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Abstract: Copper oxide nanoparticles (CuO NPs) were synthesized through the coprecipitation
method and used as nanocarriers for etoricoxib (selective COX-2 inhibitor drug) and montelukast
(leukotriene product inhibitor drug) in combination therapy. The CuO NPs, free drugs, and nanofor-
mulations were investigated through UV/Vis spectroscopy, FTIR spectroscopy, XRD, SEM, and DLS.
SEM imaging showed agglomerated nanorods of CuO NPs of about 87 nm size. The CE1, CE2,
and CE6 nanoformulations were investigated through DLS, and their particle sizes were 271, 258,
and 254 nm, respectively. The nanoformulations were evaluated through in vitro anti-inflammatory
activity, in vivo anti-inflammatory activity, in vivo analgesic activity, in vivo anti-pyretic activity, and
in vivo acute toxicity activity. In vivo activities were performed on albino mice. BSA denaturation
was highly inhibited by CE1, CE2, and CE6 as compared to other nanoformulations in the in vitro
anti-inflammatory activity. The in vivo bioactivities showed that low doses (5 mg/kg) of nanoformu-
lations were more potent than high doses (10 and 20 mg/kg) of free drugs in the inhibition of pain,
fever, and inflammation. Lastly, CE2 was more potent than that of other nanoformulations.

Keywords: etoricoxib; montelukast; CuO nanoparticles; nanomedicine; analgesic potential; anti-
pyretic agent; anti-inflammatory agent

1. Introduction

Nanotechnology is a field of research in which substances with one dimension less
than 100 nm are studied [1]. The origin of nanotechnology can be traced back to the famous
lecture of Nobel laureate Richard P. Feynman (1959) in which he stated that “There’s Plenty
of Room at the Bottom” [2,3]. Nanotechnology has brought revolutionary changes in the
field of science, technology, agriculture, energy, health, and other industrializations. These
changes are related to the vast behaviors of nanoparticles [4]. Copper oxide nanoparticles
(CuO NPs) have a large surface area and unique morphological structures which impart
them with characteristic physical and chemical properties. They are widely applicable in
nanomedicines [5], PN junction diodes [6], humidity sensing [7], lithium-ion batteries [8],
organic synthesis [9], antimicrobial activity, and biomedicine. CuO NPs show anti-bacterial
and other anti-microbial activities [10].
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Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely prescribed
drugs for the treatment of pain, fever, and inflammation worldwide [11]. Acetylsalicylic
acid was the first NSAID that was synthesized by Felix Hoffman in 1897 [12]. In 2004,
more than 111 million NSAIDs were prescribed in the USA. Moreover, the number of
prescriptions of NSAIDs in Europe is 7.7% [13]. These drugs are mostly prescribed to
patients at or above the age of 65 years. These drugs are effective for pain, fever, and
inflammation in osteoarthritis, psoriatic arthritis, injury, gout, and rheumatoid arthritis [14].

The primary cause of pain, fever, and inflammation is the production of the cyclooxy-
genase (COX) enzyme in the body of various organisms [15]. The basic function of NSAIDs
is to stop the production of COX. The blockage of COX leads to the inhibition of the conver-
sion of arachidonic acid to prostacyclin which is the cause of pain, fever, and inflammation
in the body [16–18]. Although NSAIDs are effective against several diseases, they may also
lead to some side effects such as gastrointestinal bleeding, renal failure, and heart diseases.
The cause of inflammation and pain is from COX-2 enzymes and leukotriene products but
most NSAIDs block both COX-1 and COX-2 enzymes [19]. However, COX-1 is important
(via thromboxane) for the protection of the stomach [20]. The inhibition of COX-1 enzymes
leads to gastric and heart problems [20,21]. Although some selective COX-2 inhibitors are
available on the market, their high doses and bulk form lead to severe side effects [22,23].
The potency of drugs is enhanced with targeted drug delivery tools such as soft materials
involved in biological and artificial membranes [24], PEG [25], alginate, and chitosan-coated
nanoparticles [26]. These tools also reduce drug side effects.

In this research, efforts were made to synthesize nanoformulations of selective inhi-
bition of COX-2 and leukotriene products. Therefore, etoricoxib (ET) was selected as a
COX-2 inhibitor, which is mostly prescribed for the treatment of pain and arthritic con-
ditions such as rheumatoid arthritis and osteoarthritis [27], and montelukast (MT) was
used as a leukotriene product inhibitor drug. CuO NPs were used as nanocarriers for
ET and MT in combination therapy. CuO NPs also possess potency as antioxidant and
anticancer agents [28]. They show antibacterial activity against both Gram-positive and
Gram-negative bacteria [29]. The nanosize of copper oxide provides a large surface area for
the interaction of drugs and enhances its potency. Low doses of nanodrugs are more potent
due to their large surface area and small size than bulk drugs. Nanoparticle-mediated drug
delivery enhances the potency, solubility, and bioavailability of drugs [30,31], while free
drugs are less soluble and have low bioavailability [32], and their high dose is administrated
which increases the risk of side effects [33]. In this combination therapy, two drugs were
loaded onto CuO NPs for the treatment of inflammation, fever, and pain. CuO NPs are dis-
infectant [34], antifouling [35], antiviral [36], and antimicrobial agents [37]; therefore, they
were selected as nanocarriers for ET and MT to inhibit COX-2 and leukotriene products.

2. Results and Discussions
2.1. Structural Analysis
2.1.1. UV/Vis Spectroscopy

UV/Vis spectroscopy was used for the analysis of copper oxide nanoparticles, drugs,
and synthesized nanomaterials (Figure 1). UV/Vis spectroscopy is a significant tool that
is used to investigate the nature of bonds, bandgap calculations, and surface plasmon
resonances. The UV/Vis spectrum was performed in the range of 200–800 nm. Solutions of
CuO NP, ET, MT, and synthesized nanomaterials were prepared in ethanol. A characteristic
peak of CuO NPs was observed at 290 nm, which confirmed its synthesis [38,39]. A
characteristic peak of ET was observed at 233 nm which corresponds to the literature [40];
while that of MT was observed at 284, 324, 343, and 360 nm [41]. The characteristic peak
of copper oxide nanoparticles disappeared in the nanoformulation, which indicates the
adsorption of drugs. The peak of that drug was more prominent in nanoformulations
where its ratio was higher. The peaks of MT were prominent in CE5, CE6, and CE7; while
those of ET were prominent in CE1, CE2, and CE3.
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2.1.2. FTIR Spectroscopy

The synthesis of CuO NPs was also confirmed from FTIR analysis (Figure 2). The
synthesis of CuO NPs was confirmed by the appearance of the characteristic peaks of
CuO NPs in specific regions. The vibrational mode of CuO NPs was revealed in the range
of 500–700 cm−1 by the three absorption peaks. The stretching of Cu-O was indicated
by the peak at 525 cm−1. The synthesis of CuO NPs was confirmed from the peaks at
525 cm−1 and 602 cm−1 [42,43]. Characteristic peaks of ET were observed at 772, 830,
1010, 1140 cm−1 (corresponding to sulphone groups (−S=O)) [44], 1598.9 cm−1 (C=N
stretching vibration), 839.0, 781.1, and 638.0 cm−1 (C–Cl stretching vibration) [45–47]. The
characteristic peaks of MT were observed at 3396 (COOH stretching), 2980 (aromatic C–H
stretching), 2925 (aliphatic C–H stretching), 1610 (CC stretching), 1595 (CN stretching),
1497 (aliphatic C–H bending), 1132 (C–O stretching), 1068 (aromatic C–Cl stretching), 837
(aromatic C–H bending), and 697 (C–S stretching) [48]. Although a few of the ET and
MT peaks disappeared in nanoformulations, most of them appeared which shows their
adsorption onto CuO NPs.

2.1.3. X-ray Diffractometry

The synthesis of CuO NPs was confirmed from UV/vis spectroscopy and FTIR spec-
troscopy, but it was further matched with JCPDS cards for XRD analysis. X-ray diffractom-
etry (XRD) (Figure 3) was conducted by using a D8 advance Bruker X-ray diffractometer
(Bruker Germany) at NCP Islamabad, Pakistan. Characteristic peaks of CuO NPs were
observed at 2θ = 32.44◦, 35.47◦, 38.62◦, 48.86◦, 53.45◦, 58.06◦, 61.60◦, 66.45◦, and 68.17◦

in the XRD spectrum which corresponded to 110, 002, 111, 112, 020, 202,113, 311, and
220 planes of the Miller’s indices, respectively [49]. The highly crystalline nature of the
synthesized CuO NPs was confirmed from the sharp and well-defined reflections of the
CuO NPs (JCPDS card no. 01-080-0076) [50]. CuO NPs have a monoclinic structure with
a crystallite size of 13.7 nm. Characteristic peaks of ET were observed at 2θ = 11.9, 13.3,
16.5, 16.6, 18.2, 20.2, 22.8, 24.2, 26.5, 28.7, 29.4, 30.3, 32.5, 32.9, 34.8, 36.1, 39.1, 40.1, 41.2,
42, 42.9, 45.7, 47.6, 49.3, and 53.2 [51]. These peaks were masked or disappeared in the
nanoformulations. The disappearance of peaks in the nanoformulations shows that ET
was attached or converted to an amorphous form. MT has no characteristic peak in the
XRD spectrum due to its amorphous nature. The crystallite structure of CuO NPs, ET, and
nanoformulations was calculated through the Scherrer formula (Table 1).
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2.1.4. Scanning Electron Microscopy

The synthesized CuO NPs were investigated through SEM which showed agglomer-
ated nanorods of CuO NPs of about 87 nm size (Figure 4).

2.1.5. Particle Size Analysis

The sizes of CE1, CE2, and CE6 were investigated through dynamic light scattering
(DLS). The particle sizes of CE1, CE2, and CE6 were 271, 258, and 254 nm, respectively
(Figure 5).
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Table 1. Crystallite size of the nanoformulations.

S.No. Name/Code Crystallite Size (nm)

1 CuO 13.7

2 ET 41.64

3 MT Amorphous

4 CE1 19.17

5 CE2 17.87

6 CE3 20.97

7 CE4 22.53

8 CE5 19.60

9 CE6 21.98

10 CE7 18.88
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2.1.6. Quantification of ET and MT

The quantity or concentration of ET and MT in each nanoformulation was calculated
by UV/Vis spectroscopy at a specific wavelength. The wavelength for quantification of ET
was 235 nm while that of MT was 345 nm. However, the best wavelength for both drugs
was 282 nm (Figure 6). The absorbance of samples followed Beer–Lambert’s law.

The quantities of ET and MT in 5 mg of each nanoformulations are given in Table 2.
The drug loading efficiency was about 70–75%, calculated through UV analysis by using
the following Equation (1) (encapsulation efficiency (EE)):

EE % =
(Total drug added)− (non− entrapped drug)

Total drug added
× 100 (1)

Calibration Curve

The quantity of ET and MT in different nanoformulations with a mass of 5 mg was
analyzed which shows a linear plot on the calibration curve. The results are given in
Table 2.
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Figure 6. Graphical representation of in vivo anti-inflammatory activity. PC—positive control,
NC—negative control.

Table 2. Quantity of etoricoxib and montelukast in 5 mg of each nanoformulation.

S.NO. 5 mg Etoricoxib (mg) Montelukast (mg) RSD (±)

1. CE1 2.8 - 0.07

2. CE2 2.1 0.7 0.05

3. CE3 1.80 0.77 0.08

4. CE4 1.45 1.35 0.06

5. CE5 0.77 1.75 0.07

6. CE6 0.75 2.10 0.08

7. CE7 - 2.95 0.06
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Specificity

There was no interference from CuO nanoparticles in the nanoformulation of ET and MT.

Validation of Method

The performance of the system was precise and suitable during the entire analysis of
the nanoformulations of ET and MT. Validation of the analysis method for the quantification
protocol is reported in the literature both for HPLC and UV/Vis spectroscopy [52].

2.2. Bioactivities Studies
2.2.1. In Vitro Anti-Inflammatory Activity

The method of inhibition of BSA denaturation was used for in vitro anti-inflammatory
activity. It is obvious that the denaturing of proteins leads to inflammation in the body. In
this method, solutions of samples were added to a solution of BSA and were then incubated
at 37 and 55 ◦C. The % inhibition of BSA denaturation was investigated through UV/Vis
spectroscopy at a fixed wavelength of 660 nm. The % inhibitory effect was calculated using
the following Equation (2):

% inhibition
of denaturing

=
(absorbance of control)− (absorbance of sample)

absorbance of control
× 100 (2)

BSA denaturation was not inhibited in the negative control; therefore, inhibition
of nanoformulations and standards was compared with it. Albeit the inhibitory effect
of all nanoformulations was high; however, that of CE1, CE2, and CE6 was very high.
Therefore, these nanoformulations were selected for further evaluation through in vivo
studies. The results of % inhibition of BSA denaturation through nanoformulations are
given in Table 3 [53].

Table 3. In vitro anti-inflammatory activity.

S.No. Code Absorbance at 660 nm Inhibition (%)± SEM

1 Negative control
(DMSO) 0.6900 0

2 CE1 0.2039 70.45 ± 1.12

3 CE2 0.1463 78.79 ± 1.56

4 CE3 0.3822 44.61 ± 1.12

5 CE4 0.7444 7.884 ± 1.25

6 CE5 0.6335 8.188 ± 1.46

7 CE6 0.2040 70.43 ± 1.52

8 CE7 0.2802 59.39 ± 1.14

9 Etoricoxib (ET) 0.0221 96.80 ± 1.36

10 Montelukast (MT) 0.1476 78.61 ± 1.95

11 CuO 0.1677 75.69 ± 1.80

12 Positive control
(diclofenac sodium) 0.0755 89.06 ± 1.75

2.2.2. In Vivo Anti-Inflammatory Activity

In vivo anti-inflammatory activity was carried out through the carrageenan-induced
hind paw edema method on albino mice at the Department of pharmacy, Quaid e Azam
University, Islamabad. Mice of both sexes were used. Mice were treated with nanofor-
mulations at a dose of 5 mg/kg body weight while doses of drugs were 10 mg/kg body
weight through i.p. injection. They were treated with 0.1 mL of carrageenan 1% solution
through the left hind paw and the paw volume was measured using a Plethysmometer.
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The % inhibition of inflammation was estimated from the decrease in the volume of the
hind paw of mice. The % inhibition of inflammation was calculated using the following
Equation (3) [54,55]:

% inhibition =
(Vcontrol −Vtest)

Vcontrol
× 100 (3)

The inhibition of inflammation was low in the first hour but increased in the second
and third hour. The % inhibitory effect of CE2 was high against inflammation, which is
shown in Table 4 and Figure 6.

Table 4. In vivo anti-inflammatory activity.

Drug Dose
(mg/kg)

Inhibitory Effect (%) ± SEM

1 h 2 h 3 h

Negative control
(normal saline) - 6.37 ± 1.08 4.75 ± 1.03 5.93 ± 1.02

Positive control
(diclofenac sodium) 10 68.84 ± 1.23 71.33 ± 1.12 85.78 ± 1.24

Et 10 65.19 ± 1.21 64.30 ± 1.53 79.26 ± 1.42

Mt 10 43 ± 1.24 48 ± 1.35 57 ± 1.45

CE1 5 62.72 ± 1.21 62.77 ± 1.24 76.84 ± 1.22

CE2 5 69.17 ± 1.25 83.56 ± 1.31 86.99 ± 1.32

CE6 5 62.29 ± 1.39 63.38 ± 1.42 69.59 ± 1.38

2.2.3. In Vivo Analgesic Activity

In vivo analgesic activity was performed in albino mice through the hot plate method.
Mice were treated with doses of nanoformulations intraperitonially. They were placed
on a hot plate at 55 ◦C for a 30 s cut-off time. The body movements of mice were keenly
observed. The % inhibition of pain was measured from the time they tolerate on the hot
plate. If pain is more inhibited, the mice will spend more time on the hot plate and vice
versa. The % pain inhibition of CE2 was very high as compared to other nanoformulations
which is shown in Table 5 and Figure 7.

Table 5. In vivo analgesic activity.

Drug Dose
(mg/kg)

Inhibitory Effect (%) ± SEM

1 h 2 h 3 h

Negative control
(normal saline) - 7.79 ± 1.02 6.20 ± 1.10 3.03 ± 1.21

Positive control
(diclofenac sodium) 10 58.34 ± 1.21 83.38 ± 1.24 83.22 ± 1.45

Et 10 24.30 ± 1.24 35.37 ± 1.10 48.61 ± 1.15

Mt 10 [54] 9.53 ± 1.32 7.95 ± 1.24 6.41 ± 1.42

CE1 5 35.97 ± 1.54 49.41 ± 1.41 63.86 ± 1.24

CE2 5 26.37 ± 1.45 51.53 ± 1.32 73.88 ± 1.52

CE6 5 19.19 ± 1.12 34.71 ± 1.21 51.72 ± 1.54

2.2.4. In Vivo Anti Pyretic Activity

In vivo anti-pyretic activity was carried out in albino mice through the yeast-induced
pyrexia method. To induce pyrexia, 10 mL/kg of 20% yeast solution was intraperitoneally
injected into mice. The body temperature of mice was measured before the treatment of
yeast solution through a lubricated thermometer. Mice whose body temperature increased
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by 0.6 ◦C were selected for this activity. These mice were treated with nanoformulations
intraperitoneally to inhibit pyrexia. The temperature of mice was measured for 4 h after
each hour, which was controlled in the first hour by CE1, CE2, and CE3 as shown in
Table 6. The body temperature of mice is graphically represented in Figure 8 before and
after treatment of the samples. The blue color indicates mice with normal body temperature
(98.6 ◦F) while the orange color indicates mice with a high body temperature due to the
treatment of yeast. The other four colors indicate the body temperature of mice following
the treatment of samples.
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Table 6. In vivo anti-pyretic activity.

Drug Dose
(mg/kg)

Temperature (◦F)

Before Yeast Injection 0 h 1 h 2 h 3 h 4 h

Negative control
(normal saline) - 98.6 101 101 101 101 101

Positive control
(paracetamol) 20 [56] 98.6 100 98.6 98.6 98.6 98.6

Et 20 98.6 99.8 99 98.6 98.6 98.6

Mt 20 [54] 98.6 100.7 101 101 100.5 100.5

CE1 5 98.6 101 98.6 98.6 98.6 98.6

CE2 5 98.6 100.5 98.6 98.6 98.6 98.6

CE6 5 98.6 101.5 98.6 98.6 98.6 98.6

2.2.5. In Vivo Acute Toxicity Activity

In vivo acute toxicity activity was carried out in albino mice through the median
lethal dose (LD50) method. Different doses of nanoformulations were given to mice and
observed for 24 h. The mice were normal when treated with doses of 5, 10, 25, 50, and
100 mg/kg body weight; however, died when the dose was increased to 200 mg/kg body
weight. It was confirmed that the nanoformulations are acutely toxic at or above 200 mg/kg
body weight.

3. Materials and Methods
3.1. Materials

Copper nitrate trihydrate (Cu(NO3)2.3H2O), sodium hydroxide (NaOH), ethanol, ET,
poly ethylene glycol (PEG, 6000), and polyvinyl acetate (PVA) were obtained from Merck
(Darmstadt, Germany). UV/Vis spectra were recorded through Perkin Elmer (Waltham,
MA, USA), UV/Vis spectrometer, Lambda 25. The FT-IR spectrum was performed on a
JASCO FT/IR-6600 spectrometer. X-ray diffractometry (XRD) was conducted by using a D8
advance Bruker X-ray diffractometer equipped with a Cu anode (Bruker, Bremen, Germany).

3.2. Synthesis of Copper Oxide Nanoparticles

CuO NPs were prepared through the coprecipitation method. Cu(NO3)2.3H2O was
used as a precursor salt. Cu(NO3)2.3H2O salt was reduced to NaOH to prepare CuO NPs.
A 100 mM solution of Cu(NO3)2.3H2O was prepared in 100 mL deionized water. PEG-6000
was used as a surfactant in this synthetic work. A 100 mM solution of NaOH was very
slowly added to the solution of Cu(NO3)2.3H2O with constant stirring, which led to an
increase in the pH of the solution. The addition of NaOH was stopped when the pH become
basic. The appearance of blackish particles represented the synthesis of CuO NPs. The pH
of the solution was maintained at pH 7 by washing with deionized water. The solution
was filtered through Whatman filter paper and the residue was dried, ground, and then
calcinated at 500 ◦C for 4 h [57].

3.3. Synthesis of Etoricoxib and Montelukast Conjugated CuO Nanomaterials (CE)

CuO NPs were used as nanocarriers for the ET and MT. Separate solutions of CuO
NPs, ET, and MT were prepared in ethanol. The CuO NPs solution was sonicated for
1h to completely dissolve it. Different ratios of ET and MT solutions were added to
the CuO NPs solution (Table 7). The solution was kept for 2 h post stirring. Then, the
solution was sonicated for 2 h and then centrifuged at 6000 rpm for 1 h. The synthesized
nanoformulations were dried at room temperature. Drug loading efficiency was 70–75%.
PVA was used as an encapsulation agent for ET- and MT-conjugated CuO nanomaterials.
Moreover, 2.5% PVA was added to the synthesized nanoformulation.
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Table 7. Composition of nanoformulations.

S.No. Code CuO (%) Etoricoxib (%) Montelukast (%) PVA wt%

1 CE1 20 80 -

2.5

2 CE2 20 60 20

3 CE3 20 50 30

4 CE4 20 40 40

5 CE5 20 30 50

6 CE6 20 20 60

7 CE7 20 - 80

8 ET - 100 - -

9 MT - - 100 -

10 CuO 100 - - -

3.3.1. Quantification Protocol

The objective of the spectroscopic quantification of ET and MT was to determine
their quantity in the nanoformulations. The quantification of ET and MT was carried out
both simultaneously as well as separately for each drug. Although this may be carried
out through HPLC or UV/Vis spectroscopy, here the analysis was performed through
UV/Vis spectroscopy in the range of 200–800 nm. Therefore, different solutions of ET
and MT were prepared in ethanol. Different ratios of ET and MT were added in different
solutions. Separate and combined solutions were prepared for the drugs. The quantity of
drugs was analyzed through UV/Vis spectroscopy for each solution [58]. The wavelength
for quantification of ET was 235 nm while that of MT was 345 nm. However, the best
wavelength for both drugs was 282 nm.

3.3.2. Samples Preparation

Five milligrams of ET was added to 20 mL of ethanol and sonicated for 30 min for
complete dissolution. Five milligrams of MT was also added to 20 mL of ethanol in another
beaker and completely dissolved. Then, different ratios of ET and MT (1:3, 1.5:2.5, 2:2,
2.5:1.5, and 3:1) were added to different beakers containing ethanol as the solvent and
were completely dissolved through sonication. These solutions were diluted and analyzed
through UV/Vis spectroscopy.

Solutions of CuO NPs were also prepared in ethanol. Then, solutions of ET and
MT of the above ratios were added to a solution of CuO NPs in separate beakers. Next,
the solution was sonicated and centrifuged at 6000 rpm. The supernatant was separated
for each solution and was analyzed through UV/Vis spectroscopy. The difference in the
quantity of ET as well as of MT, before and after addition to CuO nanoparticles, was
calculated from analyzing the UV/Vis spectra [59].

3.4. Characterization

The FTIR analysis was carried out using the JASCO FT/IR-6600 spectrometer at a
range of 400–4000 cm−1. The samples were taken in solid powder form. For each sample,
the values of % transmittance were obtained in the form of an FTIR spectrum. FTIR
measures the vibrations of atoms, molecules, and functional groups which correspond to
the matching frequency of the infrared beam. Therefore, the FTIR spectrum consists of
the functional group region and fingerprint region [60]. The XRD spectra were performed
through a D8 advance Bruker X-ray diffractometer (Bruker, Bremen, Germany) for the
investigation of crystallite size, miller indices, and phase determination. The spectra were
calculated in the range of 10–90 2θ. Samples were taken in solid powder form for XRD
analysis. The spectra were matched with JCPDS cards for verification. In this analysis,
the principle of Bragg’s law (2dsinθ = nλ) was followed [61]. The crystal structure was
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calculated through Scherrer’s formula (Ls = 0.92λ/βs cosθB). Zetasizer or dynamic light
scattering (DLS) is the technique used for the determination of the size of particles in the
suspension. DLS was performed in the Pharmacy Department, QAU, Islamabad. DLS
can measure particle sizes ranging from 1 nm to 10 µm. The DLS analysis is based on
the Brownian motion of particles. The Stokes–Einstein equation was used to calculate
the particle size (D = kT/6rhR) [62]. Scanning electron microscopy (SEM) was used to
investigate the size, shape, texture, and morphology of nanoparticles. SEM analysis was
carried out at PINSTIC Islamabad. The samples were taken in solid powder form and
investigated by SEM. The basic principle of SEM for the investigation and analysis of
substances includes scanning under a beam of electrons. In SEM analysis, the range of
voltage is about 30 keV.

3.5. Bioactivities
3.5.1. In Vitro Anti-Inflammatory Activity

The primary cause of inflammation is the denaturing of proteins in the body. Therefore,
for measurement of the potency of drugs and nanoformulations in vitro, anti-inflammatory
activity was performed through the inhibition of the bovine serum albumin (BSA) denatur-
ing method. In this method, 5 mg/mL solution of each sample was prepared in DMSO and
that of BSA (1% solution) was prepared in deionized water. Moreover, a 2 mg/mL solution
of Diclofenac sodium was used as a standard. Then, 0.9 mL of BSA solution was added to a
0.1 mL solution of each sample and the standard. The solutions were incubated at 37 ◦C
for 20 min and then at 55 ◦C for a further 20 min. These samples were evaluated through
UV/Vis spectroscopy at 660 nm [63].

3.5.2. In Vivo Anti-Inflammatory Activity

Albino mice were obtained from the National Institute of Health, Islamabad, and an
ethics approval letter was obtained from the ethics committee of Islamia College, Peshawar,
Pakistan, for the proper handling and care of albino mice.

In vivo anti-inflammatory activity was performed on albino mice through the carrageenan-
induced hind paw oedema method. The hind paw volume was measured before and after
the treatment of carrageenan using a Plethysmometer (UGO BASILE 7140). Doses of sam-
ples were prepared in normal saline water and were administered through intraperitoneal
(i.p.) injection as 5 mg/kg body weight. To induce swelling, 0.1 mL of 1% carrageenan solu-
tion was injected into the left hind paw of each mouse. The paw volume was measured after
one hour of drug treatment. The drug was not given to the negative control group [64,65].

3.5.3. In Vivo Analgesic Activity

In vivo analgesic activity was carried out in albino mice using the hot-plate method of
Eddy and Leimbach (1953) [66]. Mice of both sexes were used in this activity. The average
weight of mice was 26–28 g. Doses of nanoformulations were given through i.p. injection as
5 mg/kg body weight. Then, mice were placed on a hot plate for a 35 s cut-off temperature.
The temperature of the hot plate was adjusted to 55 ◦C [67].

3.5.4. In Vivo Anti Pyretic Activity

The yeast-induced pyrexia method was used for evaluating in vivo anti-pyretic ac-
tivity in albino mice. To induce pyrexia, 20% of aqueous brewer’s yeast solution was
subcutaneously injected into mice at a dose of 10 mL/kg body weight [68]. The body tem-
perature of each mouse was measured through a rectal thermometer before the treatment
of the yeast solution. After 18 h, the body temperature of mice was again measured. Mice
whose body temperature increased by 0.6 ◦C were selected. Doses of nanoformulations
and standards were given to each mouse through i.p. injection. The body temperature of
mice was measured for 4 h [56].
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3.5.5. In Vivo Acute Toxicity Activity

In vivo acute toxicity activity was carried out in albino mice through the median lethal
dose (LD50) method [69]. Different doses of nanoformulations were given to mice and
were observed for 24 h. The doses were 5, 10, 20, 50, 100, and 200 mg/kg body weight. The
purpose of this activity was to measure the maximum amount of nanoformulations that
were safe for organisms.

3.5.6. Statistical Analysis

The studied bioactivities data are expressed as the standard error mean (SEM). The
mean ± standard deviation (SD) was calculated for the data by the Equation (4):

%± SEM =
%± SD√

3
(4)

4. Conclusions

CuO NPs were used as nanocarriers of ET (selective COX-2 inhibitor drug) and MT
(leukotriene product inhibitor drug) in different ratios. CuO NPs were synthesized through
the coprecipitation method and investigated using different tools. The synthesized nanofor-
mulations were evaluated through in vitro and in vivo bioactivities which confirmed that
these nanoformulations were more potent than those of parent drugs. The in vitro anti-
inflammatory activity indicated that CE1, CE2, and CE6 are of high potency; therefore,
these three nanoformulations were further evaluated through in vivo bioactivities. The
in vivo bioactivities showed that low doses (5 mg/kg) of nanoformulations were more
potent than that of high doses (10 and 20 mg/kg) of free drugs.
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