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Abstract—Conventional arthroscopic evaluation of articular
cartilage is subjective and insufficient for assessing early
compositional and structural changes during the progression
of post-traumatic osteoarthritis. Therefore, in this study,
arthroscopic near-infrared (NIR) spectroscopy is introduced,
for the first time, for in vivo evaluation of articular cartilage
thickness, proteoglycan (PG) content, and collagen orienta-
tion angle. NIR spectra were acquired in vivo and in vitro from
equine cartilage adjacent to experimental cartilage repair sites.
As reference, digital densitometry and polarized light micro-
scopy were used to evaluate superficial and full-thickness PG
content and collagen orientation angle. To relate NIR spectra
and cartilage properties, ensemble neural networks, each with
two different architectures, were trained and evaluated by
using Spearman’s correlation analysis (p). The ensemble
networks enabled accurate predictions for full-thickness ref-

erence properties (PG content: py o, va= 0.691,
Pinvivo= 0.676; collagen orientation angle: pj, virro, var= 0.626,
p, .= 0.574) from NIR spectral data. In addition, the

networks enabled reliable prediction of PG content in super-
ficial (25%) cartilage (0in virro, var= 0.650, pin vivo = 0.613) and
cartilage thickness (0 virro, var= 0.797, pin vivo= 0.596). To
conclude, NIR spectroscopy could enhance the detection of
initial cartilage degeneration and thus enable demarcation of
the boundary between healthy and compromised cartilage
tissue during arthroscopic surgery.

Keywords—Equine, Deep learning, Neural networks, Ar-
throscopy, Mosaicplasty, Osteoarthritis, Post-traumatic
osteoarthritis.
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INTRODUCTION

Osteoarthritis (OA) is a prevalent disease charac-
terised by joint pain, restricted mobility, and instability
of joint.” Idiopathic OA is especially common among
the elderly population and may be characterized by
erosion of articular cartilage—the connective tissue that
enables smooth and frictionless motion of the joints. As
articular cartilage is aneural and avascular tissue,?” ini-
tial symptoms (e.g., joint pain) may occur in the later
stages of the disease, making cartilage repair challeng-
ing. Development of OA can also be triggered by trau-
matic joint injuries.® In contrast to idiopathic OA, post-
traumatic OA (PTOA) can affect people of all ages.®
Local traumatic cartilage lesions will cause the sur-
rounding tissue to experience higher stresses and
strains,”® thus making the tissue more vulnerable to
degeneration. Detection and intervention at the early
disease stages (superficial proteoglycan (PG) loss and
collagen damage) could be valuable for halting disease
progression. Current methods to treat small chondral
defects include arthroscopic debridement and lavage,
osteochondral grafting, and autologous chondrocyte
implantation.’” Although tissue engineering has ad-
vanced rapidly in the last decade, no engineered cartilage
currently exists that matches the properties of native
cartilage.” In the event of insufficient repair, cartilage
surrounding injury sites slowly degrades and will often
exhibit signs of early to mid-stage degeneration (similar
to those associated with early OA)."

Conventional imaging methods, such as radiogra-
phy and magnetic resonance imaging, are well-suited
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for diagnosis of late stages of OA.*° These methods
are, however, insufficient for detecting the early signs
of cartilage damage. Ligamental tears and other trau-
matic injuries often require arthroscopic repair sur-
gery. Currently, arthroscopic evaluation relies on
visual assessment and scoring of cartilage lesions using
established systems (e.g., International Cartilage Re-
pair Society (ICRS)’) and manual probing with an
arthroscopic hook. These methods are highly subjec-
tive®; thus, more quantitative techniques could be of
great clinical significance.

Several quantitative techniques, including near-in-
frared spectroscopy (NIRS, 0.7-2.5 um) and mid-in-
frared spectroscopy (MIRS, 2.5-15 um), have been
suggested for evaluating cartilage properties, such as
biomechanical properties,>*’ cartilage thickness,>
and biochemical composition,> in several in vitro
studies. Clinical application of NIRS has only been
presented in few studies®"*?; however, these studies are
limited by the use of simplistic univariate analysis
techniques, in which the ratio of two spectral peaks at
1175 and 1425 nm is evaluated.’’** These spectro-
scopic techniques enable non-destructive in sifu eval-
uation without the need for sample extraction and are
sensitive to specific bond vibrations common in bio-
logical materials.'” In conventional diffuse reflectance
spectroscopy, samples are irradiated with light and the
reflected and scattered light is collected and analysed.
Changes in tissue composition contribute to the mag-
nitude of light absorption, whereas tissue structure
contributes to the magnitude of reflection and scat-
tering. Although the MIR spectral region is more
specific with relatively stronger absorption bands,'® the
technique suffers from poor penetration depth into
biological tissues.”® On the other hand, the NIR
spectral region suffers from overlapping spectral fea-
tures,'” making conventional univariate analysis inef-
fective. Currently, the availability of computational
power and adaptation of state-of-the-art algorithms,
such as neural networks (NNs), have enabled mod-
elling of the relationship between NIR spectra and
reference properties.”’

Neural networks (NNs) are analytical techniques
that mimic the function of the brain and consist of
several layers of neurons. The input layer receives the
data and passes it on to hidden layers, whereas the
output layer defines network output. In the neurons of
the hidden layers, the inputs are weighted and pro-
cessed through different activations (e.g., rectified lin-
ear units (ReLu'®)). With regression problems, linear
activation is often used in the output layer. The aim of
the network is to optimize the hyper-parameters
(weights and biases) to minimize network error. Even
shallow NNs have shown superiority in modelling the
relationships between spectra and reference properties
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over principal component analysis (PCA) and partial
least squares regression (PLSR)—the commonly
applied analytical approaches in chemometrics.'*"”
Deep learning applications, such as image recognition
and classification, conventionally rely on convolu-
tional NN (CNN) to process image data. For suc-
cessful adaptation of deep learning, large training data
are required for the modelling as limited data can often
lead to overfitting. Several techniques have been
introduced to minimize overfitting, including cross-
validation,*® dropout layers,** and early stopping.*' In
cross-validation, an independent subgroup of data is
withheld from the training data to monitor its predic-
tion performance and thus to ensure a well-generaliz-
able model. A dropout layer randomly deactivates
neurons during training to make each neuron to learn
broader features, whereas early stopping halts the
training if no improvement is achieved after a certain
number of iterations. Additional techniques for
enhancing NN performance are data augmentation,
in which the amount of training data is artificially
increased (e.g., by the creation of slightly altered copies
of the original data), and reduction of learning rate, in
which learning rate is reduced to ensure finding the
optimal solution.

We hypothesize that arthroscopic NIRS, combined
with deep learning, can reliably predict cartilage PG
content and collagen orientation angle in full-thickness
and superficial regions of cartilage during in vivo ar-
throscopy. To test the hypothesis, in vivo and in vitro
NIR spectra were acquired from tissue surrounding
experimental cartilage repair sites in equine joints and
compared to those acquired from matching anatomical
locations in healthy equine joints. The surrounding
tissue was investigated as the repair attempts were
deemed unsuccessful and also to improve the currently
challenging diagnosis of early cartilage degeneration.
As reference, cartilage PG content and collagen ori-
entation angle were determined with digital densito-
metry (DD) and polarized light microscopy (PLM),
respectively. In addition, we applied one-dimensional
CNNs (1D-CNNs) to investigate the relationship
between cartilage NIR spectra and reference proper-
ties. Relative to earlier cartilage NIRS studies,'*?*
the present study utilises a wider spectral region,
adopts a more sophisticated analytical technique, and
most importantly, demonstrates the feasibility of the
NIRS for in vivo applications.

MATERIALS AND METHODS

On the medial femoral trochlear ridges of both
femoropatellar joints of adult Shetland ponies (N = 7,
6 females and 1 male, Age = 8.8 £ 3.5 years), two



Arthroscopic NIRS to Determine Cartilage Quality 1817

cylindrical (¢ = 10 mm) chondral lesions were surgi-
cally created, resulting in a total of 28 lesions.?’” Le-
sions were filled with four different experimental repair
techniques (three varieties of gelatin methacryloyl
(GelMA) hydrogels or fibrin glue) to investigate their
potential—please refer to our earlier paper for further
details on the repair techniques (open access).”’ The
positions of these four experimental repairs were ran-
domized equally between the four predetermined
anatomical locations (left proximal, left distal, right
proximal, and right distal femoral trochlea) to account
for any variability influenced by the anatomical loca-
tion. The ponies were sacrificed after 12 months fol-
low-up and the tissue surrounding the repair sites was
evaluated using a conventional arthroscope and a no-
vel arthroscopic NIRS probe. Subsequently, samples
were extracted after removing the skin and overlying
tissues of the joint and frozen (at — 20°C) until
required for further analysis. No substantial changes in
cartilage structure or composition are expected by
subjecting the samples for a freeze-thaw cycle.” In
addition, samples from matching anatomical location
were extracted from the joints of healthy adult Shet-
land ponies (Nepunor = 3, Age = 10.3 + 4.7 years) to
enable comparison between the two groups: experi-
mental and control ponies. The Ethics Committee of
Utrecht University for Animal Experiments in com-
pliance with the Institutional Guidelines on the Use of
Laboratory Animals approved the study (Permission
DEC 2014.111.11.098). The measurements were carried
out in a surgical theatre at the Department of Equine
Sciences, Utrecht University, The Netherlands. The
control ponies were acquired from a slaughterhouse in
Nijkerk, The Netherlands and thus no gender infor-
mation was available. Unlike in humans,'® there are
thus far for the equine species no indications for gen-
der-related differences in the susceptibility to ortho-
paedic diseases, such as OA, nor in differences related
to the healing capacity of articular injuries.
Arthroscopic NIR spectra (n = 108) were acquired
by an experienced board-certified equine surgeon (with
experience of > 500 arthroscopies, Diplomate Euro-
pean College of Veterinary Surgeons) under the guid-
ance of a traditional arthroscope (4 mm, 30°
inclination, Synergy HD3, Arthrex, Naples, FL, USA).
The NIRS system consisted of spectrometers (AvaS-
pec-ULS2048L, A= 0.35-1.1 um, resolu-
tion = 0.6 nm and  AvaSpec-NIR256-2.5-HSC,
A = 1.0-2.5 ym, resolution = 6.4 nm, Avantes BV,
Apeldoorn, The Netherlands), a light source (Ava-
Light-HAL-(S)-Mini, 4 = 0.36-2.5 um, Avantes BV),
and the custom-designed arthroscopic probe manu-
factured by Avantes BV. The reusable stainless-steel
probe (d = 3.25 mm) is sterilisable in an autoclave at
121 °C with the probe tip window (d = 2 mm) con-

taining 114 optical fibres (d = 100 pum) with 14 fibres
used to collect the reflected and scattered light. Eight
locations surrounding the cartilage repair sites were
measured (Fig. 1) with the NIRS probe held in per-
pendicular contact with the cartilage surface. At each
measurement point, 15 spectra were recorded, each
being the average of ten successive spectra; the total
duration of data acquisition was 2.4 s per measure-
ment location. In addition, the traditional arthroscope
and palpation hook were utilized to evaluate the
measurement locations according to the ICRS scoring
system.” Arthroscopic images were recorded during the
measurements to enable reliable location tracking. For
joint distension, Ringer’s solution (Fresenius, Bad
Homburg v.d.H., Germany) containing sodium chlo-
ride (8.6 g/L), potassium chloride (0.3 g/L), and cal-
cium chloride (0.33 g/L) was used.

The NIR spectra (n = 236; experimental and con-
trol groups) were re-acquired in vitro under similar
conditions as during arthroscopy procedure, i.e.,
including NIRS hardware, immersion solution, and
temperature, apart from using the conventional
arthroscope for navigation. Three successive spectra,
each being an average of 10 spectra, were acquired at
each measurement location. The different acquisition
protocols for in vivo and in vitro measurements were
utilized to account for operator-based movement and
hardware-related variation, respectively.

In addition to spectral measurement, cartilage
thickness was determined by imaging with optical
coherence tomography (OCT, 4 = 1305 £ 55 nm,
axial resolution < 20 um, lateral resolution 25-60 pum;
Ilumien PCI Optimization System, St. Jude Medical,
St. Paul, MN, USA).”’

Histological Processing and Imaging

Histological sections were prepared for each NIRS
measurement location (Fig. 1a) by the process of fixing
samples in formalin, subsequent decalcification in
EDTA, and embedding in paraffin. For each NIRS
measurement location, three sections were prepared
with a microtome for DD (thickness =3 um) and
PLM (thickness =5 ym) imaging.”® In the analysis,
full-thickness and superficial (first 25%) cartilage PG
content and collagen orientation angle were deter-
mined. The first 25% of cartilage was chosen to rep-
resent a layer in which collagen orientation changes
from parallel orientation towards perpendicular ori-
entation relative to cartilage surface.”” This layer rep-
resents the conventional superficial and middle zones
that are traditionally determined based on profiles of
collagen orientation and optical retardance; however,
due to the disruption of the collagen network in some
of the present samples, this was not always feasible.
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FIGURE 1. (a) The measurement locations (black and white circles) on an osteochondral sample along with the locations (grey
rectangles) from which tissues were extracted for histological analysis (dashed line on a grey rectangle). On each measurement
line (proximal, central, and distal), the measurement location closest to a defect was denoted as location 1 and the farthest as
location 4. (b) The novel arthroscopic NIRS probe during in vivo spectral acquisition with the probe tip in contact with cartilage
surface (inset, at Distal location 3). The distance between the locations of spectral acquisitions was equal to the outer diameter

(d = 3.25 mm) of the NIRS probe.

To determine cartilage PG content via optical den-
sity (OD), the sections were stained with safranin-O
and imaged using a DD system (Fig. 2). The system
consists of a light microscope (Nikon Microphot-
FXA, Nikon Co., Tokyo, Japan), equipped with a
monochromatic light source and a 12-bit CCD camera
(ORCA-ER, Hamamatsu Photonics K.K., Hama-
matsu, Japan). The system was calibrated with filters
having OD ranging from 0 to 3. In the analysis, the
average OD profile of each location was determined by
extracting depth-wise profiles perpendicular to the
cartilage surface, interpolating them to 500 points, and
averaging the interpolated profiles.

An Abrio PLM system (CRi, Inc., Woburn, MA,
USA), mounted on a conventional light microscope
(Nikon Diaphot TMD, Nikon Inc., Shinagawa, To-
kyo, Japan), was used to determine collagen orienta-
tion in the samples (Fig. 2). The system consists of a
green bandpass filter, a circular polarizer, and a com-
puter-controlled analyser, composed of two liquid
crystal polarizers and a CCD camera. In the orienta-
tion images, 0° corresponds with an orientation par-
allel to the cartilage surface and 90° with a position
perpendicular to the cartilage surface. Similarly to the
DD analysis, the depth-wise profiles perpendicular to
cartilage surface were determined, followed by inter-
polation and averaging.

Spectral Pre-processing

Spectral measurements often include environmental
or hardware-related noise; therefore, signal pre-pro-
cessing is essential for ensuring reliable data for mod-
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elling. The acquired spectra were pre-processed with
several techniques, including smoothing, 1st derivative,
and 2nd derivative pre-processing. Due to using two
detectors with varying resolution, the wavelength
regions were pre-processed separately with a 3rd de-
gree Savitzky-Golay®® algorithm using 139 points
(0.08 um, spectrometer: AvaSpec-ULS2048L) and 41
points (0.26 um, spectrometer: AvaSpec-NIR256).
These window lengths ensured sufficient noise reduc-
tion without any substantial loss of essential informa-
tion.

Outlier Detection

In our previous study,?’ arthroscopic spectra were
found to have contributions from the arthroscopic
light source (0.40-0.75 um); therefore, a spectral re-
gion of 0.40-0.80 um was discarded from the analysis.
To address the possibility of non-optimal contact
between NIRS probe and cartilage surface during
arthroscopic measurements, a minimum volume ellip-
soid (MVE) approach was adopted. PCA was utilized
to calculate the first three principal scores of pre-pro-
cessed in vitro spectra, followed by calculation of
scores for in vivo spectra by projecting them to the first
space. As in vitro spectra (green, Figs. 3a and 3b) were
always recorded with a reliable contact between the
probe and tissue in a controlled environment, these
scores were utilized to calculate the MVE (Fig. 3a). In
vivo spectra falling outside the ellipsoid (red, Figs. 3a
and 3c) were classified as outliers. In the analysis, the
radii of MVE were uniformly altered to investigate
their effect on NNs’ prediction performance.
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FIGURE 2. Example digital densitometry (optical density, i.e., proteoglycan content) and polarized light microscopy (collagen
orientation angle) images of the experiment (worst case) and control (best case) groups from matching anatomical sites (distal
locations 1-4). The arthroscopic photo shown as an inset in Fig. 1b was recorded during NIRS acquisition of the worst case at

Distal location 3.

Data Preparation

To ensure well-generalized models, fivefold cross-
validation was employed with 2 out of 10 ponies used
as the validation set (each pony was used once in the
validation). With each reference property, the ponies
for the validation set were selected based on the pony-
specific average value, i.e., in the first fold ponies with
lowest and sixth lowest average values were assigned to
the validation set (1-6, 2-7, etc.). This division was
adopted to ensure representative calibration and vali-
dation sets (range of data), along with ensuring that
the calibration set had no dependent information in the
validation set. In addition, the reference properties and
spectra were scaled with the MinMaxScaler and
StandardScaler functions in the sklearn package,”'
respectively.

Network Design and Training

As NNs require substantial amount of data to en-
sure well-generalizable models, data augmentation was
adapted in this study by including the three
repeated in vitro spectra from each location in the
modelling. In addition, several studies have highlighted

the advantage of ensemble networks over a single
network; thus, two separate network architectures
were developed. To further optimize the modelling, the
networks were initialized with three random seeds (7,
14, and 21). Therefore, the performance of the
ensemble network was evaluated by averaging the
outputs of these six variants. The network architec-
tures were optimized by monitoring the overall per-
formance of the validation sets.

The first network architecture was adapted from
Bjerrum et al. by employing 1D-CNNs.” The optimal
network had two 1D convolutional layers (lay-
erlkernel = 8, 1a-yerlﬁlter = 64» la-yerzkernel = 64» laY'
er2aer = 16) with ReLu activations.'® The outputs
were flattened, followed by a dropout layer (ra-
tio = 0.75), a fully connected dense layer (neu-
rons = 128) with a ReLu activation, and the output
layer with a linear activation. The second network
architecture included a dense layer (neurons = 120)
with a sigmoid activation, a dense layer (neu-
rons = 60) with a ReLu activation, a dropout layer
(ratio = 0.20), a dense layer (neurons = 15) with a
ReLu activation, and the output layer with a linear
activation. Root mean square errors (RMSE) of vali-
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FIGURE 3. Minimum volume ellipsoid (MVE, a) calculated from the scores of in vitro (black) NIR spectral measurements. In
addition, scores of in vivo spectral measurements within the MVE are presented (green) along with the outliers (red). In addition,
smoothed in vitro (b) and in vivo (c) spectra with average spectra (black) are presented. In subfigure (c), outlier spectra are shown

in red.

dation sets were used to evaluate the performance of
both network architectures during the training. The
training was performed using the Adam optimizer in
Keras.!" To limit the chance of overfitting, Keras
EarlyStopping and ReduceLROnPlateau callbacks
were utilized to halt training if no improvement was
achieved after 25 epochs and to reduce the learning
rate after 20 epochs, respectively.

Statistics

The performance of the ensemble network calibra-
tion (in vitro), validation (in vitro), and test (in vivo) sets
was calculated by averaging the location-specific pre-
dictions, i.e., with in vitro data, the predictions of three
repetitions were averaged and, with the in vivo data, the
predictions from non-outlier spectra were averaged.
Due to a non-normal distribution of reference parame-
ters (Shapiro—Wilk test, p < 0.0001), non-parametric
tests were used. SPSS (Version 25, SPSS Inc., IBM
Company, Armonk, NY, USA) was used in the statis-
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tical analysis. Statistical significance of differences in
tissue properties between experimental and control
groups was investigated using the Mann—Whitney U test
withp < 0.05 as the limit for statistical significance. For
testing the statistical differences between the measured
and predicted reference values, a Wilcoxon signed rank
test was used with p < 0.05 as the limit for statistical
significance. Linear Mixed Model analysis was per-
formed to determine underlying causes for the vari-
ability of reference properties by using the anatomical
location (distal, proximal), repair group (1-4) and con-
trol, and measurement location (location 1-4) as fixed
effects, whereas pony and leg (pony x leg) (left or right)
were utilized as random effects.

RESULTS

In the arthroscopic evaluation, the cartilage sur-
rounding the repair sites was visually intact with no
signs of cartilage fibrillation or lesions. However,
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during cartilage palpation, all measurement locations
around the repair were soft in comparison to native
cartilage. Furthermore, cartilage stiffness was observed
to increase when moving away from the repair sites.
Thus, the measurement locations were systematically
denoted with the score of ICRS 1a.

During initial preliminary modelling, 1st derivative
pre-processing exhibited systematically better perfor-
mance over the other pre-processing methods and was,
thus, selected as the optimal pre-processing method in
the final analyses. In the outlier detection, the best
performance (smallest average RMSE of test set) was
observed with slightly larger MVE (radii of 105%,
Figs. 4a and 4c) with 51 outliers (out of 1620 collected
during the arthroscopy). The average error of test sets
substantially increased (correlation decreased) after
reduction of radii by 25% (100% — 75%), indicat-
ing extensive rejection of good spectra. A less sub-
stantial difference was observed when the radii were
increased, thus indicating a low number of outlier
spectra during the arthroscopic measurements.

The performance of the trained ensemble networks
with both validation (in vitro) and test (in vivo) sets for

the cartilage reference properties, including cartilage
thickness, full-thickness and superficial PG content
and collagen orientation angle, is presented in Table 1.
In addition, predictions based on validation and test
sets enabled a comparison between the experimental
and control groups (Fig. 5).

When comparing the measured reference values of
experimental and control groups (Fig. 6), significant
(p < 0.05) differences in full-thickness PG content
were observed in locations closest to lesions on prox-
imal and distal sites. However, no difference was
apparent with full-thickness PG content or collagen
orientation angle at locations further away from le-
sions, thus possibly indicating that locations closest to
the lesion are more vulnerable to excessive stresses and
strains and, hence, progressive degeneration as also
demonstrated by Veniliinen er al.*® However, contri-
butions from other factors, including inflammatory
signalling and cell-mediated factors, could not be
accounted for in the analysis. Based on the linear
Mixed Model, the measurement location had by far the
most significant effect (p < 1E—13 with all reference
properties), whereas anatomical location (thickness:
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FIGURE 4. Detection of outlier in vivo spectra was performed by calculating the minimum volume ellipsoid (MVE) of the first three
principal scores of in vitro spectra. For cartilage reference properties, the average scaled root mean square error (RMSE, a),
average Spearman’s rank correlation (p, b), and the number of outliers (c) are presented as a function of relative MVE radii with and
without cartilage thickness. In addition, the relationships between measured and predicted full-thickness proteoglycan (PG)
content (optical density, OD) for calibration (in vitro, d), validation (in vitro, e), and test (in vivo, f) sets are presented.
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TABLE 1. Average cartilage reference properties and statistics on network performance, including Spearman’s rank correlation
(p, *p < 0.001), root mean square error (RMSE), and normalized RMSE (NRMSE)

Full-thickness
PG content (OD)

Cartilage

Parameter thickness (mm)

Superficial PG
content (OD)

Superficial collagen
orientation angle (°)

Full-thickness collagen
orientation angle (°)

Mean (range) 0.82 (0.14-1.36)
Calibration (in vitro)

0.66 (0.04—1.41)

P 0.888* 0.857*
RMSE 0.108 0.208
NRMSE 8.8% 15.3%
Validation (in vitro)

o 0.797* 0.691*
RMSE 0.141 0.274
NRMSE 11.5% 20.1%
Test (in vivo)

p 0.596* 0.676*
RMSE 0.191 0.296
NRMSE 17.2% 21.8%

0.37 (0.04-1.17)

46.9 (10.1-77.2) 17.1 (3.6-56.0)

0.800" 0.781* 0.582~
0.174 10.967 7.994

15.4% 16.4% 15.2%
0.650" 0.626" 0.327*
0.220 13.111 9.495

19.5% 19.6% 18.1%
0.613" 0.574~ 0.316"
0.248 13.439 11.642
22.0% 20.0% 22.2%

p = 0.316, PG: p = 5.2E—6, and collagen orientation
angle: p = 0.442) and repair group (thickness:
p = 0.026, PG: p = 0.040, and collagen orientation
angle: p = 0.646) had significant effects in few occa-
sions. In pairwise comparison between healthy (control
group) and different repair groups (experimental
group), a significant difference (p = 0.034) was
observed only with cartilage PG content with one re-
pair group (GelMa reinforced).

DISCUSSION

In this study, an arthroscopic NIRS was introduced,
for the first time, for in vivo evaluation of cartilage
thickness, PG content, and collagen orientation angle.
Furthermore, no previous study has utilized 1D-CNNs
to investigate the relationship between cartilage NIR
spectra and reference properties; although, these rela-
tions have been previously demonstrated in several
in vitro studies.®*>° The spectral region utilized in this
study was similar or wider compared to the previous
studies. The findings presented here demonstrate the
clinical potential of NIRS for the evaluation of carti-
lage thickness, composition, and structure. Particu-
larly, the prediction of superficial cartilage PG content
could prove useful in detecting compromised cartilage
prior to visible signs of degradation. The presented
technique has the potential to improve the arthro-
scopic assessment of cartilage integrity. This could lead
to better staging of OA and aid decision-making in
cartilage repair surgery, for example, when selecting
suitable autograft for mosaicplasty surgery or when
assessing the boundaries of focal cartilage defects and
healthy cartilage.

Significant differences in collagen orientation angle
and PG content between the experimental and control
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groups were only observed at the locations closest to
lesions (Fig. 6). Although there were no other signifi-
cant differences between the two groups, the observ-
able difference substantially decreased when moving
away from the lesions, with no apparent difference
between both groups at the farthest location (location
4). The application of NIRS could, therefore, enable
demarcation of the boundary between healthy and
compromised cartilage tissue when performing repair
arthroscopies. However, prior to clinical application, a
substantial cartilage reference library would need to be
collected to establish the normal variance of different
anatomical locations. Linear mixed model analysis
revealed that the type of repair strategies had no sub-
stantial effect on cartilage properties relative to the
effect of measurement location (i.c., distance from the
repair). Cartilage tissue closest to the repair site has
been exposed to higher than normal stresses and
strains, potentially accelerating the tissue degeneration.
This observation is supported by the findings of Ve-
nildinen er al.*® Our findings are in line with those of
Kaul et al., who reported differences between repair
tissue and adjacent articular cartilage after failed
marrow-stimulation techniques (microfracture and
Pridie drilling).'® In that study, the surrounding carti-
lage showed signs of early to severe OA after
8 months.

Spahn er al. and Hofmann et al. have previously
applied NIRS in human arthroscopies'*** and com-
pared the reliability of the technique with scores from
other modalities. Specifically, Spahn et al. reported
spectral changes with varying severity of cartilage
lesions®? and Hofmann er al. showed that NIRS values
(based on a ratio of two spectral peaks'**!*?) correlate
with KOOS (Knee Injury and Osteoarthritis Outcome
Score®). The NIRS value varied between 0 (degener-
ated cartilage) and 100 (healthy cartilage) and was



Arthroscopic NIRS to Determine Cartilage Quality 1823
M T -1 T 14 T =12 (a)
£ 14F - j A i T .
PRL ST R T
) - 1 1 1
2T 7! == = éigé
o= L 1 1 - 1 o
5 08 : B ol :
% 0.6H o I L. P Loe i
€ o4k 1 1 i i % p<0.05 Wilcoxon rank test
o : : e p<0.05 I\!Iann—Whitney U test
0.2 Experiment Control Experiment Control Experiment Control Experiment Control
Location 1 Location 2 Location 3 Location 4
2.0 L L L)
A ! n=13 ! n=14 : n=12 (b)
S e, s
g 1.5k ! N ! ! -
g L . - ! -
S 1ok = -1 T . it 1
g I : : : *
g : ==f E| = (15
on 1 1 1
g 05r I bl I 7
,,5 1 1 1 J. 1
— 1 1 ]
A ! ! !
0.0 Experiment Control Experiment Control Experiment Control Experiment Control
Location 1 Location 2 Location 3 Location 4
c r—-rms E i n=14 L =12 (c)
> 8o : — i —
§ 70 +—2—m E T E E - 4
- * - T -
b (e e e
<
soree T e HOl 2 LTI
g 40 E I - : - : l : -L "
§0 30 = 1 i l J. E . : Meafured invitro ||=
< 20k l 1 1 D Predicted in vitro
g : . : - Predicted in vivo
10 Experiment Control Experiment Control Experiment Control Experiment Control
Location 1 Location 2 Location 3 Location 4
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respectively.

suggested to indicate diminished stiffness'’** and al-

tered water content.’’*® In addition to the suboptimal
analysis technique, the studies utilized a narrower
spectral region (1.1-1.7 um) compared to the present
study (0.8-1.9 um). The inclusion of shorter and
longer wavelengths within the wider spectral region
enables evaluation of subchondral bone*” and more
specific evaluation of superficial layer, respectively, due
to the wavelength-dependent penetration of light into
the tissue.””

Previous studies have reported the relationship
between native cartilage PG content and its NIR
spectra.®?® Afara er al. demonstrated the potential of
PG mapping with a similar spectral region (0.8—
2.5 um) using bovine samples.” Although the reported

correlations were relatively higher, the study utilized
PLSR with leave-one-out cross-validation, which is not
as robust as k-fold cross-validation, since the calibra-
tion set always included measurements from the same
joint as the validation (left out sample). In our previ-
ous in vitro study,?® combination of a narrower spec-
tral region (0.7-1.1 um) and shallow NNs was
demonstrated with samples from equine cartilage,
resulting in similar correlations as presented here. With
superficial cartilage PG content, the ensemble NN
achieved a lower prediction error (RMSE) compared
to the shallow NN in our previous study. The previous
study also utilized OCT-based image classification to
improve the prediction accuracy of the shallow NNs.%¢
However, in the present study, all cartilage samples
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were assessed as visually intact based on conventional
arthroscopic evaluation and the OCT images, making
image-based classification impractical.

The relevant spectral features harnessed by the NNs
for predicting the target (reference) tissue properties
are due to the depth-dependent interactions (absorp-
tion, scattering, etc.) of NIR light with the tissue.
These interactions are related to chemical bonds of
cartilage constituents, i.e., water, PG, and collagen.
The NIR region is mostly affected by the first, second,
and third overtone vibrations arising from stretching,
bending, and combination bands. The most common
bonds of cartilage constituents are OH, CH, NH, and
CO. As cartilage matrix mainly consists of water (up
to 80%),%’ the absorption of OH stretching and
bending vibrations is most pronounced in the cartilage
spectrum. Several optical windows (e.g., 1.10-1.23 and
1.40-1.55 pum), not affected by the masking effect of
water, have shown good prediction performance. The
relationship between collagen orientation angle and
NIR spectra is expected to arise from the birefringence
property of cartilage, with healthy and intact collagen
network reflecting more light back to the NIRS probe.
With cartilage thickness, the NIR spectra are affected
by the path length of light and the strong interaction at
the interface of cartilage and bone (due to difference in
refractive indices).**” The superior penetration depth
of NIRS, compared to MIRS, promotes its application

BIOMEDICAL
ENGINEERING
SOCIETY

for evaluation of whole cartilage tissue in clinical
arthroscopies. In contrast to MIRS, NIRS is also
capable of providing information on the underlying
bone through articular cartilage in both equine and
humans."?” These studies showed that the visible and
short NIR spectral regions are optimal for estimating
bone properties, such as subchondral plate thickness
and volume fraction, due to their better penetration
depth compared to longer wavelengths.*”

Although analyses of cartilage NIR spectra have
mostly relied on conventional multivariate approaches
(e.g., PCA and PLRS), recent studies have explored the
potential of shallow NNs**?7 due to their ability to
model complex non-linear features.'>!” In this study,
deep NNs with two different architectures were
developed and tested with positive outcomes. With
deep learning, a substantial amount of data is required
to ensure reliable optimization and to limit the chance
of overfitting. To account for this constraint, cross-
validation, dropout layers, and early stopping were
utilized. In cross-validation, the division was based on
pony level (i.e., calibration and validation set did not
include data from the same pony), therefore ensuring
that the validation set had independent data.

Outlier detection is essential in diagnostics to ensure
reliable estimation of tissue properties.>’>" In our
earlier study utilizing the same NIR spectral data,?’
8 out of 15 spectra were eliminated based on contri-
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butions from the light source of the conventional
arthroscope during measurements. However, this does
not account for the relative orientation of the NIRS
probe to the arthroscope as inclination of NIRS probe
tip (non-optimal contact) towards arthroscopic light
source will result to stronger contributions compared
to an inclination to opposite direction; therefore, the
MVE approach was adopted. In the study of Spahn
et al.’® no explicit reasoning for outlier classification
was given. The MVE approach, based on the con-
trolled in vitro measurements, enables fast and effective
detection of outliers as observed with the prediction
results.

During the arthroscopic NIRS measurements, the
narrow cavity of the equine joint restricted probe
mobility and, therefore, limited the alignment between
the probe and cartilage surface. However, the number
of outlier measurements was relatively low (3.1%),
demonstrating the clinical feasibility of the technique.
The main limitation of this study was the contribution
of the arthroscopic light source, as this limits the use of
data from the visible spectral region, which may be
useful for predicting subchondral and trabecular bone
properties.”” As an animal model, equines were well-
suited for this study due to similar cartilage thickness
with humans.'® In addition, for example, racehorses
suffer from joint injuries that are often evaluated and
treated arthroscopically, thus demonstrating the use-
fulness of the technique in a relevant veterinary field.

In conclusion, NIRS in combination with deep NNs
can be utilized for predicting cartilage thickness, PG
content, and collagen orientation angle during in vivo
arthroscopy, enabling differentiation between the
experimental and control groups. Therefore, adapta-
tion of NIRS may prove useful clinically, e.g. when
arthroscopically selecting suitable allograft tissue for
mosaicplasty surgery or when assessing the boundaries
of focal cartilage defects and healthy cartilage.
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