22.0 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2}=253.1699$, found: 253.1670.
(S,E)-4-(4-cyclohexylbut-3-en-2-yl)morpholine (3bb): with A4, 24 h , obtained pale yellow oil
 29.8 mg ; Isolated yield: 67\%; The enantiomeric excess couldn't be determined; $[\alpha]_{\mathrm{D}}{ }^{25}=-25.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.47$ (dd, $J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.26(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $4 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67$ $(\mathrm{m}, 4 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.12-1.01 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6,128.9,67.2,62.9,50.5,40.4,33.1$, 33.0, 26.2, 26.0, 18.0 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}=224.2009$, found: 224.2011.
(S,E)-1-(4-phenylbut-3-en-2-yl)piperidine-4-carboxamide (3bc): white solid 44.9 mg ;

Isolated yield: 87\%; The enantiomeric excess couldn't be determined; $[\alpha]{ }_{D}{ }^{25}=-35.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-3.36(\mathrm{~m}$, 2H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 1H), $6.44(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20$ (dd, $J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.52 (br, s, 2H), 3.16-3.07 (m, 2H), 3.05-3.00 (m, $1 \mathrm{H}), 2.18-2.09$ (m, 3H), 1.94-1.87 (m, 2H), 1.80-1.67 (m, 2H), 1.25 (d, J= $6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.7,137.0,132.2,130.7,128.5,127.3,126.2$, 62.4, 49.7, 49.5, 43.0, 29.2, 29.1, 17.6 ppm; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}=$ 218.1176, found: 218.1177.

obtained reddish orange oil 88.1 mg ; Isolated yield: 99%; The enantiomeric excess couldn't be determined; $[\alpha]_{D}{ }^{25}=-64.3(c=1.0$, CHCl_{3}); 3ay: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40-8.38(\mathrm{~m}, 1 \mathrm{H}), 7.42$ (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14-$ 7.11 (m, 3H), 7.09-7.06 (m, 1H), 6.42 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.25-6.19 (m, 1H), 3.44-3.32 (m, 2H), 3.20-3.11 (m, 1H), 2.93-2.74 (m, 4H), 2.56-2.32 (m, 6H), $1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.62,146.57$, $139.46,139.09,137.72,137.20,136.93,133.40,132.56,132.38,132.08,130.90,130.82$, 128.93, 128.51, 127.34, 126.24, 125.94, 122.04, 62.38, 51.63, 51.42, 31.83, 31.40, 31.08, 30.87, 17.83 ppm; 3ay': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40-8.38$ (m, 1H), 7.42 (dd, J=7.7, 1.7 $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.25-6.19 (m, 1H), 3.44-3.32 (m, 2H), 3.20-3.11 (m, 1H), 2.93-2.74 (m, 4H), 2.56-2.32 (m, 6H), $1.26(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.57,146.57$, $139.46,139.09,137.67,137.16,136.92,133.40$, 132.56, 132.38, 131.97, 130.87, 130.77, 128.90, 128.51, 127.34, 126.22, 125.94, 122.04, 62.35, 51.63, 51.37, 31.81, 31.38, 31.08, 30.80, 17.78 ppm ; HRMS (ESI) calculated $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{CIN}_{2} \mathrm{Na}=463.1911$, found: 463.1907.

Non-reactive and inefficient substrates

we also have prepared two disubstituted dienes $\mathbf{1 k}$ and $\mathbf{1 I}$, and examined them in the hydroamination reaction. It was found that substrate $\mathbf{1 k}$ could participate in the reaction to afford the corresponding product 3be in 22% yield and 68% ee. However, substrate $1 I$ failed to provide the desired product ($\mathbf{3} \mathbf{b f}$ and $\mathbf{3 b g}$) under standard reaction condition.

Figure S245. Non-reactive and inefficient dienes, related to Figure 4.

Scalability of Asymmetric Hydroamination

Scheme S4 (related to Figure 3):
 96% ee

To a 20 mL vial was added the catalyst precursor $\mathrm{Ni}(\mathrm{COD})_{2}$ (13.8 $\mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathrm{L} 8(15.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and toluene (5 mL) in an argon-filled glovebox. The mixture was stirred for 1 h at room temperature to give a clear orange solution. Then 1-phenylbutadiene ($651.0 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv), amine ($939.1 \mathrm{mg}, 7.5 \mathrm{mmol}, 1.5$ equiv), A4 ($41.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) and another 5 mL toluene was added in the catalyst solution. The reaction vessel was sealed using a PTFE septum and removed from the glovebox, and the mixture was stirred
 at $25^{\circ} \mathrm{C}$ for 96 h . The product was purified by column chromatography on deactivated silica gel with PE/EtOAc=1:1 to yield 1.23 g of $\mathbf{3 g}$ (96% yield, 96% ee), the enantiomeric excess was determined by HPLC on Chiralpak AD-H column.

Transamination Experiments

Scheme S5 (related to Scheme 1):

A stock solution was made by mixing $\mathrm{Ni}(\mathrm{COD})_{2}$ with $\mathrm{L8}$ in a $1: 1$ molar ratio in toluene (0.01 M) at room temperature for 1 h in a argon-filled glovebox. An aliquot of the catalyst solution (0.5 $\mathrm{mL}, 0.005 \mathrm{mmol}$) was transferred by syringe into the vials charged with $\mathbf{3 t}$ or $\mathbf{3 k}(0.1 \mathrm{mmol}, 1.0$ equiv), amines ($\mathbf{2 a}$ or $\mathbf{2 f}, 0.1 \mathrm{mmol}, 1.0$ equiv) and naphthalene ($3.2 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.25$ equiv), then $0.005 \mathrm{mmol} \mathbf{A 4}$ and another 0.5 mL toluene were added. The reaction vessel was sealed using a PTFE septum and removed from the glovebox, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h . Yields were determined by gas chromatogram analysis, using naphthalene as the internal standard. The ee values were determined by HPLC on a chiral stationary phase.

Reaction Profiles

Scheme S6 (related to Figure 6) ${ }^{[\mathrm{ad}}$:

A stock solution was made by mixing $\mathrm{Ni}(C O D)_{2}$ with L 8 in a $1: 1$ molar ratio in toluene (0.01 M) at room temperature for 1 h in a argon-filled glovebox. An aliquot of the catalyst solution (1.0 $\mathrm{mL}, 0.01 \mathrm{mmol}$) was transferred by syringe into the vials charged with 1 a (0.4 mmol), amines (0.6 mmol for each) and naphthalene ($12.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.25$ equiv), then $\mathbf{A 3}$ ($3.2 \mathrm{mg}, 0.02$ mmol) or A4 ($3.3 \mathrm{mg}, 0.02 \mathrm{mmol}$) and another 1.0 mL toluene were added. The reaction vessel was sealed using a PTFE septum and stirred at $25^{\circ} \mathrm{C}$ in the glovebox. The reaction progress was monitored by GC with naphthalene as the internal standard. The ee values were determined by HPLC on a chiral stationary phase.

Time $[\mathrm{h}]$	Yield $[\%]$	ee [\%]	Yield $[\%]^{[b]}$	ee [\%] $]^{[b]}$	Yield $[\%]^{[c]}$	ee [\%] ${ }^{[\mathrm{cc]}}$	Yield $[\%]^{[d]}$	ee [\%][${ }^{[d]}$
6 h	84	98	86	97	12	98	91	98
12 h	99	97	94	96	19	98	95	98
24 h	99	94	99	93	30	97	99	98
36 h	99	91	99	92	38	97	98	98
48 h	99	88	99	90	39	97	98	98

Reaction conditions: [a] 0.40 mmol 1a, 0.60 mmol 2a, $5.0 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2} / \mathrm{L} 8,5.0 \mathrm{~mol} \%$ A3, 1 mL toluene, $25^{\circ} \mathrm{C}, 48 \mathrm{~h}$. [b] A4 instead of A3. [c] $\mathbf{2 f}$ instead of $\mathbf{2 a}$. [d] $\mathbf{2 f}$ instead of 2a, A4 instead of A3

Figure S246. Time Course of Scheme S6.

Deuterium Labeling Experiments

Scheme S7:

Reaction was carried as described in General Procedure for Ni-catalyzed Asymmetric Hydroamination of Conjugated Dienes. d-indoline was prepared by a known previously established method (Yi \& Lee, 2009). The d-3t was determined by ${ }^{1} \mathrm{H}$ NMR and ${ }^{2} \mathrm{H}$ NMR analysis.

Amines Benzoylation for ee Determination (Wang et al, 2014)

Scheme S8 (related to Figure 3 and Figure 5):

To a solution of chiral amine 3 ($0.20 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($42 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$, 1.5 equiv) in DCM (0.8 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of benzoyl chloride ($28 \mu \mathrm{~L}$, $0.24 \mathrm{mmol}, 1.2$ equiv) in DCM (0.2 mL). The mixture was warmed to room temperature and stirred overnight. The mixture was quenched with water (1.0 mL) and extracted with DCM (5.0 mL), and the aqueous layer was extracted with DCM (3.0 mL). The organic layers were combined, dried over sodium sulfate, and concentrated. The residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether, to give amide Bz-3.

Supplemental References

Adamson, N. J., Hull, E., and Malcolmson, S. J. (2017). Enantioselective Intermolecular Addition of Aliphatic Amines to Acyclic Dienes with a Pd-PHOX Catalyst. J. Am. Chem. Soc. 139, 7180-7183.

Davenport, E., and Fernandez, E. (2018). Transition-Metal-Free Synthesis of Vicinal Triborated Compounds and Selective Functionalisation of the Internal C-B Bond. Chem. Commun. 54, 10104-10107.

Hu, M.-Y., He, Q., Fan, S.-J., Wang, Z.-C., Liu, L.-Y., Mu, Y.-J., Peng, Q., and Zhu, S.-F. (2018). Ligands with 1,10Phenanthroline Scaffold for Highly Regioselective Iron-Catalyzed Alkene Hydrosilylation. Nat. Commun. 9, 1-11.

Preuß, T., Saak, W., and Doye, S. (2013). Titanium-Catalyzed Intermolecular Hydroaminoalkylation of Conjugated Dienes. Chem. Eur. J. 19, 3833-3837.

Sardini, S. R., and Brown, M. K. (2017). Catalyst Controlled Regiodivergent Arylboration of Dienes. J. Am. Chem. Soc. 139, 9823-9826.

Wang, Y., Li, M., Ma, X., Liu, C., Gu, Y., and Tian, S.-K. (2014). Deammoniative Condensation of Primary Allylic Amines with Nonallylic Amines. Chin. J. Chem. 32, 741-751.

Yi, C. S., and Lee, D. W. (2009). Efficient Dehydrogenation of Amines and Carbonyl Compounds Catalyzed by a Tetranuclear Ruthenium- μ-oxo- μ-hydroxo-hydride Complex. Organometallics 28, 947-949

[^0]: Long et al., iScience 22,369379
 December 20, 2019 © 2019 The Authors.
 https://doi.org/10.1016/

[^1]: Ahlin, J.S.E., and Cramer, N. (2016). Chiral Nheterocyclic carbene ligand enabled nickel(0)catalyzed enantioselective three-component couplings as direct access to silylated indanols Org. Lett. 18, 3242-3245.

 Aillaud, I., Collin, J., Hannedouche, J., and Schulz, E. (2007). Asymmetric hydroamination of non-

