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Abstract

Unsupervised clustering methods are increasingly being applied in psychology. Research-
ers may use such methods on multivariate data to reveal previously undetected sub-popula-
tions of individuals within a larger population. Realistic research scenarios in the cognitive
science may not be ideally suited for a successful use of these methods, however, as they
are characterized by modest effect sizes, limited sample sizes, and non-orthogonal indica-
tors. This combination of characteristics even presents a high risk of detecting non-existing
clusters. A systematic review showed that, among 191 studies published in 2016-2020 that
used different clustering methods to classify human participants, the median sample size
was only 322, and a median of 3 latent classes/clusters were detected. None of them con-
cluded in favor of a one-cluster solution, potentially giving rise to an extreme publication
bias. Dimensionality reduction techniques are almost never used before clustering. In a sub-
sequent simulation study, we examined the performance of popular clustering techniques,
including Gaussian mixture model, a partitioning, and a hierarchical agglomerative algo-
rithm. We focused on their ability to detect the correct number of clusters, and on their clas-
sification accuracy. Under a reasoned set of scenarios that we considered plausible for the
cognitive research, none of the methods adequately discriminates between one vs two true
clusters. In addition, non-orthogonal indicators lead to a high risk of incorrectly detecting
multiple clusters where none existed, even in the presence of only modest correlation (a fre-
quent case in psychology). In conclusion, it is hard for researchers to be in a condition to
achieve a valid unsupervised clustering for inferential purposes with a view to classifying
individuals.

Entia non sunt multiplicanda praeter necessitate

[Entities should not be multiplied beyond necessity] (William of Ockham’s razor)

Introduction

Ockham’s razor introduced a principle of parsimony in scientific reasoning: we should not
engage in describing multiplicities unless it is clearly necessary. In the cognitive research, and
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in psychology or in the social sciences in general, a fundamental issue concerning multiplici-
ties lies in whether individuals can be grouped around discrete taxonomies rather than just
being seamlessly distributed along continuous dimensions. The issue can become delicate
when clinical implications are at stake. In cognitive psychology, for instance, even clinical
diagnoses based on widely accepted criteria (like those of the DSM-5) [1] could reflect a sensi-
ble, but somewhat arbitrary categorization of individuals based on cut-offs along dimensions
that are naturally continuous. An example concerns the recently (re)opened debate on the
multiplicity of learning disorders [2-4]. According to the dimensional hypothesis, individuals
with most neurodevelopmental disorders may be more likely to represent the ends of develop-
mental (multivariate) continua that encompass the general population, rather than internally
homogeneous clusters of cases that are distinguishable from one another. Unfortunately, with-
out clear and near-deterministic psychological, genetic, or neurological markers, it is hard to
say whether some diagnoses reflect a natural taxonomy rather than a categorization that is con-
venient for practical purposes.

To disentangle this issue of multiplicity, one promising approach is to look for discontinui-
ties in the data. For instance, if scores on certain indices are distributed over a continuum, and
tend to consistently group around certain centroids, leaving a limited number of statistical
units in the multidimensional “no man’s land”, this distribution may reveal hitherto-unde-
tected underlying clusters in a non-homogeneous population. The procedure described relies
on an unsupervised machine-learning algorithm clustering that—in the psychological and
social sciences—is part of the methods used in latent profile analysis (LPA) [5]. A model-based
clustering is often adopted in LPA, generating results that are particularly engaging because
researcher can obtain a marginal and a joint probability distribution of the indicators for each
latent class, characterizing the discovered sub-population [6, 7]. In addition, model-based clus-
tering also has the potential to deal with the issue of causality [8]. In LPA, latent classes can be
interpreted as the underlying causes of mixture distributions observed in the indicators, in a
similar way as latent variables can be interpreted as being causally related to observed indica-
tors in measurement models [e.g., 9]. For the sake of clarity, an (oversimplified) example is
given by the political polarization in the United States of America (USA). Republican and
Democratic voters have tended to voice, on average, different opinions about adherence to
measures against COVID-19 and vaccinations [10-12]. If political convictions are among the
causes behind their different beliefs/attitudes, then mixture distributions should be observable
in the latter, revealing two underlying clusters. An outside observer who knows nothing about
the political polarization in the US might note this and they would correctly infer the existence
of two clusters from the observed indicators alone. Alternatively, if the direction of causality
were different from the one mentioned above, then clusters might not emerge. For example,
taking a political stand could be a consequence (rather than a cause) of one’s beliefs/attitudes
regarding a series of issues including those listed above. In the latter case, mixture distributions
may not be observed in beliefs/attitudes, and the latter may better be described as a multivari-
ate continuum.

Clustering techniques and LPA are gaining popularity in psychology. Searching for “clus-
tering” or “cluster analysis” or “latent profile analysis” in titles, abstracts or keywords, in areas
of the Social Sciences and/or Psychology, in the Scopus database revealed 19,541 records in the
years 2010-2020, as opposed to just 9,404 in all the years prior to 2010 (the ratio is 2.08). The
total number of records in Social Sciences and/or Psychology was 3,824,683 in 2010-2020 and
3,570,607 in all years prior to 2010 (the ratio is 1.07). Therefore, publications mentioning clus-
tering/LPA have grown at nearly twice the rate of the total publication count in the last 10
years as compared to all previous history. This may also reflect how easy it has become to
apply clustering techniques using the various software options available.
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Unfortunately, data from research in cognitive psychology may not be well suited to cluster-
ing techniques. A first major issue is the plausible effect size, which tends to be rather small in
psychological studies. Large replication studies have suggested that the true average effect size
may equate to a correlation r of .20-.25 [13-15], which is equivalent to a standardized mean
difference between groups of about 0.40-0.50. Modest effect sizes probably reflect the large
inter- and intra-individual variability in psychological phenomena (measurement error of var-
iables may also further attenuate the effect sizes). In psychology, large effect sizes (e.g., Cohen’s
d >0.80) may be due to an inflated estimation deriving from an underpowered design [e.g.,
16], possible combined with a publication bias. For example, Schifer and Schwarz [17] showed
that while the median effect size in randomly selected publications without pre-registration
may be large (r = 0.36, equivalent to d = 0.77), publication with pre-registration report substan-
tially lower median effect sizes (r = 0.16, equivalent to d = 0.32). Alternatively, large effect sizes
may reflect an already well-known, obvious association between variables (e.g., the relation
between two areas of intelligence). According to Cohen [18], d = 0.50 is an effect “likely to be
visible to the naked eye of a careful observer”. We speculate that a d > 1.00 would be visible
even to the non-expert eye, with statistical inference being used simply to endorse the obvious.
To give an instance of a very large effect size, Cohen’s d for the difference in height between
young adult males and females is nearly 2.00, based on WHO data [19]. This is hardly the mag-
nitude of effect size that we can plausibly expect from genuine discoveries in psychological
research in cognition, however. Standardized mean differences of such magnitude could be
found, for example, in clinical versus control populations when they are compared on criterion
variables that led to a diagnosis, or on strictly related scores. Examples could be reading scores
for children with dyslexia versus controls, or IQ scores for children with an intellectual disabil-
ity versus those with a typical development, where z < -2 is generally used as the clinical cut-
off. Such comparisons would clearly be meaningless, however. In conclusion, we suggest that a
standardized mean difference of around 0.40 could be regarded as a plausible effect size when
comparing different groups on behavioral measures in cognitive psychology and related fields
(this is just an educated guess based on the general literature, however, and it may largely vary
in specific research sub-fields.)

On the topic of power analysis in clustering techniques, the minimum effect size for algo-
rithms to detect the number of clusters correctly would be considered quite large in cognitive
research. Tein et al. [20] concluded that at least d = 0.80, with latent classes differing in at least
10 orthogonal indicators, and a large sample is still needed (N > 500), is required for LPA.
Recently, in a large simulation study, Dalmaijer et al. [21] showed that clustering techniques
may work with as few as 20-30 observations per cluster. However, this only happens when
clusters present standardized Euclidean distances between cluster centroids (after projection
into two dimensions) of at least A = 3—4. This requires, for example, d = 0.80 in 15-25 orthogo-
nal indicators, or d = 1.50 in 4 orthogonal indicators. These effect sizes should be considered
as large to extremely large in the area of cognitive research.

Another problem concerns dimensionality. We can assume that a researcher planning new
research in cognitive psychology would carefully select relatively limited numbers of measures
to administer to avoid unnecessary redundancies and ensure feasibility of data collection.

Even so, correlations between continuous indicators could still be a problem because cluster-
ing techniques like LPA assume that the indicators are orthogonal [e.g., 20]. Assumptions of
orthogonality may be an issue in cognitive psychology. To give an example, all measures
involving cognitive performance tend to correlate positively, a phenomenon known as the
“positive manifold” in the field of intelligence (which is generally thought of as reflecting a
common “g factor” underlying all measures) [22, 23]. However, it may be difficult to establish
a priori precisely how much correlation one should expect, unless a standardized
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comprehensive battery with robust normative data is used. Other dimensions reflecting per-
sonality or clinically relevant factors may also correlate naturally in the population to degrees
that are unknown a priori. This means that, when obtaining clusters from multivariate data,
we may have trouble establishing, for example, whether an emerging correlation between a
few variables reflects underlying clusters that differ on two orthogonal indicators or just two
variables continuously correlated in a given population. Techniques for dimensionality reduc-
tion (e.g., exploratory factor analysis, principal component analysis [PCA]) could be the key to
reduce a large set of correlated variables to a smaller set of orthogonal dimensions before clus-
tering (see also Dalmaijer et al.,, [21], for important insights on this point). However, it is
unclear how frequently these are effectively used in the extant literature.

It is important to ascertain the conditions under which clustering methods can detect true
underlying clusters or latent classes because, under suboptimal scenarios, we risk not only fail-
ing to identify the true clusters, but also to infer the existence of sub-populations where none
exist. To disclose some results in advance, correlated clustering variables easily lead to inflating
the number of clusters detected. For example, simulating data with only one true latent class, 8
clustering variables correlated at r = 0.30, sample size of N = 200, and performing model-based
Gaussian mixture clustering with the Bayesian Information Criterion (BIC) [24] for model
selection, led to identifying 2 to 4 clusters as optimal solutions 100% of times over 1,000 itera-
tions (see Study 2 for details on the simulation procedure). In such cases, the identified clusters
generally differ only in terms of their overall mean score in most or all clustering variables
simultaneously (e.g., overall low vs middle vs high). A typical example is illustrated in Fig 1. A
similar observation, concerning latent growth classes estimated from growth mixture models
simply segmenting the true continuum of individual differences into pieces, was made by
Bauer [25]. Negatively correlated variables simply lead to reversals in the mean scores.

A Cluster
"-.* ______ A0 A“~.~~ “.-‘..~. A " "
AT T A------ A 1 ("high")
05 B 2 ("medium")
. 3 ("low")
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Fig 1. Example of the typical profiles of mean scores of clusters detected from a set of positively correlated
variables. Clustering variables were correlated with r = 0.30, normally distributed, and without any true underlying
sub-populations. Data was simulated with N = 200. Model-based Gaussian mixture clustering was performed, with
BIC used for selecting optimal number of clusters (see Study 2 for details).

https://doi.org/10.1371/journal.pone.0269584.g001
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In the present study, we examined the conditions under which popular techniques for clus-
tering individuals may plausibly work on cognitive data. We systematically examined the role
of effect sizes, sample sizes, correlations between indicators, and number of indicators, on the
performance of clustering techniques. As regards the inferential risks, we focused not only on
power (i.e., the probability of detecting the true number of underlying clusters under a given
scenario), but also on false positives (specifically, the risk of detecting multiple clusters where
only one underlying population exists). In other words, we examined the case in which cluster-
ing techniques may mislead researchers, inducing them to conclude that there are multiple
sub-populations that do not exist. We also conducted a preliminary review of the literature to
illustrate the most common characteristics and practices of recently published studies that
used clustering techniques on cognitive/behavioral data to isolate subgroups of individuals
from larger samples.

As in previous analyses, we examined the performance of clustering techniques on simu-
lated data, defining an extended set of scenarios. The novelty of the present study lies in that,
in addition to analyzing the effect of factors such as sample sizes, effect sizes and number of
variables, we also tested different sizes of correlations among indicators. We opted to concen-
trate on a set of well-reasoned, plausible scenarios in cognitive research, and on our interpreta-
tion of them. Our findings may be useful in any other area of psychology where domains and
related indicators are often correlated. In fact, the simulation examined in the present work
considered sample sizes, effect sizes, numbers of indicators, and correlations that are appropri-
ate for reflecting the most typical characteristics of empirical research. The parameters consid-
ered were partly drawn from the results of the preliminary literature review (Study 1).

We adopted three popular unsupervised clustering techniques-the Gaussian mixture
model (Fraley at al., 2012), a partitioning algorithm (Partitioning Around Medoids [PAM];
Kaufman and Rousseeuw [26], and a hierarchical agglomerative clustering (HAC) algo-
rithm-that cover the algorithms most often used in real observational studies (Study 2). The
k-means algorithm was not reported because its results were virtually redundant with those
of PAM. The model-based procedure assumed that the indicators are normally distributed,
taking into account a correlation structure between indices. The optimal number of clusters
is commonly defined on the basis of a trade-off between the variance explained and the mod-
el’s complexity, like the BIC, for instance. The PAM and HAC algorithms do not assume any
particular distribution for the indices, and clustering is commonly based on a dissimilarity
matrix, i.e., the Euclidean distance calculated between the raw data. The PAM algorithm
chooses a set of statistical units, called medoids, and iteratively searches for an optimal allo-
cation of the other units around these medoids. The HAC algorithm aggregates the most
similar statistical units, taking an agglomerative iterative procedure. Using these last two
procedures, the number of clusters is commonly defined on the basis of a measure of intra-
cluster entropy, or the ratio of the variability of the indices between and among the clusters
[27, 28]. For a quick example on the features of the three clustering methods, see the section
“Clustering procedures” below.

Study 1: Literature review

We aimed to investigate the features and common practices shared by published studies using
clustering techniques applied to behavioral data. Our goal was to obtain a comprehensive sam-
ple of publications in which clustering methods (including LPA) were employed, focusing on
the psychological literature involving cognitive and neuropsychological methods and mea-
sures. This approach was taken because we were particularly interested in the use of clustering
methods in studies within a cognitive framework.
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Method

Literature search and inclusion criteria. The Search function in Scopus was used, with
the following keywords: (“clustering” or “latent profile analysis” or “LPA”) and (“cognition” or
“cognitive” or “neuropsychology” or “neuropsychological”) in titles, abstracts or keywords.
The results were further limited to three subject areas, “Psychology”, “Social sciences”, and
“Neuroscience”, and to studies published over the 5 years between 2016 and 2020 (included).

Rather liberal inclusion criteria were adopted. We included any study performing clustering
analyses (including LPA) on behavioral data within a cognitive psychology framework (e.g.,
scores from performance test, self-reported measures). Studies performing clustering on physi-
ological measures or neuroimaging data only were excluded (as they have features that go
beyond the scope of the present report), and so were papers involving non-human subjects.
Only studies in which the optimal number of clusters was (or appeared to be) determined
based on the data via the clustering algorithm were considered.

Coding of the studies. The following information was encoded for each study: title,
authors, and year of publication; sample size on which clustering was performed; number of
indicators; clustering algorithm used, and criteria adopted to identify the number of clusters
or latent classes; the number of alternative solutions considered; the number of clusters or
latent classes detected; and whether the profiles of mean scores differed between clusters
mostly in terms of mean levels across most variables simultaneously (based on the inspection
of figures if reported, or on the very interpretation of the authors of the study). We considered
the following characteristics as indicators of good/questionable practices in the specific context
of cluster analysis: whether the one-cluster solution was tested; whether the number of alterna-
tive solutions considered was explicitly stated; whether any technique for dimensionality
reduction was preliminarily used (on the whole set of variables/indexes, and before performing
clustering); whether the cluster analysis was preregistered; and whether power for the cluster
analysis was declared a priori.

If the same study performed more than one clustering or LPA on the same or a different
sample reaching different conclusions, only the first one was reported, for simplicity and to
avoid dependencies in the coded data. Only papers in English, Italian, Portuguese, Spanish or
French were considered. Only studies in which the final number of clusters was inferred from
the data were included for further analysis.

Additionally, we examined the characteristics of the journals in which the papers were pub-
lished. We looked at the Clarivate Journal Citation Reports (JCR; https://jcr.clarivate.com/jcr/
home). We considered their Impact Factor (IF) in 2020 (the latest available as of February
2022), and their category/ies and relative quartile/s as a proxy of the journal’s quality.

Results and discussion

The PRISMA flow diagram of the study selection process is contained in the Supplemental
online material, S1 Fig. There were ultimately 191 studies included in the quantitative
synthesis.

Preliminarily, we report the characteristics of the journals in which the studies were pub-
lished. As of February 2022, 179 (94%) was published in a journal indexed by the JCR with an
IF. The median IF was 3.23. Overall, high quartiles were overrepresented: Q1 was represented
41% of times; Q2, 32%; Q3, 23%; Q4, 4%. The five most represented categories were: Psychia-
try (29% of indexed studies); Psychology, Developmental (20%); Psychology, Clinical (13%);
Psychology, Educational (11%); Clinical Neurology (11%). Concerning the characteristics of
the clustering conducted in the studies, Table 1 shows the percentiles of interest for sample
size (i.e., number of participants on which clustering was performed), the number of variables
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Table 1. Percentiles of interest for the number of individuals on which clustering was performed, the number of
indicators, and the number of clusters identified, across the 191 studies reviewed.

Percentiles
5th 25t 50" 75t 95h
N. of individuals on which clustering was performed 66 153 322 589 2,119
N. of variables (indicators) used for clustering 3 4 6 9 19
N. of clusters identified 2 3 3 4 6

https://doi.org/10.1371/journal.pone.0269584.t001

used for clustering, and the number of clusters or latent classes detected, across the 191 studies
reviewed. The “median” study performed cluster analysis on 322 individuals, used 6 indicators,
and detected 3 clusters, while most studies (between the 5™ and 95™ percentiles) performed
cluster analysis on numbers of individuals ranging from 66 to 2,119, used between 3 and 19
indicators, and detected from 2 to 6 clusters.

Model-based clustering algorithms (including LPA and LCA) were the most often used
(146 studies; 76%), which however may also reflect our search keywords. Next, hierarchical
clustering was used in 21 studies (11%). A partitioning clustering method (specifically, k-
means) was used in 18 studies (9%). The remaining cases used other methods.

As concerns the good/questionable practices concerning clustering, only 86 studies (45%)
explicitly stated that they tested the one-cluster solution; 65 (34%) overlooked this solution
and started testing from two clusters; while the remaining 40 studies (21%) did not explicitly
report information on the number of possible solutions tested (i.e., the number of alternative
clusters or latent classes examined). When reported, the number of possible solutions tested
ranged between 1 and 15 clusters, with one exception testing a 36-cluster solution. Dimension-
ality reduction techniques were rarely used: 184 studies (96%) used none or at most locally
(i.e., only for specific domains, but not for the whole set of variables used for clustering). Two
studies used PCA, and other 4 used either exploratory or confirmatory factor analysis (note
that the latter do not ensure extracting uncorrelated factor scores, however). Finally, only three
studies were preregistered, and only four studies explicitly included a power analysis (which
confirms that the inclusion of an a priori power analysis is often neglected [29]), but always for
more general analyses. That is, none of the 191 studies performed a power analysis specifically
for clustering. This confirms the observation that papers in psychology, even if published in
high ranking journals, do not necessarily conform to high statistical standards [30] and are
rarely pre-registered [31]

Finally, 92 studies (48%) presented clusters whose average scores were clearly dominated by
an overall-low vs an overall-high profile (with other possible profiles in the middle). Among
studies detecting only 2 or 3 clusters, this occurred even more frequently (60 out of 102 studies,
i.e., 59%). As explained in the Introduction, the latter is a typical warning flag that multiple
clusters may have been detected where none exist, due to correlated clustering variables
(Fig 1).

Study 2: Performance of clustering algorithms under different
scenarios

Simulation settings

Strategy. The data were simulated using a multivariate Gaussian random variable distrib-
uted as follows:

Y|G =g~ N,(1,,2Z(p,))
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where G is the true latent group or class, p is the dimensionality, which equates to the number
of indicators, y, is the vector of the mean for the cluster g, and Z(p,) is the variance-covariance
of the cluster g, a unit diagonal matrix with a pairwise correlation between indicators equating
to pg. In our setting, we fixed p, = p in all groups. Given the results of the preliminary literature
review, we tested p = 3, 6, and 12 indicators, while the number of true clusters was either 1
(i.e., only one population, containing no sub-populations) or 2. This enabled us to simplify the
analysis and related discussion, while more complex scenarios could easily be built on it ad
hoc. The joint distribution of the indicators thus becomes:

Y~ N,(0,Z(p)), with 1 group

Y|G =g~ N,(d L,(g),%(p)), with 2 groups

where, in the simulation with two clusters, I,(g) is an indicator function taking a value of 1
when g = 2, and 0 otherwise. In the latter scenario, we explored three increasing levels of the
standardized mean difference, with Cohen’s d = 0.40, 0.80, and 1.50, which respectively corre-
spond to a plausible average (small) effect, a large effect, and an overly large (implausible)
effect size in the cognitive research. It is important to point out that a condition of d = 1.50
was considered solely for the purpose of examining whether the algorithms would work with
exaggeratedly optimistic expectations.

Three different average values were chosen for the pairwise correlation (p): i) zero, to simu-
late the presence of orthogonal indicators (i.e., the assumption that, after controlling for cluster
membership, the clustering variables are uncorrelated); ii) 0.20, which is a plausible modest
correlation between any pair of variables (that may also reflect a partial correlation remaining
between a pair of broadly overlapping variables even after controlling for a higher-order factor,
e.g. between two cognitive variables after controlling for a measure of the g factor); and iii)
0.50, which is a strong correlation (e.g., the correlation that could be expected between two
uncorrected measures of cognitive performance).

For greater realism, and to reflect the plausible uncertainty that we might have when per-
forming a real a priori design analysis, we sampled the parameters from probability distribu-
tions rather than having them as fixed values. For each clustering iteration, we therefore
sampled Cohen’s d and the value of the correlation parameter p from a uniform distribution
taking the following form:

d~ U(a,b) and p ~ U(c, d),

where the pairs of parameters (a, b) and (¢, d) were chosen to center the uniform distribution
on the previously defined values. In detail, (a, b) were (0.20, 0.60), (0.60, 1.00) and (1.00, 2.00),
while (¢, d) were (-0.10, 0.10), (0.10, 0.30) and (0.40, 0.60). A condition in which the true bivar-
iate correlation between two variables was exactly zero was never considered because we posit
that such a situation can virtually never be assumed in cognitive psychology. Instead, we
adopted a condition in which the absolute value of the correlation is below .10, which can be
considered a range of negligible effects.

For each combination we tested six different sample sizes (N = 50, 100, 250, 500, 1000, and
2000), covering a wide range of cases observed in psychological research. In the case of the
simulation with two true latent classes, two equally numerous sub-populations were simulated
within the general population, with each statistical unit having the same probability of being
sampled (thus, on average, n; = n, = N/2). The combinations of the number of indicators, the
parameters d and p, and the sample size gave rise to a total of 54 and 162 combinations for the
scenario with one and two clusters, respectively.
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Clustering procedures. Three standard, different and competitive classification methods
were considered: a) a model-based Gaussian mixture clustering (MGC); b) a Partitioning
Algorithm around Medoids (PAM,; in the context of our simulation, PAM yielded very similar
results, but more robust than k-means clustering); and c) a Hierarchical Agglomerative Clus-
tering (HAC) with a procedure based on a complete linkage algorithm that had achieved a
good performance [32].

The main characteristics of the three clustering methods are here presented through a
quick example of LPA to identify groups considering questionnaire data from the 2015 Pro-
gram for International Student Assessment (PISA; https://www.oecd.org/pisa/data/) in the
United States that can be retrieved by the R package tidyLPA. Each student was investigated
through a questionnaire producing four self-reported composite quantitative variables
(indexes): broad interest, enjoyment, instrumental motivation, and self-efficacy. We consid-
ered the responses of a random sample of 200 students out of 5,712 participants. The four
indexes can obviously be expected to positively correlate to some extent even in a homoge-
neous population (i.e., one without any discrete cluster in it). Indeed, they show a medium-to-
strong correlation structure with a statistically significant pairwise correlation among all the
variables and a maximum correlation between Broad interest and Enjoyment (S2 Fig; Pear-
son’s correlation: 0.523, which is strong).

The MGC method considers each characteristic as a finite mixture of normal random vari-
ables, each one belonging to a latent group. Varying the number of groups, the procedure
selected the best type of gaussian mixture which meets a computational criterion (i.e., BIC). In
our example, the optimal number of latent groups was 4, with a variance-covariance matrix
structure defined as VVE (ellipsoidal, equal orientation; S3 Fig, left). The results of the cluster-
ing are presented in S3 Fig (right) and denoted a separation among the groups, especially for
the values related to the Enjoyment, while the separation for the other variables is less visible.

The second method is based on the PAM algorithm. It starts from the calculation of a distance
matrix between the statistical units, based on a metric norm; the L2-norm (the Euclidean distance)
is commonly used. Consequently, fixing in advance the number of latent groups, the algorithm
starts to search for a pre-determined number of representative observations, called medoids,
among the observations of the data set. For each medoid and at each step, the algorithm selects
the nearest observation and evaluates the reallocation of the previously identified medoid with the
non-medoid observation. The algorithm ends when all the observation are allocated to a group.
Different criteria have been proposed to choose the optimal number of groups. In our example
we considered the commonly used silhouette value, which is a measure of cohesion and indicates
how similar an observation is to its own cluster vis-a-vis other clusters. The silhouette value ranges
from —1 to +1, where a high value indicates that the object is well matched to its own cluster and
poorly matched to neighboring clusters. The best partition maximizes the average silhouette
width. In our example, 2 groups/clusters provided the highest value for this index (54 Fig).

The last clustering method is based on a Hierarchical Agglomerative Clustering (HAC)
which is an iterative classification method which starts considering all the observations as a
single-town cluster. As for the PAM approach, based on a distance matrix, the two observa-
tions whose clustering together minimizes an appropriate agglomeration criterion are then
clustered together. The most frequently used agglomeration criterion are the complete dis-
tance, the average distance, and Ward’s distance. Like the PAM algorithm, the number of clus-
ters is selected maximizing the average silhouette value. Considering the PISA dataset, we
reported a dendrogram based on the complete linkage which identified 2 clusters as the opti-
mal solution (S5 Fig). In conclusion, in this example the three methods suggested a different
number of groups/clusters as optimal (4 for MGC and 2 for both PAM and HAC), as well as
dissimilar classification results.
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In our simulation procedure, we assessed the performance of each clustering method with
500 iterations in each scenario, testing a number of clusters which varied from 1 to 5 at each
iteration. The optimal number of clusters was chosen based on the BIC value for the MGC
(BIC is a best-performing criterion according to Tein [20]) Tein, automatically testing differ-
ent types of variance-covariance matrix, while for the HAC and PAM the number was selected
by maximizing the average silhouette profile index [33]. Given that the average silhouette
index cannot be calculated when the number of clusters equals 1, for the HAC and PAM meth-
ods the possibility of a single cluster was tested with the Duda-Hart test [34], taking a critical o
= .05 for statistical significance (i.e., the significance threshold most widely used in psychologi-
cal research), and comparing the solution formed by two clusters with the one formed by no
clusters. The clustering methods were replicated 500 times for each previously-defined combi-
nation. For each iteration, we tested whether the algorithm detects the right number of clus-
ters, and the proportion of statistical units correctly classified, using the Rand Index [35].
Correct classification performance was assessed from the proportion of right numbers of clus-
ters, and the average Rand Index and its standard deviation (SD). The analysis was performed
with the R free software (version 4.0) [36] and the packages: mclust [37] for MGC; fpc [38] for
the PAM algorithm; cluster [39] for the HAC procedure; and ggplot2 [40] for creating all
figures.

Computational costs. Regarding the computational cost, our simulation took 36 and 112
hours for the one- and two-cluster simulations, respectively, using a laptop equipped with a
quad-core Intel i5 processor at 1.6 GHz and 8 GB RAM. The computational time could be sig-
nificantly shortened via parallelization, but we abandoned this option after a preliminary
attempt because it led to random number generation failing when a Windows operating sys-
tem was used. The worst-case time complexity of the HAC method with complete linkage is O
(n? log[n]), while for the PAM it varied from O(n?) to O(n log[n]). The MGC depends on the
convergence of the EM algorithm, which commonly takes a time following O(G p N), where G
is the number of clusters considered, and p is the number of indicators. The EM algorithm in
the mclust R library tests, by default, a wide range of possible variance-covariance matrices,
choosing the one that minimizes a defined criterion (i.e., BIC index); this process implies an
increased computational time.

Results and discussion

Fig 2 shows the probabilities of inferring the existence of one (correct) latent group, two
groups, three groups, and more than three. Such probabilities were very high and almost iden-
tical across the three clustering methods for all the sample sizes considered, but only in the
presence of nearly orthogonal indicators. In this latter condition, the only exception was repre-
sented by the MGC, which tended to erroneously identify two groups with a moderate fre-
quency, when the sample sizes are very large (N > 1,000). When we considered the condition
in which there was a weak correlation (p ~ .20), the performance of all three methods clearly
deteriorated, especially in the case of a large number of indicators and a large sample size. The
best results were obtained by the MGC and the HAC algorithm for three indicators, resulting
in a probability to detect one cluster and an average Rand Index greater than 60% and 80%,
respectively. In the presence of a strong correlation (p ~ .50), only the MGC presented a high
probability to detect one cluster and an elevated Rand Index, but only for at least 250 statistical
units.

In the presence of two latent groups with a standardized difference, Cohen’s d = 0.40 (Fig
3), the PAM and HAC methods had an average Rand Index showing that the classification did
not differ from chance even in the scenarios in which they (apparently) present high power in

PLOS ONE | https://doi.org/10.1371/journal.pone.0269584  June 30, 2022 10/22


https://doi.org/10.1371/journal.pone.0269584

PLOS ONE

Problems with clustering individuals

One true cluster
A) Number of clusters/latent classes detected

MGC (mclust)
| oFn[01.0.1] rin[0.4,03] rin[04,06]  rin[01,0.1] rin[01,03] rin[0.4,06]  rin[0.1,0.] rin[01,0.3] rin[0.4,06]

B) Rand index

MGC (mclust)

PAM (pamk) HAC (hclust)

@ @ « #of LC detected
g E_' 2 M >Three
) o . 9 Three
2 a . 2 Two
~ & B One (CORRECT)
m . m . m
= = =
Q. (=) Q.
(V] o [0)
x x x
) o ®
] [ —
B . L | s
: = =
Q. Qo o
[} @ ()
x x x
[0} [0} [0)
(2] (2] 2]
<) <) <) <Y <)
S o S D OS D OIS S
58588 FSSHSFESS
Total N
PAM (pamk) HAC (hclust)

rin[-0.1, 0.1]|[rin [0.1, 0.3] |[rin [0.4, 0.6]] [rin [-0.1, 0.1]|[rin [0.1, 0.3] [[rin [0.4, 0.6]] [rin [-0.1, 0.1]][rin [0.1, 0.3] |[T in [0.4, 0.6]
10 ~ —|— B — g .
06 S| S ~—5
A o ~— Q. (=%
0.4 2 2 2
0.2 3 @ @
£98
—
£ o o [}
xgg \/ / - x — T —
'004 = X X
£o2 3 3 3
E9—
2os > () S
o L L f e——— e
0.4 ) 9 9
g-g b3 b3 b3
NS §° QO OLSEHEL S9SS oL SSESL SSSESHEL SSS ol SSSESL SSSESHL SL8S
SR LESTIS HSSFoL LSS GSLESTS HSSFoR KESS S LSSIS YSSFTS KESS
Total N Total N Total N

Fig 2. Clustering performance with only one true cluster/latent class. The figure shows clustering performance in correctly classifying one true cluster/latent
class using the Model-based Gaussian mixture Clustering (MGC), Partitioning Around Medoids (PAM) and Hierarchical Agglomerative Clustering (HAC)
methods, in terms of the probability to detect that there is one latent class, and the average Rand Index, as a function of sample size (N) and correlation I(r)
among indices, over 500 replications. Words in parentheses indicate the R functions used.

https://doi.org/10.1371/journal.pone.0269584.9002

detecting the right number of classes. This is due to such high power being driven by the pres-
ence of correlated indicators, which leads both methods to identify the wrong clusters. The
MGC generated only slightly better classification results, but only in the case of very large sam-
ples and a large number of indicators. Performance improved slightly in the presence of a
large effect size, d ~ 0.80 (see Fig 4), giving rise to a high power in identifying the right number
of groups, but only for the MGC and the PAM algorithm, and only for samples of at least 250
subjects. The Rand Index only reached values higher than 80% for the MGC based on 12 indi-
cators, and in the presence of either no correlation (p = 0) or a high correlation (p = .50). In
this last condition, with an average Cohen’s d of about 1.5 (see Fig 5), all the methods per-
formed well in terms of power and the probability of correct classification except in the cases
of: the MGC with a low correlation (p ~ .20) and 12 indicators; and the HAC with a high cor-
relation (p = .50).

The full set of results is available in the S1-S4 Tables.
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Fig 3. Clustering performance with two true clusters/latent classes and small differences. The figure shows the clustering performance in correctly
classifying two true clusters/latent classes differing by a small-to-medium Cohen’s d [0.2, 0.6] across the indices, using the MGC, PAM and HAC methods, in
terms of the probability to detect that there are two latent classes, and the average Rand Index, as a function of sample size (N) and correlatilon(r) among
indices, over 500 replications. Words in parentheses indicate the R functions used.

https://doi.org/10.1371/journal.pone.0269584.9003

Back to the example based on the PISA data with N = 200 (see the Clustering Procedure sec-
tion), we may suspect that all solutions inflated the number of clusters, due to the 4 indexes
being correlated. MGC detected 4 clusters, while PAM and HAC detected 2 clusters. Those
were real data, so we cannot know the actual number of underlying clusters. However, Fig 2
shows that considering the set of scenarios with modest (r in [0.1, 0.3]) or strong (r in [0.4,
0.6]) correlations, with between 3 and 6 indexes, and N between 100 and 250, MGC has a high
risk of detecting 2, 3, or even than 3 clusters, and PAM and HAC have a high risk of detecting
exactly 2 clusters, even when there is only one true cluster in the population.

General discussion

This study aimed to review the characteristics of a representative sample of published studies
that had used clustering techniques on behavioral data. Based on them, we assessed the
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Fig 4. Clustering performance with two true clusters/latent classes and large differences. The figure shows the clustering performance in correctly
classifying two true clusters/latent classes differing by a large Cohen’s d [0.6, 1.0] across the indices, using the MGC, PAM and HAC methods, in terms of the
probability to detect that there are two latent classes, and the average Rand Index, as a function of sample size (N) and correlltion (r) among indices, over 500
replications. Words in parentheses indicate the R functions used.

https://doi.org/10.1371/journal.pone.0269584.9004

performance of the most common clustering methods in detecting the correct number of clus-
ters and classifying human participants using continuous indicators, with an eye on scenarios
plausible in cognitive psychology. We found that the median sample size used in published
studies (i.e., N = 322) is probably insufficient to detect the correct number of clusters and clas-
sify individuals unless in optimal, but unlikely conditions (i.e., in the case of large or very large
effect sizes obtained on a large number of informative and preferably orthogonal indicators,
i.e., not correlating with each other). This was true regardless of which clustering technique
was used. In terms of questionable practices, a problem with the published literature lies in
that, in many cases (21%), the number of solutions tested is not clearly reported. Furthermore,
in numerous cases (one in three of all studies), the one-cluster solution was not tested, mean-
ing that a single cluster could possibly represent the best solution even in many of the studies
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Fig 5. Clustering performance with two true clusters/latent classes and very large differences. The figure shows the clustering performance in correctly
classifying two true clusters/latent classes differing by a very large Cohen’s d [1.0, 2.0] across the indices, using the MGC, PAM and HAC methods, in terms of
the probability to detect that there are two latent classes, and the average Rand Index, as a function of sample size (N) and corlelation (r) among indices, over
500 replications. Words in parentheses indicate the R functions used.

https://doi.org/10.1371/journal.pone.0269584.9005

reportedly identifying multiple clusters. Somewhat worryingly, all the analyses in the literature
reviewed led to the authors concluding for at least two clusters, despite most of them having
suboptimal power due to an insufficient sample size under most, if not all plausible conditions
(see above). This may be regarded as a case of extreme publication bias. At best, such analyses
may be interpreted as having a descriptive purpose, rather than an inferential one. Impor-
tantly, dimensionality reduction techniques were almost never used on the entire set of vari-
ables before clustering, and in nearly half of all studies the identified clusters tended to differ in
terms of “overall low vs overall high” profiles across most or all variables simultaneously, a
warning flag that multiple clusters may have been detected due to correlated variables where
no sub-populations exist. Finally, very few studies were preregistered, and none of them explic-
itly performed any power analysis for clustering. Despite that, most studies were published in
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Fig 6. Decision tree on whether to use clustering based the results of the present study. The flowchart is limited to the set of scenarios examined in the
present study and does not cover all possible alternatives.

https://doi.org/10.1371/journal.pone.0269584.9006

high-impact journals (Q1 and Q2 were represented 73% of times considering all studies’ cate-
gories as indexed by the Clarivate JCR). Most frequently represented categories involved psy-
chiatry, clinical psychology, or developmental or educational psychology.

We then used simulations to perform a design analysis and establish a priori the conditions
under which clustering techniques could work adequately. Unlike in many articles that we
reviewed, we always tested also the single-cluster solution in our simulations, as we considered
this as fundamental when performing clustering. Below, we summarize and discuss the results.
To further assist the researcher with making decisions based on our results, we propose a (sim-
plified) decision tree in Fig 6. It should be noted that this decision tree is valid only within the
set of scenarios examined in the current study.

We found virtually no realistic scenario under which clustering techniques could reliably
differentiate between one vs. two real clusters when the effect sizes were small (which, how-
ever, might be considered the most plausible scenario for genuine psychological research).
This is clear from the largely overlapping plots for “number of clusters detected” in Figs 1 and
2. The only notable exceptions concern the scenarios with 12 informative indicators, but only
for large sample sizes (N >1,000), and only for MGC. In the latter case, intriguingly, having
correlated indicators is not necessarily worse than having orthogonal ones, but only if the cor-
relations are large. In this scenario, the MGC can reveal an adequately informative covariance
structure within the clusters. This may represent a crucial advantage of the model-based tech-
niques. With only modest correlations among the indicators, however, there is a higher proba-
bility of the algorithm not finding an informative covariance structure, so the procedure may
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fail to detect the correct number of clusters. This latter problem is exacerbated with smaller
sample sizes (N < 1,000). In fact, regardless of the number of clusters detected, the Rand Index
is nearly always at chance level (0.5) when Cohen’s ds are sampled between 0.20 and 0.60. This
would suggest that most of the statistical units are misclassified, even when the right number
of (two) clusters is detected.

We recommend that researchers who use clustering methods in cognitive (and more gener-
ally psychological) fields always consider the single-cluster solution first before focusing on
any multiple-cluster alternative. We believe that bearing the single-cluster solution in mind as
a plausible—and perhaps the most plausible—alternative help understand the risk of false posi-
tives, meaning the risk of detecting multiple clusters when there is really only one multivariate
population. As we have shown, such a risk can be high in many realistic research scenarios. Fig
2 suggests that this risk is substantial and may even be virtually unavoidable in certain condi-
tions—with correlated indicators, for instance. Large correlations (between .40 and .60) are
especially problematic when clustering using the PAM or HAC algorithms, and the risk of
false positives is paradoxically greater the larger the sample size (though this is simply because,
with small sample sizes of 100 or less, the methods lack the power to detect clusters, even if
they exist). As for the MGC, the greatest risks emerge for moderate (rather than strong) corre-
lations, and small samples (N < 1,000 for moderate correlations, or N < 250 for large correla-
tions), especially when there are many indicators (6 or 12) involved. Interestingly, unlike the
other two methods, the MGC has a tendency to erroneously detect not just two, but even three
or more than three clusters when it incurs false positives. Finally, the HAC method generally
outperforms the PAM in the one-cluster scenario, especially with moderate correlations. This
may be due simply to the HAC having less power to detect multiple clusters than the PAM
even when they are there, as shown in the scenarios with Cohen’s d indicating large to very
large effect sizes.

A consistently good performance for two-cluster scenarios only emerges for very large
effect sizes (Cohen’s d sampled between 1.0 and 2.0). In this situation, only certain combina-
tions of parameters prove problematic, such as only 3 informative indicators combined with a
small sample size (N < 250), or moderate correlations (p between .10 and .30) combined with
a medium sample size (N between 100 and 500) if the MGC is used. The HAC fails to detect
and adequately classify two clusters in some cases, especially when there are only 3 informative
indicators, or in the case of large correlations. In all the other cases, a very large Cohen’s d
leads to an adequate clustering. We argue, however, that this is not what we should set our
sights on in modern-day cognitive psychological research, which should contain not only
innovative aspects, but also reasonable expectations. This would not be the case, for instance,
of two sub-populations with very large differences that go undetected until exploratory, data-
driven analyses are performed. We should also carefully consider whether some combinations
of parameters are plausible. Is it credible, for instance, to expect many indicators (e.g., 6 or 12)
to be simultaneously informative about the clusters and also uncorrelated (e.g. nearly orthogo-
nal)? In other words, could they all contribute to informing about the true underlying clusters,
and all do so independently from each other? To give an example, a condition in which two
clusters are obtained on 12 indicators, correlated in the range between -.10 and .10, meaning
that the two sub-populations simultaneously differ in all 12 nearly-orthogonal measures
selected by the researchers—is highly implausible. Such scenarios should be regarded as unre-
alistic in cognitive psychological research. It might still be plausible, however, for two clusters
to differ simultaneously on numerous variables if these variables are moderately or strongly
correlated (e.g., because the clusters would simultaneously differ on a set of partly-overlapping
cognitive measures). If two clusters differ on several variables, we can probably assume that
the variables are at least partially redundant.
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A scenario is more plausible when Cohen’s d comes between 0.6 and 1.0 (a large, but still
credible magnitude in the field of genuine research in cognitive psychology). Under such a sce-
nario, clustering performed well in detecting the right number of clusters, and classifying the
sample correctly, with a Rand Index approaching .80. This happens only under certain condi-
tions, however, with a sufficient number of informative orthogonal indicators (at least 6) and a
sufficient sample size (N < 250 is clearly not advisable). Once again, the MGC outperforms
the other two methods, producing results robust to non-orthogonal indicators, and generally
better clustering outcomes. The PAM and HAC with the Duda-Hart test may still be able to
identify the existence of two clusters correctly in various different conditions, even when the
indicators are correlated, but then they fail to classify the statistical units (i.e., the Rand Index
nears the chance level). In short, in scenarios with a large (but not very large) Cohen’s d, the
PAM and HAC tend to produce an adequate classification only when there are numerous (12)
indicators that are nearly orthogonal, and the sample size is large (N > 1,000).

The present study has some limitations that we accepted for ease of interpretation, but they
may point to areas worth investigating in future, and readers might want to consider them
when performing their own design analysis. For a start, we only simulated data from normal
distributions, which may contribute to explaining why the MGC systematically performed bet-
ter than the other two methods in our simulations. While normality is often an assumption
when dealing with psychological data, skewed or non-normal distributions, partial floor/ceil-
ing effects, or the presence of univariate or multivariate outliers may nonetheless be frequent
in real research scenarios. To deal with these issues, researchers need to consider model-based
clustering with non-Gaussian density [41] or the use of robust clustering procedures [42]. We
also assumed, when simulating data from two clusters, that the two underlying sub-popula-
tions would be equally numerous, whereas it is more than likely that one sub-population
would be somehow smaller than the other(s) in most real cases. With one cluster being very
much smaller than the other, however, statistical power would be even smaller than that
emerged from our simulations. Additionally, in scenarios with multiple clusters in which one
of them is very small, the model selection/optimal clustering solution could find only the most
prominent clusters, with minor one(s) being merged with each other or with a close larger
cluster. A researcher should a priori evaluate whether this is an acceptable solution. Finally,
when we simulated data from two clusters, we took for granted that all the indicators used for
clustering would be informative about the class membership. In real-life settings, studies may
plausibly include non-informative variables, which may be irrelevant at best, or add noise to
the analysis. While all these conditions were chosen for the sake of simplicity, together they
may give rise to an ideal scenario that is very unrealistic. In other words, we risk overestimat-
ing the performance of the clustering methods considered vis-a-vis their true performance in
(suboptimal) real case scenarios. Even so, we found the clustering methods considered largely
inadequate for many plausible scenarios in cognitive psychological research.

The three clustering methods we examined are those most often used for empirical research
in cognitive psychology, but they differ substantially in some aspects (Sisodia et al., 2012). Par-
titioning methods are relatively scalable, simple and suitable for datasets with compact spheri-
cal clusters that are clearly separate. They suffer from some drawbacks, however, including a
high sensitivity to outliers and noise, and a marked overall decline in effectiveness in high-
dimensional spaces. HAC methods have an embedded flexibility regarding the level of granu-
larity, and they are well suited to problems involving point linkages, but changing the linkage
measure can generate different results. The PAM and HAC methods are both based on a dis-
tance matrix that can be prohibitively large for high-dimensional, massive datasets. Density-
based clustering methods reveal arbitrarily-shaped clusters of varying sizes, and they are resis-
tant to noise and outliers. Model-based clustering, on the other hand, is sensitive to the shape
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of the indicator’s distribution, and unsuitable for high-dimensional datasets because of the
curse of the dimensionality phenomenon.

It may be that other, possibly novel clustering algorithms could perform better than those
considered here. We believe that our study provides some important information for the pur-
pose of prompting the development of new algorithms more appropriate for use in psychologi-
cal research. For a start, researchers may try using the parameters package in R [43], which has
a function that simultaneously runs several clustering algorithms, and indicates the most fre-
quently-detected number of clusters. We avoided using this package due to the unsustainable
computational cost of applying it to numerous iterations in a simulated design. Beside these
considerations, however, we fear that most real-world scenarios in psychological research are
simply unsuitable for the successful use of exploratory clustering on individuals. Even if the
problem of spurious correlations among indicators is solved, the prevalence of modest true
effects (i.e., limited standardized differences between groups) could make it simply impossible
to adequately infer the existence of sub-populations reliably from empirical data. It should be
noted, however, that standardized mean differences calculated on subgroups classified using
cluster analysis may be (unrealistically) large even if no clusters really exist, but this should not
mislead the researcher. To give an example, a simple simulation shows that if individuals are
classified as being below or above the median of a uniformly-distributed variable x, then the
standardized mean difference between the two groups on x would be around -3.5 (or -2.6 for a
normally-distributed variable)—but interpreting this number would be an extreme case of
overestimation of the effect size [e.g., 16]. As in traditional power analyses, researchers should
base their expectations on plausible effect sizes, that in psychology rarely exceed a Cohen’s
d = 1.0, and are usually much smaller [e.g., 13]. In addition, using clustering methods in an
effort to identify previously-undetected sub-populations implies that such sub-populations
have so far failed to attract attention, which goes to show that any differences between them
are hardly likely to be “eye-catching”. This means that, unless researchers are approaching a
totally new area of investigation, they should probably expect the effects of interest to be small.

Conclusion

We suggest that unsupervised clustering methods may pose several challenges when seeking
previously-undetected sub-populations of individuals within a larger population in most real-
world scenarios of psychological research. Generally speaking, if researchers are eager to use
such methods for inferential purposes, they should at least demonstrate that they work under
realistic conditions by conducting a careful a priori design analysis, as done in the case of a pri-
ori power analysis for traditional hypothesis testing. As regards inferential errors, we have
shown that there is a substantial risk not only of failing to detect clusters that do exist, but also
of wrongly identifying clusters that do not, especially from correlated multidimensional data,
even when the correlation is only modest (i.e., p around .20). Since most problems emerge
when using many correlated clustering variables, using techniques for dimensionality reduc-
tion is strongly recommended [see also 21]. Using clustering for well-motivated descriptive
purposes could be less problematic, though it is still important for researchers to consider
whether they might be reporting a multiplicity of cases unnecessarily—to return to Ockham’s
razor.

We suggest that the results of the present study may offer some guidelines for journal edi-
tors who must evaluate studies reporting clustering. We recommend that they consider the fol-
lowing: whether the one-cluster solution has been tested; whether the number of alternative
solutions tested has been explicitly reported; and whether any technique for dimensionality
reduction has been used on the entire set of clustering indexes in a preliminary step.
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Additionally, power analysis should be explicitly reported in an article using clustering. We
suggest that failing to fulfill this series of points reflect the use of questionable practices in the
context of cluster analysis in psychology. Future studies might further investigate how the fre-
quency of such practices in a set of published articles is specifically associated with a higher
risk of false positive results, using a simulation approach such as the one that we proposed
here. Even after considering all these aspects, however, our set of scenarios presented in Study
2 may offer a useful reference to evaluate the risks associated with using different methods
under different assumptions about index correlation and effect sizes. In all cases, it is impor-
tant to focus on the interpretability of the reported clustering solution, and on the plausibility
of the effect sizes (see the Introduction for what values we consider as plausible effect sizes in
psychology). Finally, to assist the researchers and editors with decision on whether the use
clustering methods is appropriate, we have provided a decision tree in Fig 6 (note that this
decision tree is valid only within the set of scenarios explicitly considered in the present
study).

As alast note, we argue that researchers in psychology should favor confirmatory
approaches with parsimonious theory-driven methods for data analysis whenever possible. In
our Introduction, we presented the case of the political polarization in the US to illustrate what
we mean. Under certain assumptions, hypothetical researchers who know nothing about such
a polarization could “discover” it using clustering methods. In most real case research scenar-
ios, however, any broad differentiation of individuals across discrete or continuous variables
could be hypothesized a priori, just like the US’s political polarization. This being the case, con-
firmatory methods are generally more powerful than exploratory ones. We found, for example,
that clustering methods are practically always poised to fail if Cohen’s d is around 0.40 (Fig 3).
On the other hand, if the classification of the individuals in a population could be hypothesized
in advance, then a difference of d = 0.40 would be easy to detect using confirmatory methods,
with reasonable sample sizes (e.g., a power of 80% is reached with just 100 individuals per
group using the independent-sample t-test, when d = 0.40). Alternatively, the relationships
among the variables of interest could just be examined along their continua in an overall popu-
lation treated as unitary (e.g., a power of 80% is reached with a sample of 193 individuals for a
single correlation of r = .20). Of course, exploratory and confirmatory approaches differ con-
siderably, and address different research questions. Researchers should nonetheless at least
consider whether or not they are trying to “let the data speak for themselves” by inappropri-
ately using an exploratory approach as a surrogate for a confirmatory one.
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