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Abstract

Colorectal cancer (CRC) has one of the highest incidences among all cancers. The majority of CRCs are sporadic cancers that
occur in individuals without family histories of CRC or inherited mutations. Unfortunately, whole-genome expression studies
of sporadic CRCs are limited. A recent study used microarray techniques to identify a predictor gene set indicative of
susceptibility to early-onset CRC. However, the molecular mechanisms of the predictor gene set were not fully investigated
in the previous study. To understand the functional roles of the predictor gene set, in the present study we applied a
subpathway-based statistical model to the microarray data from the previous study and identified mechanisms that are
reasonably associated with the predictor gene set. Interestingly, significant subpathways belonging to 2 KEGG pathways
(focal adhesion; natural killer cell-mediated cytotoxicity) were found to be involved in the early-onset CRC patients. We also
showed that the 2 pathways were functionally involved in the predictor gene set using a text-mining technique. Entry of a
single member of the predictor gene set triggered a focal adhesion pathway, which confers anti-apoptosis in the early-onset
CRC patients. Furthermore, intensive inspection of the predictor gene set in terms of the 2 pathways suggested that some
entries of the predictor gene set were implicated in immunosuppression along with epithelial-mesenchymal transition
(EMT) in the early-onset CRC patients. In addition, we compared our subpathway-based statistical model with a gene set-
based statistical model, MIT Gene Set Enrichment Analysis (GSEA). Our method showed better performance than GSEA in
the sense that our method was more consistent with a well-known cancer-related pathway set. Thus, the biological
suggestion generated by our subpathway-based approach seems quite reasonable and warrants a further experimental
study on early-onset CRC in terms of dedifferentiation or differentiation, which is underscored in EMT and
immunosuppression.
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Introduction

Familial adenomatous polyposis (FAP) and hereditary nonpol-

yposis colorectal cancer (HNPCC) are autosomal dominant

diseases that result from inherited genetic mutations in adenoma-

tous polyposis coli (APC) and mismatch repair genes [1]. However,

these diseases account for only 25% of the total number of

colorectal cases in the United States in 2010 [2]. The remaining

75% of cancers are reportedly sporadic colorectal cancers (CRCs)

without family histories [2] (www.cancer.gov), for which the

mechanism is still not clear [3].

Hong et al. [3] identified 7 highly upregulated genes (CYR61,

EGR1, FOSB, FOS, VIP, UCHL1, KRT24) in early onset sporadic

CRC patients that were used as a predictor gene set assessed with

a microarray technique. For their experiments, normal-appearing

mucosa adjacent to tumor was obtained from the CRC patients

and normal mucosa was obtained from healthy controls. They also

provided a discussion on signaling pathways (MAP kinase (MAPK)

signaling, NFAT-immune signaling, hypoxia signaling, insulin

signaling, PI3K-AKT signaling, Wnt signaling, G protein-coupled

receptor (GPCR) signaling).

In the present study, we further explored the microarray dataset

in order to add a potential upstream regulator of some of the

enumerated signaling pathways in the early-onset CRC patients

assessed in the Hong et al. study [3]. Specifically, we performed

advanced statistical analysis to enhance the molecular understand-

ing of the predictor gene set using text-mining and significant

subpathways related to the early-onset CRC cases.

Our approach involves public text-mining [4] using a new

statistical model that handles regulation (e.g., inhibition, activa-

tion) among biological entries, and performs a permutation test for

subpathway identification of a given pathway. We first identified

statistically significant subpathways related to the early onset

CRCs from KEGG pathways [5] with the model, and subse-
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quently used text-mining [4] to confirm literature associations

among the predictor gene set and some representative significant

subpathways.

Our proposed model suggests that early-onset CRC is involved

in subcomponents of the focal adhesion pathway and the natural

killer (NK) cell-mediated cytotoxicity pathway. The NK cell-

mediated cytotoxicity pathway in particular hints at the presence

of immune cells in the early-onset CRC patients, which implies

paracrine communication between immune cells (e.g., NK cells, T

cells, NK T cells) and various other cells [6]. In addition, our result

indicates that the previously reported signaling pathways (Wnt,

PI3K-AKT, MAPK) [3] are likely cascaded through their

upstream focal adhesion kinase (FAK), [7] which belongs to the

focal adhesion pathway. Therefore, FAK [7] may be a valuable

therapeutic target candidate for the early-onset CRC predictor

gene set diagnosis. Furthermore, our text-mining analysis of the 2

pathways along with the predictor gene set implied that some

elements of the predictor gene set are involved in cell survival and

epithelial-mesenchymal transition (EMT) [8,9,10] through the

focal adhesion pathway and immunosuppression [8,10,11].

Results

Overview
The main concept of our statistical model was to pinpoint

statistically significant subpathways whose expression (e.g., micro-

array) agreed with the regulation information (e.g., activation,

inhibition) (Figure 1A) in the KEGG pathway database. Our

approach is briefly described here.

The non-metabolic KEGG pathways were reduced into linear

subpathways, as described in the Materials and Methods (Figure 2). In

this study, the term ‘‘linear subpathway’’ is used equivalent to

‘‘subpathway’’. We then selected well-defined subpathways in

which the gene expression agreed with the regulation information

under the set rules (Figure 1A) as candidates for measuring their

statistical significance (see Materials and Methods). A statistic S for

Figure 1. Rules and schematic diagram for the statistical model. A. Rules for matching an edge of two adjacent entities in KEGG pathways
with their gene expression changes. Given an edge, gene 1 is called a source node of which the edge goes out, and gene 2 a sink node of which the
edge comes in. B. Schematic diagram of the statistical model. Given a subpathway, the longest segment (well-defined subpathway) from the leaf
node was identified. A statistic S for the well-defined subpathway was calculated. The null distribution of S was obtained via 1,000,000 sample label
permutations and the p-value for the observed S was finally calculated (see Materials and Methods for details). Red ovals are up-regulated in the
cancer patients, and green ones down-regulated.
doi:10.1371/journal.pone.0031685.g001
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each well-defined subpathway was calculated and its significance

evaluated by computing the empirical p-value via sample label

permutations (Figure 1B).

A total of 90 KEGG pathways were broken down into over 130

million extensive linear subpathways that considered all multiple

gene assignments. Among these subpathways, 4,644 well-defined

subpathways were identified and their significance evaluated via

permutation tests. Subsequently, text-mining association analysis

was performed for the selected significant well-defined subpath-

ways; further discussion on their functional roles is provided

hereafter.

Significant well-defined subpathways
We performed multiple comparison tests by controlling the false

discovery rate (FDR) [12]. The FDR q-values were computed

using the p-values by performing 1 million permutation tests

(Figure S1). The p-value that corresponded to an FDR of 5% was

0.01386, which yielded 1,289 significant well-defined subpath-

ways. Since we opted not to provide detailed biological

interpretation of all of these significant well-defined subpathways,

we focused on examination of the top 30% of these well-defined

subpathways to provide a more detailed biological description.

The majority of the selected subpathways we discuss belong to 6

KEGG pathways (Figure S2): Focal adhesion (KEGG hsa04510),

Pathways in cancer (KEGG hsa05200), NK cell-mediated cytotox-

icity (KEGG hsa04650), MAPK signaling pathway (KEGG

hsa04010), Wnt signaling pathway (KEGG hsa04310), and Neu-

trophin signaling pathway (KEGG hsa04722). For the functional

discussion and visualization, we mapped functionally interesting well-

defined subpathways (Table S1) of the 6 KEGG pathways into

KEGG pathway diagrams (Figures 3 and 4; Figures S3, S4, S5, and

S6). In particular, we focused on 3 pathways (Focal adhesion, NK

cell-mediated cytotoxicity, Pathways in cancer) that had not been

explicitly mentioned in the previous Hong et al. study [3]. The gene

entries of the well-defined subpathways included in the functional

discussion and visualization of the 3 pathways are summarized in

Table 1.

Validation of the significant well-defined subpathways
We validated the entries in Table 1 by using an independent

MedLine text-mining tool [4], PubGene. The purpose of this was

to confirm whether the literature supported direct co-occurrences

between the term ‘‘colorectal cancer’’ and the entries in Table 1.

We found that 79% of the entries in Table 1 had direct

interactions in the PubGene analysis (Table S2). Thus, we

concluded that our model results provided a reasonable agreement

with the literature examined.

Pathways in cancer (hsa05200)
The KEGG pathway hsa05200 (pathways in cancer, Figure S3)

is self-evident. Growth factor signaling, Wnt signaling, and MAPK

signaling, which are located in the left part of Figure S3, were

activated in the samples from CRC patients. The signals are

common driving forces during carcinogenesis [8,13]. Apparently

normal mucosa in the CRC patients has an intrinsic potential for

further transformation.

Focal adhesion pathway (hsa04510)
Figure 3 shows the focal adhesion pathway. This result indicates

that the bottom part of the pathway is highly involved with the

Figure 2. Overview of our study.
doi:10.1371/journal.pone.0031685.g002
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CRC patients, and FAK (PTK2, Table 1) is not only a sink node

from its upstream receptors but also a source node toward its

downstream signaling transductions (Wnt, PI3K-AKT/PKB, and

MAPK signals) for survival. PTEN (Table 1) [14], a tumor

suppressor and antagonizer of the PI3K-AKT/PKB signaling

pathway, was downregulated in the focal adhesion pathway in the

analysis of the CRC patients’ samples compared with that of the

healthy controls’ samples.

Hong et al. [3] suggested that the Wnt signaling pathway is

involved in CRC patients. Our result regarding the focal adhesion

pathway (Figure 3) supports the view that GSK-3b (GSK3B,

Table 1) regulated by PI3K-AKT/PKB signaling of FAK

downstream was downregulated in the CRC patients, and also

that b-catenin (CTNNB1, Table 1) was highly expressed by

downregulation of the Wnt signaling inhibitor GSK-3b in the

CRC patients. Upon looking further into the information in Figure

S5, we determined that gene expression of various activators and

inhibitors related to Wnt signaling activation is consistent with the

regulation flows. Another pathway, MAPK signaling (Figure S4)

that was upregulated in the CRC patients is also located

downstream of FAK (Figure 3).

Since the 3 activated signals (Wnt, PI3K-AKT/PKB, and

MAPK signals) are located downstream of FAK belonging to the

focal adhesion pathway, FAK [7,15] may be a therapeutic target

for the early-onset CRC predictor gene set diagnosis. Further-

more, because the crucial roles of Wnt, PI3K-AKT/PKB, and

MAPK signaling shed light on EMT [9], there has been gradually

increasing importance placed on FAK.

Interestingly, CYR61, which was included in the predictor gene

set, is a ligand of ITGB5 (aVb5 integrin, denoted as ITGB in

Figure 3), according to the KEGG BRITE database [5]. Figure 3

shows that CYR61 is one of the far upstream cues that triggers

FAK, implying that FAK subsequently activates 3 signals: Wnt,

PI3K-AKT/PKB, and MAPK signaling. Recently, Wnt, PI3K-

AKT/PKB, and MAPK signals were shown to be involved in

EMT [9], and apparently normal mucosa in CRC patients could

undergo phenotypical transformation by these 3 signals via the

CYR61-FAK axis. In other words, some cells in the normal-

appearing mucosa in the CRC patients may be close to atypical

cells by utilizing EMT. We will describe the evidence of EMT in

terms of gene expression level and explore any possible association

between the predictor gene set and EMT in the Discussion.

Another finding relevant to the downstream region of the focal

adhesion pathway is that the anti-apoptosis protein c-IAP (BIRC3,

Table 1) [16], which is a negative regulator of caspases (e.g.,

CASP3, CASP8, CASP9), was also upregulated in the CRC

patients. Thus, we further examined the various downstream c-

IAPs (cellular inhibitor of apoptosis) in the focal adhesion pathway,

where c-IAPs along with survivin (BIRC5) are also important anti-

apoptotic proteins. Of note, it has also been shown that the c-IAPs

and survivin also inhibit downstream caspases of both extrinsic

and intrinsic apoptotic pathways [16]. We found that the majority

of c-IAPs were upregulated in the CRC patients (Table 2). Thus,

the focal adhesion pathway may confer inhibition of caspase

activity upon the tumorigenesis of potential atypical cells in

apparently normal mucosa.

NK cell-mediated cytotoxicity pathway (hsa04650)
Our statistical analysis indicated significant agreement between

the gene expression of the CRC patients and part of the immune

pathway (hsa04650, Figure 4), which implies the presence of other

immune cells as well as NK cells in the CRC patients’ specimens.

FAS in the target cells of NK cells and its ligand (FASLG),

which is produced by NK cells, were highly expressed in the CRC

patients’ samples. High FASLG expression in the CRC patients

complies with previous clinical observations [6,17] in which high

FASLG expression was correlated with high incidences of

metastases and poor survival in colorectal carcinoma patients

and in other carcinoma patients.

In the apparently normal mucosa of the CRC patients, various

target cells including potentially atypical cells may survive from

FASLG-FAS death receptor signaling by escaping either extrinsic

or intrinsic apoptotic signaling. In fact, the apoptotic signals were

inhibited in the CRC patients because the c-IAPs [16] that

inhibited caspases were upregulated in the CRC patients in terms

of gene expression (Tables 1 and 2). Another possibility is that

FASLG upregulation by target cells, including potentially atypical

cells, might initiate fratricide and suicide among the immune cells

with FAS beneficial for transformation of potentially atypical cells.

However, the existence of high interferon-gamma (IFN-c)

expression secreted by NK cells or immune cells in CRC patients

remains controversial because NK cell cytotoxicity is traditionally

believed to control immunosurveillance over cancer and atypical

cells. Recently, a significant relationship between anti-tumor

immunity and survival of cancer cells has been reported [6,18].

Furthermore, IFN-c is known to be involved in immunosurveil-

lance against cancer cells, in multiple phenotypic effects on

somatic cells (e.g., cell cycle progression, proliferation, cell

differentiation, transformation), and in cancer cell escape

[11,18,19,20]. Thus, in the Discussion, we describe other roles of

IFN-c, especially in terms of the way cancer cells or potentially

atypical cells in CRC patients could adjust the local immune

system via immunosuppression in order to escape from immuno-

surveillance.

Association among focal adhesion, NK cell-mediated
cytotoxicity, and the early-onset CRC predictor gene set

As mentioned in the text above, Hong et al. [3] reported that

early-onset susceptibility was attributed to the upregulated gene set

called the ‘‘predictor gene set’’ in CRC patients that consists of

CYR61, EGR1, FOSB, FOS, VIP, UCHL1, and KRT24. We

inspected the associations among the genes listed in Table 1 and

the predictor gene set with the text-mining tool, PubGene [4]

(www.pubgene.org) (Figure S7). The input in the tool consisted of

the predictor gene set, focal adhesion (FAK, ITGB5), and NK cell-

mediated cytotoxicity (INFG, FAS, FASLG). Figure 5 shows an

association network for the input genes in CRC. We already

mentioned that b-catenin (CTNNB1, Wnt pathway in Figure 5)

was regulated by FAK in focal adhesion. The predictor gene set,

focal adhesion, and NK cell-mediated cytotoxicity were highly

associated with each other in CRC.

Comparison of our method with Gene Set Enrichment
Analysis (GSEA) of the Hong et al. dataset

We compared the KEGG pathways containing significant well-

defined subpathways identified by our method with those KEGG

pathways obtained from the GSEA JAVA web start program

(default options with 5,000 permutations). In our method, the

significance level (p-value) was 0.05 for the cutoff of the well-

Figure 3. Mapping of the entries of the well-defined subpathways into the focal adhesion pathway. If the fold-change of the cancer
patient group over the healthy control group is greater than one the gene is red, otherwise green. See Table 1 and Table S1 for detailed information.
doi:10.1371/journal.pone.0031685.g003
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defined subpathways. The same p-value of 0.05 was used for the

GSEA method. Our method reported 1,966 significant well-

defined subpathways that corresponded to 78 KEGG pathways.

The GSEA program reported 2 broad types of significant

pathway lists: 10 activated pathways and 30 repressed pathways

in the CRC patients. The number of overlapping pathways

between the 2 methods was 6, which is not surprising when

considering the differences between 2 methods. Nevertheless, it is

interesting that the 2 methods identified 6 common cancer-

associated pathways.

To compare the 78 pathways identified by our method with the

40 pathways identified by GSEA, we used the cancer-related

pathways reported by Vogelstein et al. [13] as a gold standard.

That is, we inspected which method provided more path-

ways consistent with the cancer-related pathways identified by

Vogelstein et al. The cancer-related pathways from the Vogelstein

et al. study were manually mapped to their corresponding KEGG

pathways because KEGG pathway identifiers corresponding to

the cancer-related pathways were not mentioned explicitly in

the study. We then inspected the overlapping pathways be-

tween the Vogelstein cancer-related KEGG pathways and

those identified by the 2 methods. As shown in Table S3, our

method provided more consistent results with the cancer-related

pathways identified in Vogelstein et al. than did the GSEA

method. Further details on this section are described in the

Appendix S1.

Comparison between the pathway substructure of the
Hong et al. dataset and that of the other dataset

To determine how closely the pathway substructure of the Hong

dataset overlaps with that of an additional colorectal dataset, we

searched for an additional colorectal dataset from Gene Expression

Omnibus (GEO). Although there are several datasets for CRC, it

seems no datasets are available relating to a comparison of early-

onset colorectal cancer patients with healthy controls, as is carried

out in the Hong et al. study. Fortunately, we found the dataset

GSE4183 [21], which compares various colorectal diseases

(colorectal carcinoma, colorectal adenoma, inflammatory bowel

diseases) with normal controls in a more general setting (www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE4183). From the

Table 1. The gene entries of the well-defined subpathways
used for visualizing the three pathways diagrams (Figures 3
and 4, Figure S3).

Focal adhesion
NK cell
cytotoxicity Pathways in cancer

AKT1 1.297 ARAF 4.631 ARAF 4.631

BIRC3 (c-IAP-2) 2.201 CSF2 1.879 BCR 1.241

CAV1 3.937 FAS 3.374 CCND1 1.180

CCND3 1.559 GRB2 1.613 CDK4 1.315

CTNNB1 (b-catenin) 2.562 HLA-B 0.795 CTNNB1 (b-catenin) 2.562

ELK1 2.593 HLA-C 0.655 DAPK1 0.438

FYN 4.286 HLA-G 0.693 DVL3 1.608

GRB2 1.613 HRAS 1.027 ETS1 1.805

GSK3B 0.735 IFNG 1.322 FGF13 5.486

HRAS 1.027 IFNGR1 2.086 FGFR1 2.138

IGF1 2.529 KIR2DL3 0.632 FIGF 3.458

ILK 1.467 KIR3DL2 0.721 FLT3 1.262

ITGB5 1.431 LAT 1.781 FLT3LG 3.022

JUN 4.179 LCP2 2.682 FOS 36.201

MAP2K1 1.162 MAP2K1 1.162 FZD10 6.256

MAPK1 2.425 MAPK1 2.425 GRB2 1.613

MAPK8 2.355 PTPN11 0.417 GSK3B 0.735

PAK3 2.780 SOS1 1.624 HRAS 1.027

PDGFRB 2.851 TNF 1.009 IGF1 2.529

PIK3CG 3.224 FASLG 2.096 IGF1R 2.299

PRKCA 3.061 IL8 4.276

PTEN 0.599 JUN 4.179

PTK2 2.151 KIT 1.430

RAC2 2.502 MAP2K1 1.162

RAF1 1.813 MAPK1 2.425

SHC3 1.838 MAPK8 2.355

SOS1 1.624 MMP2 3.031

VAV1 1.945 MYC 3.052

CYR61 80.630 NTRK1 1.225

PDGFB 5.234

PDGFRB 2.851

RALGDS 1.478

RET 2.212

RHOA 4.286

SOS1 1.624

TCF7L1 2.735

WNT3 3.147

The number represents the fold change of groups the CRC patient over the
control. The genes CYR61 and FASLG were not reported in the statistical
analysis but were added, considering their contexts in the pathways.
doi:10.1371/journal.pone.0031685.t001

Figure 4. NK cell mediated cytotoxicity. Same description as Figure 3.
doi:10.1371/journal.pone.0031685.g004

Table 2. The gene expressions of c-IAPs, survivin (BIRC5) and
XIAP (BIRC4).

Genes Control1 Cancer1,2 Fold-change3

BIRC1 6.998 7.032 1.024

BIRC2 12.570 12.070 0.707

BIRC1///LOC648984///LOC653371 7.597 7.979 1.303

BIRC1///LOC653371 7.806 7.962 1.114

BIRC5 7.773 7.112 0.632

BIRC7 7.720 7.757 1.026

BIRC4 11.741 10.915 0.564

BIRC4BP 9.973 11.090 2.169

BIRC3 8.456 9.594 2.201

BIRC6 9.315 9.864 1.463

The majority of them except BIRC2, BIRC5, and BIRC4 were overexpressed in the
cancer patients.
1The value is the median of log2-scaled expressions of the group.
2It is the normal-appearing mucosa in the CRC patients.
3It represents fold-change of the cancer group over the control group.
doi:10.1371/journal.pone.0031685.t002
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GSE4183 dataset, we obtained normal, healthy controls (n = 8)

and colorectal carcinomas (n = 15). The GSE4183 dataset was

analyzed with our method, which revealed 3,669 well-defined

subpathways (identified from ,130 million subpathways) upon

determining their significance based on 100,000 sample permu-

tation tests. Furthermore, the comparison between the GSE4183

dataset and the dataset from Hong et al. (GSE4107) showed that

250 well-defined subpathways overlapped between the 2 datasets.

To determine how well these 2 results coincided with each other,

we also performed Fisher’s exact test based on the randomization

model. The p-value from the hypergeometric distribution was less

than 2.2e-16, implying that the 2 results coincided well with each

other. Thus, we conclude that our finding relevant to Hong’s

pathway substructure is well supported by our finding from the

other independent dataset. Further details on this section are

described in the Appendix S1.

Discussion

Our novel analysis suggests the following results: 1) The subsets

from focal adhesion, pathways in cancer, and NK cell-mediated

cytotoxicity are highly involved in early-onset sporadic CRC

patients; and 2) Surprisingly, the text-mining analysis suggested

that the molecular function of the predictor gene set for early-onset

sporadic CRCs is associated with focal adhesion and NK cell-

mediated cytotoxicity. In the text below, we discuss the potential

molecular mechanisms of this association in terms of immuno-

suppression and EMT.

Immunosuppression
The recent literature [6,11,18,19,22,23,24] has set up a

conceptual framework in which interactions between tumor and

immunity are thought to help a number of cancer cells escape

from immune-raiding by undergoing the following 3 phases in a

linear or mixed manner: elimination (immunosurveillance),

equilibrium (tumor dormancy), and escape (immunosuppression).

In particular, cancer cell escape by immunosuppression

[6,8,11,19,25,26] has been extensively studied, and 2 types of

immunosuppressive cells are thought to negatively regulate anti-

tumor immune response: regulatory T cells (TReg) and myeloid-

derived suppressor cells (MDSCs) [8,11,27,28]. We discuss below

the roles of IFN-c, other cytokines, and the predictor gene set in

terms of these 2 types of immunosuppressive cells in early-onset

CRC patients.

It has been demonstrated previously that IFN-c can induce

activation and expansion of MDSCs in colon cancer [28], and that

activated MDSCs not only inhibit effector T cell activity/proliferation

but also induce immunosuppressive CD4+CD25+Foxp3+ TReg cells

from CD4+CD252 T cells [6,11,28]. TReg cells, which also express

CTLA-4, PD-1, and PD-L1 on their cell surfaces, positively regulate

immunosuppressive cytokines interleukin (IL)-10 and tumor growth

factor-beta (TGF-b), which can also induce TReg differentiation

[6,11,29]. Since TReg cells are found in tumor infiltrating lymphocytes

(TILs) in various cancers [6,11,29], the apparently normal mucosa in

the CRC patients might have TILs present with immunosuppressive

activity. ARG1 is also a key metabolic enzyme for MDSCs to

negatively regulate lymphocyte functions by consuming or sequester-

ing the amino acid arginine that is critical for T cell function. Thus, we

inspected the gene expression levels of the examined genes (CD4,

CD25, FOXP3, TGF-b, IFN-c, IL-10, CTLA-4, PD-1, PD-L1,

ARG1) in the CRC patients and confirmed they were all upregulated

in the cancer patients (Table 3).

To provide gene expression-level evidence of the presence of

MDSCs in CRC patients, we inspected (directly or indirectly)

Figure 5. The association network of the susceptible gene set from Hong et al. and several representative genes from Table 1. The
three green boxes represent the gene set (CYR61, FOS, FOSB, UCHL1, VIP, EGR1, KRT24), NK cell mediated cytotoxicity (IFNG, FAS, FASLG), and Focal
adhesion (PTK2) from left to right. The options used in the network are described in Figure S7. The pale blue-filled boxes represent Mesh (www.nlm.
nih.gov/mesh/) Diseases terms for the genes. It is noted that ITGB5 associations did not appear in the PubGene result.
doi:10.1371/journal.pone.0031685.g005
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several MDSC surface markers: CD11c (ITGAX), CD11b

(ITGAM), CD33, CD34, and CD15 [6]. Of note, we examined

FUT4 and FUT9 instead of CD15 because CD15 is not a protein

but an antigen synthesized by FUT4 and FUT9 [30]. We found

that all of the markers except FUT4 were upregulated in the

cancer patients (Table 3).

It has been shown previously that cancer cells expressing PD-L1

on their surface secrete immunosuppressive cytokines Galectin-1,

IL-6, IL-10, and TGF-b, which can inhibit cytotoxic CD8+ T cells

[11]. Furthermore, the cancer cells producing higher levels of

indoleamine 2,3-dioxygenase (IDO) can prevent invasion of NK

cells and effector T cells by depleting tryptophan essential for T

cell function [6,11]. In the present study, we confirmed a higher

expression level of the examined genes (for PD-L1, Galectin-1, IL-

6, IL-10, IDO, and TGF-b) in the cancer patients (Table 3).

The gene expression analysis shown in Table 3 suggests that

immunosuppressive activity is highly observed in apparently normal

mucosa. This finding could provide additional information about a

‘‘field change’’ [31], which refers to proliferation and anti-apoptotic

activity in the apparently normal mucosa adjacent to tumor. In other

words, anti-apoptosis of the field change could also benefit from

immunosuppression by escaping the immune-raid.

To look further for functional refinement of the predictor gene set

in terms of immunosuppression, we fed the predictor gene set into

PubGene [4] with the MeSH (www.nlm.nih.gov/mesh) term

‘‘immunosuppression’’ (descriptor ID: D007165). The result (data

not shown) obtained at the time of manuscript preparation indicated

that 4 genes (EGR1, FOS, UCHL1, and VIP) have an association with

immunosuppression according to the literature. Based on a review

by Ganea et al., which was suggested by PubGene, VIP (a well-

known immunoregulatory neuropeptide) inhibits the secretion of

proinflammatory cytokines and induces TReg cells [32]. Other

recent studies also support the immunosuppressive roles of VIP

[33,34] because VIP relieves collagen-induced arthritis and

sarcoidosis by inducing CD4+CD25+Foxp3+ TReg cells from

CD4+CD252 T cells. VIP is also involved in immune privileges

in the eye by inhibiting T lymphocyte activation and proliferation

[35]. Thus, high VIP expression in CRC patients may pinpoint

another major immunoregulatory cytokine in our analysis.

EMT
We also inspected the expression level of EMT-related genes

[9,36], including matrix proteases, invasion molecules, epithelial/

mesenchymal markers, and E-cadherin repressors. We found that the

majority of them were upregulated in the cancer patients (Table 4).

Therefore, the EMT [9] process can take place in the cancer patients,

at least in terms of gene expression. This finding is unexpected in that

atypical or precancerous cells could exist even in the normal

appearing mucosa by cell morphology changes (e.g., EMT).

To explore the potential roles of the predictor gene set, we input

the predictor gene set into PubGene [4] with the MeSH term

‘‘Epithelial-Mesenchymal Transition’’ (descriptor ID: D058750).

At the time of the manuscript preparation, 3 genes (EGR1, FOS,

CYR61) out of the predictor gene set were found in the literature to

have an association with EMT.

In particular, we paid attention to the gene CYR61 because

CYR61 is a ligand that can trigger a focal adhesion pathway.

Monnier et al. [37] demonstrated that CYR61-aVb5 integrin-

induced metastasis was involved in the tumor bed effect after

radiotherapy upon utilizing HCT116 CRC cell derivatives in

hypoxic conditions. Additional recent studies on CYR61-driven

development of cell motility in pancreatic ductal adenocarcinoma

and in gastric epithelial cells [38,39] indicate that CYR61 is one of

the key molecules for EMT that could confer metastatic ability and

cell motility to a primary tumor. Thus, CYR61 may be one of the

driving molecules for enhancing EMT-related pathways (Wnt and

PI3K/AKT signals) [9,40] in early-onset CRC patients via the

CYR61-FAK axis (Figure 3).

Another interesting finding we made upon examining the

relationship between EMT and the predictor gene set was VIP,

which was recently reported to induce EMT with the stimulation

of matrix proteases matrix metalloproteinase (MMP)-2 and MMP-

9 in prostate tumorigenesis [41]. We found that gene expression of

these 2 proteases was indeed upregulated in the cancer patients

(Table 4).

Cytokines commonly involved in both EMT and
immunosuppression

Because we found VIP is a cytokine involved in both EMT and

immunosuppression, our finding implies paracrine signaling

between immune cells and various target cells is involved in both

processes. We also found an additional cytokine involved in the 2

processes, in that immunosuppressive TGF-b (TGFB1; Table S5)

[22,29,36,42] is a well-known EMT inducer [9,43]. Indeed, we

found that the majority of TGF-bs and their receptors were

upregulated in the CRC patients.

Conclusion
Our gene expression data analysis suggests that at least 2 entries

(VIP, CYR61) of the predictor gene set are functionally involved in

phenotypical EMT induction by focal adhesion downstream (Wnt,

PI3K/AKT, MAPK) and immunosuppression (Figure 6). The

Table 3. The genes involved in immunosuppressive MDSCs
and TReg cells in terms of immunosuppression.

Genes Control1 Cancer1,2
Fold-change
(Cancer/Control)

CD4 2.589 3.561 1.962

CD25 (IL2RA) 5.651 6.879 2.342

FOXP3 3.882 7.199 9.966

TGF-b (TGFB1) 7.841 9.229 2.617

IFN-c (IFNG) 3.838 4.241 1.322

IL-10 (IL10) 4.784 5.887 2.148

CTLA-4 (CTLA) 5.460 7.398 3.832

PD-1 (PDCD1) 6.065 7.161 2.138

PD-L1 (CD274) 7.135 7.770 1.553

ARG1 3.079 4.004 1.899

CD11c (ITGAX) 6.553 7.747 2.288

CD11b (ITGAM) 5.757 6.854 2.139

CD33 4.567 5.470 1.870

CD34 7.162 8.798 3.108

FUT4 10.132 9.587 0.685

FUT9 2.141 3.585 2.721

Galectin-1 (LGALS1) 11.273 12.507 2.352

IL-6 5.976 7.342 2.578

IL-10 4.784 5.887 2.148

IDO (INDO, IDO1) 7.665 8.774 2.157

The majority of genes except FUT4 were up-regulated in the CRC patients.
1The value is the median of the log2-scaled expressions of the group.
2It is the normal-appearing mucosa in the CRC patients.
doi:10.1371/journal.pone.0031685.t003
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involvement of EMT in the apparently normal mucosa of the CRC

patients suggests that a subpopulation of cells in the mucosa have

experienced intrinsic transformation toward atypical or cancerous

phenotypes. Furthermore, potential atypical cells may survive

against immune cells by utilizing immunosuppressive cytokines

(e.g., VIP, TGF-b). Promotion of such an intrinsic survival

environment in the apparently normal mucosa is closely aligned

with the clinical observation of a field change [31], which refers to

proliferation and anti-apoptotic activity in apparently normal

mucosa adjacent to tumor. In the process of immunosuppression,

the immunosuppressive cytokines VIP (a member of the predictor

gene set) and TGF-b may be highly involved in the dynamics

between potential atypical cells and immune cells via paracrine

signaling (Figure 6). Our study suggests the co-occurrence of EMT

and immunosuppression [36] even in normal-appearing mucosa in

early-onset CRC patients. Finally, our biological suggestion needs to

be validated experimentally in future studies on early-onset CRC in

terms of dedifferentiation or differentiation, which is underscored in

EMT and immunosuppression.

Materials and Methods

Data
Gene expression data for early-onset CRCs were downloaded from

NCBI GEO (www.ncbi.nlm.nih.gov/geo/); the dataset identifier is

GSE4107 [3]. This dataset consists of data for 12 CRC patients and

10 healthy controls. Normal-appearing mucosa adjacent to tumor had

been obtained from the CRC patients and normal mucosa obtained

from the healthy controls. The predictor gene set was derived from

comparison between the normal-appearing mucosa from the cancer

patients and the normal mucosa from the controls. Of note, the

patients did not have FAP or HNPCC. We obtained prior regulation

information from KEGG [5].

Decomposition of the KEGG pathways into linear
subpathways

For simplicity, all the pathways of interest were divided into

linear subpathways by modifying the CPAN Paths::Graph library

(search.cpan.org/,cavasquez/Paths-Graph/Graph.pm) (Figure 2).

The linear subpathway is a sequence of linearly connected gene

entities from root node to leaf node. The root nodes are generally

membrane receptors, their ligands, and so on. The leaf nodes are

usually transcription factors and signaling initiators toward the other

pathways. We extracted as many linear subpathways as possible,

considering multiple gene assignments of each node.

Rules for gene expression and edge information of KEGG
Our goal was to identify subpathways in which gene expression

agreed with prior regulation information (e.g., activation, inhibition)

Table 4. The genes involved in EMT.

Functions Genes Control1 Cancer1,5 Fold-change2

Matrix proteases3 MMP2 5.265 6.865 3.031

MMP3 6.463 6.371 0.938

MMP9 9.667 11.131 2.758

MMP10 3.641 5.181 2.908

MMP11 4.321 5.659 2.529

MMP13 3.995 4.250 1.194

MMP14 6.383 7.259 1.836

MMP16 5.137 6.288 2.220

Invasion molecules3 TWIST1 6.545 7.501 1.939

SLUG (SNAI2) 8.798 9.373 1.489

SDF-1 (CXCL12) 10.649 12.545 3.721

Epithelial markers3 E-cadherin (CDH1) 10.753 8.291 0.181

TJP1 8.178 8.657 1.394

Mesenchymal markers3 N-cadherin (CDH2) 5.029 7.526 5.645

Vimentin (VIM) 13.016 14.382 2.577

Transcriptional repressor of E-cadherin4 FOXC2 5.710 7.498 3.453

SNAI1 5.762 7.511 3.362

SLUG 8.798 9.373 1.489

TWIST1 6.545 7.501 1.939

ZEB2 (ZFHX1B) 6.015 7.734 3.293

ZEB1 (TCF8) 6.731 8.026 2.453

FOXC1 6.877 7.375 1.412

GSC 4.048 3.781 0.831

The majority of the genes’ expressions, except GSC, TJP1 and MMP3, indicate further malignant development of the early onset cancer group. Surprisingly, E-cadherin
was down-regulated by more than 5 fold in the cancer patients.
1The value is the median of log2-scaled expressions of the group.
2The value is the fold-change of the cancer samples over the healthy controls.
3The genes refer to Knutson et al. [36].
4The genes refer to Polyak et al. [9].
5It is the normal-appearing mucosa in the CRC patients.
doi:10.1371/journal.pone.0031685.t004
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in KEGG pathways. The gene regulation among the entries in

KEGG pathways was considered to be prior knowledge. Edge types

in KEGG represent regulations between the connected entities. We

simplified the edges into only 2 types: activation and repression. We

also assumed rules for matching an edge type of 2 adjacent entities

to their gene expression changes (Figure 1A) [44]. Given a

subpathway, we identified the longest consecutive segment

beginning from its leaf node; the segment had to satisfy the assumed

rules. The segment is referred to as a ‘‘well-defined subpathway’’ in

terms of gene expression data and prior knowledge (Figure 1B).

Further mathematical representation is also described below

detailing how we obtained the well-defined subpathway.

Given a subpathway with the number of nodes (genes) p,

the leaf node was set to G1 and the root node to Gp. The node Gi

had its binary representation (bi) of a fold-change (fi) for cancer over

control that was obtained from gene expression data. If fi.1, then bi

was +1, otherwise it was 21. The prior edge type ei between the

source node Gi+1 and the sink node Gi was either +1 (activation) or

21 (repression) (Figures 1B and 7). The expression ei6bi6bi+1 should

have been equal to 1 if the expression matched with the regulations

under the rule. Again, edge information ei was derived from the

prior knowledge from KEGG, and fi and bi were derived from gene

expression data. In summary, the number of nodes (n) of a well-

defined subpathway was defined as follows:

Figure 7. The example of determination of the well-defined subpathway from a subpathway.
doi:10.1371/journal.pone.0031685.g007

Figure 6. Summary of functional roles of the predictor gene set in terms of EMT and immunosuppression. The two elements (VIP,
CYR61) of the predictor gene set can adjust the local immune system and induce malignant phenotype transformation via EMT.
doi:10.1371/journal.pone.0031685.g006
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arg min
m

{
Xm

i~1

If1g(ei|bi|biz1)z
Xm

i~1

R(ei,bi,biz1)

( )
z1,

m [ f1,:::,p{1g

R(ei,bi,biz1)~
0 if ei|bi|biz1[f1g,

z? otherwise

(

The function I(?) represents the indicator function and the function

R(?) is a penalizing term that prevents probing progression from the

leaf node to the root node when prior edge information and

expression data did not agree with the rules. Figure 7 shows an

example of identification of the well-defined subpathway using the

previous equation, given a subpathway. It is noted that mathemat-

ical notation is also used throughout the manuscript.

Statistical analysis
In this section, we describe a statistical model to determine

significance for the well-defined subpathways. We conceptually

divided the well-defined subpathway into 3 components referred

to as node score (Fnode), edge score (Fedge), and score for the

number of nodes (Fnum), ultimately in order to define a total score

(Ftotal) of the well-defined subpathway. We designed Ftotal such that

the more differentially expressed genes agreed with the rule

(Figure 1A) in the well-defined subpathway, the less Ftotal was

equal to. Fnode represents the differential expression of the entries,

Fedge represents the regulation among the adjacent entries, and

Fnum represents length normalization. Fnum, a normalization factor

for n (the number of nodes in the well-defined subpathway), is

necessary because the longer n was, the less Ftotal was when

different well-defined subpathways were compared. In the text

below, we describe the biological rationale and mathematical

representation for the scores.

Before providing further explanation, we must define the terms

source node and sink node. That is, given edge en2i, the upstream

node Gn2(i21) is called a source node, whereas the downstream

node Gn2i is called a sink node (Figure 1A, B).

Typical expression analysis schemes focus only on highly

differentially expressed genes under a certain cutoff (e.g., p-value),

but it is important to consider that signaling proteins of an

activated or repressed pathway involved in phenotype differences

might not be changed drastically at the expression-level [45]. In

other words, employing strict cutoff usage in gene expression data

involves difficulties in uncovering signal cascading flows because

some entries within the signal cascading flows could be missed

under that cutoff. In contrast, Fnode does not filter out low

differential expression with an arbitrary condition because the p-

values of all the entries within the well-defined subpathway are

considered.

Fnode: P
n

i~1
p(Gi),

where n is the number of nodes in the well-defined subpathway

and p(?) is a p-value of a gene in a two-sample t-test between the

cancer and control groups. Therefore, the node score contains

both high and low differential expressions without a strict cutoff.

Fedge reflects edge information (e.g., activation, inhibition)

between 2 adjacent entries and derives from a joint distribution

of activities of a source node and its corresponding sink node. The

basic idea of Fedge is that, given a source node activity of edge en2i,

its corresponding sink node activity is expected to be highly dys-

regulated, which indicates a rare event. Therefore, Fedge follows,

by nature, the first-order Markov chain property in which a

current event depends only on its predecessor because we assume

that Gn2i is only regulated by its direct upstream source node

Gn2(i21) of edge en2i.

In Figure 1A, we used fold-changes to determine whether the

edge information complied with gene expression. The activities

around the edge were thus measured from fold-changes in cancer

over control, and the activity was simply transformed into a log2

scale for better normality. In other words, log2-transformed fold-

changes of the 2 adjacent nodes were used as a measure of edge

information, and the joint distribution of a source node and its sink

node was calculated.

According to the first-order Markov chain property, we can

simply define Fedge as the products of conditional probabilities

log2(fn2i)|log2(fn2(i21)) from i = 1 to n21 multiplied by a prior

Pr(log2(fn)). The conditional probabilities can be derived from the

joint distribution of the pair (log2(fold-change of the source node),

log2(fold-change of the sink node)), which is assumed to be a

bivariate normal distribution.

Fedge:Pr (log2fn) P
n{1

i~1
Pr (log2fn{i Dlog2fn{(i{1)),

where n is the number of nodes in the well-defined subpathway.

To determine the joint distribution of the pair (log2(fold-change

of the source node), log2 (fold-change of the sink node)), we

extracted all the edges from the KEGG XML files (KGML files)

and obtained the source nodes and their corresponding sink nodes

from the edges. The log2-transformed fold-changes (e.g., a pair

(log2fn2(i21), log2fn2i)) of the cancer group over the control group

for the pair source node and sink node were obtained from the

microarrays.

log2 (fold change of the source node)

log2 (fold change of the sink node)

 !
*

MVN
0:4927

0:4355

 !
,

1:354 0:03152

0:03152 1:112

 ! !
:

Prior probability (e.g., Pr(log2fn)) of the log2-transformed fold-

change of a gene was assumed to be a univariate normal

distribution, which is obtained from the log2-transformed fold-

changes of all the entries belonging to the KEGG pathways.

Fnum was derived from a random graph model. We used an R

statistical package library ‘‘igraph’’ [46] to make 1,000 simulated

random graphs with the number of nodes set to 200 and the number

of edges to 100. We reduced the random graphs into all linearly

connected paths from roots to leaves, and the distribution of the

number of edges for the paths was calculated (Figure S8). Fnum was

borrowed from the distribution of the number of edges from the

random graphs. Subsequently, n (the number of connected nodes in

the well-defined subpathway) was considered as equal to 1 plus the

number of edges in the well-defined subpathway.

Finally, we defined Ftotal as follows:

Ftotal:Fnode|Fedge|Fnum:

For computational simplicity, we used its minus natural logarithm

of Ftotal as a statistic instead: S~{ ln Ftotal , S[½0,?):
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Permutation
We obtained the null distribution of S by generating 1,000,000

permuted samples. Each permuted sample was generated by

shuffling the sample labels in the microarrays. For each

permutation, we applied the rules to the original subpathways in

order to redefine their well-defined subpathways, and then

performed the same procedures discussed above. The p-value

was obtained empirically by computing Pr(S$s), where s was the

observed value in the original gene expression data.

We also provide detailed information of all 4,644 well-defined

subpathways in Table S4 (xls format), including their p-values,

FDR q-values, and regulation information.

Supporting Information

Figure S1 Statistic S, p-value and multiple comparison
correction. A. S versus 2log10(p-value) in the 4,644 well-defined

subpathways. The x-axis represents 21og10(p-value) and the y-axis

S. B. 2log10(p-value) versus FDR q-value. The x-axis is FDR q-

value and the y axis 2log10(p-value). The FDR q-values as well as

p-values were summarized in Table S4 (see the sixth and eighth

columns in Table S4).

(DOC)

Figure S2 KEGG pathways containing the top 30% well-
defined subpathways. The x-axis represents the number of the

significant well-defined subpathways corresponding to the KEGG

pathway.

(DOC)

Figure S3 Pathways in cancer (KEGG hsa05200). Red

boxes are activated in the CRC patients over the healthy controls.

Green boxes are down-regulated in the CRC patients.

(DOC)

Figure S4 MAPK signaling pathway (KEGG hsa04010).
Red boxes are activated in the CRC patients over the healthy

controls. Green boxes are down-regulated in the CRC patients.

(DOC)

Figure S5 Wnt signaling pathway (KEGG hsa04310). Red

boxes are activated in the CRC patients over the healthy controls.

Green boxes are down-regulated in the CRC patients.

(DOC)

Figure S6 Neutrophin signaling pathway (KEGG
hsa04722). Red boxes are activated in the CRC patients over

the healthy controls. Green boxes are down-regulated in the CRC

patients.

(DOC)

Figure S7 The input item options used in Figure 5. The

item ‘‘Gene/Protein’’ in the PubGene input webpage is CYR61,

FOS, FOSB, UCHL1, VIP, EGR1, KRT24, PTK2, ITGB5,

IFNG, FAS, and FASLG. The item ‘‘Biological term’’ in the

webpage is colorectal cancer.

(DOC)

Figure S8 Distribution of the number of edges in the
linearly connected paths based on the 1,000 simulated

random graphs. The x-axis represents the number of the edges,

and the y-axis probability.

(DOC)

Table S1 The numeric identifiers of the well-defined
subpathways used for the functional discussion and
visualization of the six KEGG pathways. The number indicates

column ‘‘No.’’ in Table S4 (xls format). Readers see all the information

of significance, regulation flow, fold-change and so on from Table S4.

(DOC)

Table S2 We fed the entries in Table 1 into PubGene in
order to validate literature-based associations between our
result and the term ‘‘colorectal cancer’’. The listed genes have

no direct co-occurrence with the term ‘‘colorectal cancer’’ according

to PubGene. The majority (79%) of the entries in Table 1 have

publication-based evidences. It is noted that CYR61 and FASLG in

Table 1 were not included in the PubGene validation analysis because

the two genes were not reported in our statistical analysis.

(DOC)

Table S3 Comparison with our method and GSEA. We

set the Vogelstein cancer-related pathways [13] (first column) as a

gold standard. We inspected overlap between the gold standard

and each method result. As a result, our method performed better

than GSEA. The second column represents KEGG pathways

corresponding to the first column. (O: overlap, X: no overlap)

(DOC)

Table S4 Detailed information of all the 4,644 well-
defined subpathways. No.: numeric identifier for the well-

defined subpathway, KEGG: its corresponding KEGG pathway

identifier, Title: KEGG pathway name, WellDefinedSubpathway-

WithFoldChange: signaling flow of the well-defined subpathway

with fold-change of the cancer patients over the healthy control,

NumNodes: the number of entries, P-value: nominal p-value, S:

our statistic, FDR (q-value): adjusted p-value, 2log10(P-value):

minus logarithm of p-value with base 10.

(XLS)

Table S5 The expressions of TGF-bs and their receptors
were summarized. Majority of the genes were up-regulated in

the cancer except TGFBR1.

(DOC)

Appendix S1 The additional analysis for GSEA compar-
ison and independent dataset validation.
(DOC)
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