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Single-cell RNA sequencing (scRNA-seq) is currently an important technology for identifying cell types and 
studying diseases at the genetic level. Identifying rare cell types is biologically important as one of the 
downstream data analyses of single-cell RNA sequencing. Although rare cell identification methods have been 
developed, most of these suffer from insufficient mining of intercellular similarities, low scalability, and being 
time-consuming. In this paper, we propose a single-cell similarity division algorithm (scSID) for identifying rare 
cells. It takes cell-to-cell similarity into consideration by analyzing both inter-cluster and intra-cluster similarities, 
and discovers rare cell types based on the similarity differences. We show that scSID outperforms other existing 
methods by benchmarking it on different experimental datasets. Application of scSID to multiple datasets, 
including 68K PBMC and intestine, highlights its exceptional scalability and remarkable ability to identify rare 
cell populations.
1. Introduction

Single-cell RNA sequencing (scRNA-seq) has become a powerful 
technology revealing differences between different cell types and states 
[1]. It has greatly contributed to the development of transcriptomics, 
which can help us study cellular heterogeneity to gain insights into 
complex and rare cell populations and reveal the regulatory relation-

ships between genes. By analyzing the transcriptional profiles of these 
rare cells, we can discover new disease-causing drivers and biomark-

ers, advancing the development of precision medicine and personalized 
therapy [2–4]. Despite their scarcity, rare cells play a pivotal role in a 
variety of key processes, such as immune responses to cancer and other 
diseases, cancer pathogenesis, and angiogenesis. For instance, invariant 
natural killer T cells have provided valuable insights into defense mech-

anisms against Mycobacterium tuberculosis [5]. Tumor stem cells have 
emerged as significant factors in tumorigenesis, tumor recurrence, and 
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metastasis [6,7]. Moreover, endothelial progenitor cells from the bone 
marrow have demonstrated reliability as biomarkers for tumor angio-

genesis [8,9]. In short, advancements in cell analysis techniques have 
opened up exciting possibilities for the discovery of new rare cell types, 
enriching our understanding of cellular diversity and function.

Single-cell clustering is a key step in understanding cell populations 
through single-cell analysis [10,11]. However, the small proportion of 
rare cells in scRNA-seq data poses a significant cluster-based cell type 
identification challenge. Most of the existing clustering methods cater to 
major cell types [12–14], such as Seurat [15] and Scater [16]. Whereas 
rare cell-specific genes often do not have a major impact in single-cell 
downstream analyses, traditional clustering methods may fail to iden-

tify cell populations that occur at low frequencies, i.e., rare cells.

Numerous attempts have been undertaken to identify rare cells and 
develop algorithms for detecting their transcriptomes. Notably, several 
methods have been proposed for this purpose, including rare cell type 
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identification (RaceID) [17], GiniClust [18], cell subtype identifica-

tion from up-regulated gene sets (CellSIUS) [19], finder of rare entities 
(FiRE) [20], and novel deep generative model for leveraging the small 
samples of cells (scLDS2) [21]. RaceID employs k-mean clustering to 
calculate count probabilities for individual cells, enabling the identifi-

cation of abnormal cells. To mitigate the impact of noise on clustering 
results, Herman et al. introduced RaceID3 by incorporating feature se-

lection techniques [22]. GiniClust utilizes Gini coefficients as a criterion 
for gene selection prior to density clustering, filtering out cells corre-

sponding to genes expressed only in rare cell populations. Daphne et al. 
later proposed GiniClust2, which utilizes Fano factor-based clustering 
combined with GiniClust to identify rare versus important cell popula-

tions through weighted integrated clustering [23,24]. CellSIUS adopts 
a two-step approach, first clustering major cell populations and then 
screening for marker genes exhibiting a bimodal distribution in each 
cluster. Subsequently, one-dimensional clustering is performed based 
on the identified bimodal distribution of marker genes to detect spe-

cific subpopulations [19]. FiRE leverages a sketching technique [25] to 
assign hash codes to cells multiple times, thereby calculating the rar-

ity score. Cells surpassing a specified rarity threshold are considered 
rare. ScLDS2 distinguishes rare and non-rare cells through adversarial 
learning, transforming the rare cell type detection problem into a classi-

fication task [21]. These different approaches contribute to the ongoing 
advances in rare cell identification and transcriptome analysis.

Despite significant progress in detecting rare cell types, analysis of 
single-cell sequencing data on a large scale remains challenging. Several 
existing methods have limitations when dealing with such extensive 
datasets. RaceID3, while effective in identifying rare cell types, takes 
substantial time to process when thousands of cell counts are involved 
[23,25]. GiniClust2, although capable of handling large data, requires 
a considerable amount of memory for single-cell analysis [23]. Cell-

SIUS relies on pre-existing clustering information obtained for major 
cell types, leading to potential drawbacks in its performance [19]. FiRE 
presents an improvement in both time and memory consumption when 
analyzing large datasets, but it necessitates a single clustering of the re-

sults to differentiate between rare and abnormal cells [20]. Moreover, 
scLDS2 is unable to better infer cell-cell interactions from changes in 
gene expression patterns so there are limitations in effectively utilizing 
indirect relationships between cells and genes [21]. In short, while var-

ious rare cell detection methods have shown promise, addressing the 
challenges of processing large-scale single-cell sequencing data remains 
crucial for further advancement in this field.

In this research, we introduce a novel similarity partitioning model 
termed scSID (single-cell similarity division). scSID’s design is moti-

vated by the observation that cells within the same cluster of cells 
exhibit significantly higher intercellular similarity compared to cells 
from neighboring clusters, mainly due to their intrinsic structural simi-

larities. Based on this, we propose a method that utilizes the differences 
in similarity between cells to delineate rare cell populations. The ef-

fectiveness of scSID is rigorously evaluated through several simulation 
experiments using various single-cell sequencing datasets. Results indi-

cate that scSID exceeds current methods for efficiency in detecting rare 
cells. Furthermore, when scSID is applied to multiple datasets, it demon-

strates excellent scalability and memory efficiency in rare cell detection 
[26].

2. Methods

2.1. Overview of scSID

Traditional methods for identifying rare cells often rely on bimodal 
distributions of specific genes or preliminary clustering. This may lead 
to overlooked rare cell populations, potential biases and increased com-

putational costs, especially in cases of low differential gene expression 
or misclassifications from preliminary clustering. To address these limi-
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tations, we propose a novel approach, scSID, for rare cell identification.
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Our proposed scSID method is divided into two main steps: cell di-

vision based on individual similarity and rare cell detection based on 
population similarity. An overview of scSID is given in Fig. 1. The first 
step is as a result of the number of rare cells being low, when calcu-

lating the 𝐾 nearest neighbor (KNN) [27] of a rare cell, cells within 
the KNN may cross over into the distribution of other cell types if 𝐾 is 
large enough. This change in distribution leads to a steep change in sim-

ilarity. We used the Euclidean distance in the gene expression space of 
individual cells as a measure of similarity between cells. We then char-

acterize the similarity of cells to their 𝐾 nearest neighbors, and classify 
cells with minimal characteristic differences into the same group.

In the second step, the primary objective is to address the poten-

tial impact of noise and outliers on the results obtained in the first step. 
Therefore, it is essential to further partition the similarity among cell 
clusters to reveal cellular heterogeneity. To achieve this, scSID employs 
a step-by-step clustering synthesis approach that aims to explore the hi-

erarchical relationships between the cells within the identified clusters 
and their nearest neighbors outside the clusters.

2.2. Cell division based on individual similarity

In single-cell data, cells of the same class tend to have similar fea-

tures in function and phenotype. This means that their gene expression 
patterns will be more similar, showing up as coordinate points in closer 
proximity in the dimensionally reduced data space. Conversely, cells 
have different functions and phenotypes from other classes of cells, 
which means that their gene expression patterns may be more different, 
giving different distributions in the dimensionally reduced data space. 
As a result, the difference in similarity between cells from the same cat-

egory to different categories of cells will show significant changes due 
to the changes in distribution in the feature space.

Given a sufficient value of 𝐾 , we believe that by computing the 
𝐾 nearest neighbors [27] of each cell, we can capture differences in 
similarity between cells from the same class and different classes. The 
determination of the 𝐾 value is closely related to the number of rare 
cells. We found that most clustering methods were able to effectively 
identify groups that accounted for more than 2% of the total number 
of cells when the 𝐾 value was greater than the number of rare cells 
detected [28]. Meanwhile, in order to balance the computational per-

formance and accuracy, we generally set the 𝐾 value to no more than 
2% of the total number of cells in large sample datasets. For datasets 
with a data volume of about 5000 or less, a 𝐾 value of 100 is selected 
by default. Considering the small proportion of rare cells compared to 
common cells, this differential variation can be observed among the first 
few neighbors of a cell, thus reducing the need to compute an excessive 
number of neighbors for each cell.

In the implementation process, we identified cells with differential 
gene expression by selecting genes with high expression levels [29,30]. 
Subsequently, we applied principal component analysis (PCA) [31] to 
reduce the dimensionality of the features to 𝑛 dimensions (with a de-

fault value of 50 dimensions). Next, in single-cell gene expression anal-

ysis, each cell in the downscaled data space can be regarded as a point 
in the space, and the expression level of each gene corresponds to the 
position of that point on a particular axis. Thus, the Euclidean distance 
between two cells can be interpreted as a combined measure of the dif-

ference in their positions in gene expression space. For this purpose, 
we performed a KNN analysis based on the Euclidean distance for each 
cell to identify the top 𝑘 most similar neighboring cells and their cor-

responding distances. Let 𝑥<𝑗,𝑝> represent the 𝑝𝑡ℎ principal component 
of cell 𝑗, and 𝑥<𝑘,𝑝> be the 𝑝𝑡ℎ principal component of the 𝑘𝑡ℎ nearest 
neighbor of cell 𝑗. The Euclidean distance 𝐷<𝑗,𝑘> between cell 𝑗 and its 
𝑘𝑡ℎ neighbor is defined as follows:

𝐷 =

√√√√
𝑛∑(

𝑥 − 𝑥
)2
. (1)
<𝑗,𝑘>

𝑝=1
<𝑗,𝑝> <𝑘,𝑝>
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Fig. 1. Overview of scSID. (A) For each cell, the number of its first 𝐾 neighbors was counted, and 𝐷<𝑚,𝑘> , was calculated using the provided formula. Subsequently, 
based on the maximum value of 𝐷<𝑚,𝑘> , the cell was initially assigned to a specific cluster. (B) For each cell, the single-cell cluster it was assigned to in the first step 
was further subdivided using hierarchical clustering based on similarity with the neighboring cells obtained from KNN. (C) A comparison was made between the 
results obtained from the first and second steps in order to determine the final rare cell type.
For rare cells, their scarcity leads to less variation in intercellular dis-

tance among the smaller 𝑘 neighbors. Therefore, we can classify a cell 
as a rare cell cluster if its first 𝑘 neighbors exhibit higher similarity. 
Conversely, when rare cells are compared to other cells beyond the 𝑘
neighbors, the distance increases significantly. To capture this change 
in difference, we utilize the similarity between a cell and its 𝐾 nearest 
neighbors as a feature and represent it using the first-order difference. 
The first-order difference refers to the difference between two consec-

utive neighbor terms in a discrete function, which helps to smooth out 
irregular fluctuations in the data and effectively captures the variation 
in differences. More specifically, we compute the similarity characteris-

tics 𝐷<𝑗,𝑘> between each cell and its neighbors and define the first-order 
difference Δ𝐷<𝑗,𝑘> as:

Δ𝐷<𝑗,𝑘> =𝐷<𝑗,𝑘> −𝐷<𝑗,𝑘−1>. (2)

Intercellular feature differences become more prominent when a cell 
belongs to a different class than its neighbors, resulting in numerically 
larger values. To analyze these feature differences, we examined the 
difference in similarity between each cell 𝑐𝑗 and its neighboring cells 
Δ𝐷𝑗 to identify the location 𝑠𝑗 where the difference increased steeply, 
represented by:

𝑠𝑗 =max
(
Δ𝐷𝑗

)
. (3)

For each 𝑠𝑗∈{2,3,… ,𝐾 − 1}, we focus on the first 𝑠𝑗 neighbors of the 
cell, which demonstrate the highest individual similarity. We provision-

ally classify these neighbors as rare cell clusters 𝐶𝑗 , while the remaining 
neighbors are assigned to the nearest neighbor clusters 𝐶𝑛𝑒𝑎𝑟. With this 
approach, we can accurately identify and distinguish rare cell clusters 
and nearest neighbor clusters based on the significant similarity differ-
591

ences observed among cells.
2.3. Rare cell detection based on population similarity

Cells possess diverse biological characteristics, and solely relying on 
similarities based on individual cells may not fully explain the intricate 
structures and relationships within cell clusters. Consequently, further 
partitioning of group similarity is warranted to unveil the heterogene-

ity between cells. Additionally, similarity partitioning based solely on 
individual cells can be susceptible to the influence of noise and outliers, 
potentially impacting interpretability. To address this problem, it is es-

sential to perform similarity analyses among cell populations to distin-

guish between noise and outliers, so as to enhance the interpretability 
of the results. As a result, performing rare cell group similarity detection 
on the obtained division results becomes necessary.

To analyze rare cell clusters, we chose a hierarchical clustering ap-

proach that incorporates both similarity considerations between cell 
clusters and their nearest neighbors. The choice of hierarchical cluster-

ing was motivated by its ability to efficiently deal with the multilevel 
structure in the data, which often stems from differences between cell 
types. Compared to other clustering techniques, hierarchical clustering 
performs much better in capturing such complex relationships, provid-

ing a more flexible analytical framework for accurately identifying cell 
clusters. In the initial step, we treat each cell as a separate cluster. Fol-

lowing this, based on the distance matrix, we implemented a minimum 
distance merging strategy, i.e., the distance between the nearest cell 
pairs in two different clusters was selected as the distance between clus-

ters. This strategy synthesizes the similarity between cells and aims to 
merge the cells with the closest distance in the feature space. It helps 
to maintain sensitivity to the true association between cells during the 
merging process and ensures that the most similar cells are merged. 
Consequently, we selected the minimum distance between two clus-
ters, merged them into a new cluster, and concurrently updated the 
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distance matrix. This process is repeated iteratively until all the clus-

ters are eventually merged into a large cluster. The minimum distance 
between cluster 𝑚 and cluster 𝑛 is denoted as follows:

𝐿(𝑚,𝑘) = min𝐷(𝑐𝑝, 𝑐𝑞) (4)

where 𝑐𝑝, 𝑐𝑞 are the two most similar cells between cluster 𝑚 and clus-

ter 𝑘. After we perform hierarchical clustering [32] based on this idea, 
these neighbors belong to a set of similarity samples if they clearly show 
different clusters. After applying hierarchical clustering based on this 
concept, if the neighbors do not belong to the same group of similar 
samples, they will be present in separate clusters, as shown in the first 
clustering plot in Fig. 1B. This observation indicates the presence of dif-

ferent biological properties and inter-cellular heterogeneity within the 
data. Conversely, when the similarity among these neighbors is high, 
the clustering structure shows smaller classes, as shown in the second 
clustering tree, and the hierarchical clustering tree shows a denser dis-

tribution. To this end, based on the above results, we set a threshold 
ℎ (with height=0.85 by default) to cut the resulting clustering tree 
(Fig. 2), and for the resulting clusters, we calculate whether the number 
of clusters in which individual cells are located matches the 𝑠𝑗 result, 
and if so, the cluster is verified as a rare cell cluster with close similar-

ity.

3. Materials

3.1. Datasets and preprocessing

In our analysis, we employed a variety of publicly accessible single-

cell RNA sequencing (scRNA-seq) datasets. One dataset was particularly 
noteworthy, comprising expression profiles from approximately 68,579 
healthy recipient donor cells, specifically peripheral blood mononuclear 
cells (PBMC) [33]. Reference data was derived from single-cell expres-

sion profiles of 11 distinct purified PBMC subpopulations to categorize 
the cell types. Our downstream analysis focused on genes with read 
counts exceeding 2 in a minimum of 3 cells, ensuring their retention 
for further examination. We standardized each scRNA-seq dataset by 
applying median normalization and log2 transformations.

To simulate experiments involving rare cells, we utilized 293T and 
Jurkat cell data comprising roughly 3200 cells, which underwent filtra-

tion and normalization processes. The intestine dataset of 4500 cells 
was processed further [34]. We used scanpy [35] to exclude genes 
expressed in less than 3 cells and retained 15,172 genes for further 
analysis. In addition, we excluded cells with fewer than 200 expressed 
genes, resulting in a dataset of 4,301 cells, which were subsequently 
subjected to normalization.

In the high-fat diet dataset, we retained genes expressed in a min-

imum of two cells for normalization. Subsequently, we applied a loga-

rithmic transformation to each element of the input matrix 𝑥𝑖𝑗 , accom-

panied by the addition of a pseudo-count of one.

3.2. Performance assessment

In order to evaluate the results of rare cell detection in the simulated 
experiments, we chose 𝐹1 score and 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 to reflect the degree of 
rare cell detection [36–38]. The 𝐹1 score and 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 are calculated 
as follows.

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(5)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6)

Where 𝑇𝑃 stands for true positive, indicating the precise identifica-

tion of rare cells. 𝐹𝑃 denoting false positive refers to the misclassifica-

tion of ordinary cells as rare. On the other hand, 𝐹𝑁 representing false 
negatives occurs when rare cells are mistakenly categorized as non-
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rare. The 𝐹1 score and 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 metrics lie within the [0,1] interval. 
Computational and Structural Biotechnology Journal 23 (2024) 589–600

Within this range, higher values denote a more accurate correspondence 
in the identification of rare cells, indicating enhanced precision in cell 
detection.

3.3. The 68K PBMC data subsampling

To systematically simulate the rare cell phenomenon, we downsam-

pled the full 68K PBMC dataset in order to evaluate the model. Our 
analysis focused on three distinct cell types that exhibited differen-

tial transcriptional profiles (Fig. 3A). These cell types included CD14+ 
monocytes, CD19+ B cells, and CD56+ NK cells. To create the rare 
cell datasets, we employed a sampling strategy wherein we randomly 
selected 2 to 100 CD14+ monocytes from the CD14+ monocyte popu-

lation and added them to a population of 500 cells randomly selected 
from the CD56+ NK and CD19+ B cell populations. By applying this 
approach, we generated a total of 99 rare cell datasets, where the pro-

portion of rare cells ranged from 0.2% to 10%.

To assess the sensitivity of scSID to cell type characterization, we 
used the DBSCAN clustering method on the basis of a 68K PBMC dataset 
in CD14+ monocyte and CD19+ B cell populations, respectively. Then, 
in each largest cluster, we randomly selected 2 CD14+ monocytes and 
500 CD19+ B cells for subsequent combinatorial analysis.

3.4. The 293T-Jurkat data subsampling

We created ten subsample datasets using the approach of Jindal et 
al. [20]: a cell cluster of 1540 cells was randomly selected from the 
293T cell cluster as the main cell cluster. Ten datasets were then gen-

erated by randomly selecting different numbers of cells from the Jurkat 
population. The percentage of Jurkat cells ranged from 0.5% to 5%.

3.5. Differential expression analysis

We employed a standard Wilcoxon’s rank sum test to identify dif-

ferentially expressed genes, with a false discovery rate (FDR) threshold 
of 0.05 and an inter-group absolute fold-change threshold of 1. Fold-

change values were calculated based on mean expression levels between 
groups for each gene. A gene was classified as cell type-specific if it ex-

hibited higher expression in a specific cluster compared to all other 
clusters.

3.6. Hyper-parameter

Through subsampling the 68K PBMC dataset, we acquired a rare cell 
dataset comprising a 2% rarity proportion. We then conducted a com-

parative analysis using varying scSID thresholds h (0.75, 0.80, 0.85, 
0.90, 0.95) and distinct PCA dimensions (50, 100, 150). Our analy-

sis revealed that the algorithm reached its peak performance when the 
scSID threshold h was set at 0.85. This decision was informed by the ob-

servation that the performance of scSID’s dimensionality reduction was 
remarkably similar across 50, 100, and 150 dimensions, as evidenced 
in Fig. 2. Considering the reduced memory requirement for the 50 di-

mensions, we ultimately opted to set the PCA dimension at 50.

3.7. Methods of comparison

To further validate the performance of scSID algorithm, we se-

lected popular and high-performing methods for comparison, including 
RaceID3 [22], GiniClust2 [23], CellSIUS [19], FiRE [20], and scLDS2 
[21]. Specifically, RaceID3, GiniClust2 and CellSIUS are traditional 
clustering-based methods, and FiRE is a fast and novel method for rare 
cell identification based on sketching techniques. scLDS2 is a deep clus-

tering algorithm based on generative adversarial learning. All of the 
above methods are available on GitHub. RaceID3 package is applied 
directly to the preprocessed matrices with all parameters at default val-
ues except for the initial clustering based on the enrichment of cells. 

https://github.com/dgrun/RaceID3_StemID2_package
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Fig. 2. Performance comparison (𝐹 score) of scSID on 68K PBMC subsampling dataset with different threshold h and PCA parameters.
1

GiniClust2 package runs the analysis with default parameters. CellSIUS

package parameters were set to default values. All FiRE package pa-

rameters were set to default values. scLDS2 package clustering clusters 
were changed according to the number of enriched cell clusters, and all 
other parameters were set to default values.

4. Results

4.1. scSID accurately identifies different proportions of rare cells under 
data subsampling

To evaluate the performance of scSID in the analysis of real scRNA-

seq datasets, we compared scSID capabilities with RaceID3, GiniClust2, 
CellSIUS, FiRE and scLDS2 for rare cell detection. We utilized a publicly 
accessible scRNA-seq dataset comprising the transcriptome of around 
68,000 peripheral blood mononuclear cells (68K PBMC) covering 11 
subtypes. There is an extremely high similarity between several of these 
subpopulations, which is difficult to distinguish. To construct the rare 
cell dataset, our analysis focused on three distinct cell types character-

ized by differing transcriptional profiles: CD14+ monocytes, CD19+ B 
cells, and CD56+ NK cells (Fig. 3A). We employed a sampling strategy, 
as described in the Materials section, to generate 99 rare cell datasets, 
spanning proportions ranging from 0.2% to 10%.

We assessed the detection of rare cell types using 𝐹1 scores, which 
offer a balanced measure of accuracy and sensitivity. Across datasets 
with varying proportions of rare cells, scSID consistently outperformed 
RaceID3, GiniClust2, CellSIUS, FiRE, and scLDS2 in identifying rare 
monocytes (Fig. 3B). Notably, the 𝐹1 scores of the other methods were 
close to zero for low rare cell proportions. As the percentage of rare 
cells increased, RaceID3 and CellSIUS showed significant improvements 
in 𝐹1 scores, although they did not achieve perfect detection results in 
most cases. FiRE gave more scattered scores. GiniClust2 shows a rel-

atively stable growth trend, but the overall 𝐹1 score is not high. The 
mean 𝐹1 score of the scLDS2 is proportional to the percentage of rare 
cells, but the score is not stable. Furthermore, we further evaluated the 
six methods using sensitivity (Fig. 3C). Both RaceID3 and scSID consis-

tently maintained high sensitivities across all datasets. The sensitivity 
of CellSIUS increased with the proportion of rare cells, whereas FiRE, 
GiniClust2, and scLDS2 exhibited lower average sensitivity scores com-

pared to the other three methods.

To validate the robustness of the scSID algorithm, we implemented 
an experimental design proposed by the authors of the FiRE algorithm 
[20]. Following their methodology, we employed Jurkat cells as rare 
cells and mixed them with 239T cells, which were extracted in dif-

ferent proportions, resulting in 10 datasets with rare cell proportions 
ranging from 0.5% to 5% (Materials). Notably, since CellSIUS relies 
on initial clustering and is not applicable to scenarios with only one 
major cell type, we excluded its evaluation from this experiment. How-
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ever, for the remaining five methods, scSID consistently outperformed 
RaceID3, GiniClust2, FiRE, and scLDS2 across different dataset propor-

tions (Fig. 4A). As the proportion of rare cells increased, scSID exhibited 
slightly superior performance compared to RaceID3, while the scores of 
FiRE and scLDS2 also showed improvement. In line with the findings re-

ported by Jindal [20], GiniClust2 [23] failed to identify rare cells in any 
portion of the dataset. Furthermore, we assessed the sensitivity of these 
five methods using the sample dataset, and the results demonstrated 
that scSID maintained a high sensitivity across all datasets (Fig. 4B). To 
visually showcase the detection outcomes of the different methods, we 
highlighted and presented in Fig. 4C the rare cells detected by each al-

gorithm at a rare cell percentage of 2.5%. Notably, scSID consistently 
and accurately identified rare cells in agreement with the known anno-

tations. These results serve to further demonstrate the robustness of the 
scSID algorithm and highlight its advantages for rare cell detection.

4.2. scSID is sensitive to cell type identity

To evaluate the robustness and sensitivity of scSID under different 
numbers of differentially expressed genes, as well as its performance at 
low rare cell ratios, we conducted secondary sampling of the CD19+ 
B cell population and the CD14+ monocyte population from the 68K 
PBMC dataset. This allowed us to generate a rare cell data set with a 
rare cell ratio of 0.4%. Through a rigorous screening process [39], we 
identified a total of 114 differentially expressed genes between these 
two cell types (Materials).

In each iteration of the experiment, we systematically replaced the 
same amount of differentially expressed genes with non-differentially 
expressed genes, thus altering the count of differentially expressed 
genes to assess the sensitivity of scSID in detecting rare cell popula-

tions (Fig. 5A). For each dataset with varying numbers of differentially 
expressed genes, we calculated the average area under the curve (AUC) 
relative to the secondary population. This process was repeated 100 
times to obtain its mean values.

In each iteration of the experiment, we also compared the perfor-

mance of RaceID3, GiniClust2, FiRE, and scLDS2. However, the Cell-

SIUS method was not applicable in this scenario as the dataset consisted 
of only one dominant cell population and no prior knowledge was avail-

able [19,40]. At smaller proportions of differentially expressed genes, 
all methods struggled to effectively detect rare cells. However, as the 
proportion of differentially expressed genes increased, scSID reported 
substantial improvement over the other four methods (Fig. 5B). With 
fewer than 70 differentially expressed genes, scSID achieved an AUC 
value of above 0.9. RaceID3 also exhibited noticeable improvement in 
performance. On the other hand, the results of GiniClust2, FiRE and 
scLDS2 showed high concordance, which was due to noise interference 
caused by cell type-specific expression, resulting in poor detection per-
formance in the presence of a small number of differentially expressed 

https://github.com/dtsoucas/GiniClust2
https://github.com/Novartis/CellSIUS
https://github.com/princethewinner/FiRE
https://github.com/xkmaxidian/scLDS2
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Fig. 3. scSID analysis of different degrees of rare cells after subsampling the 68K PBMC dataset. (A) A tSNE plot was generated for the 68K PBMC dataset showing 
cell types and three cell types selected for further analysis. (B) Evaluating the performance of different rare cell type detecting methods based on their 𝐹1 score. (C) 

n th
Evaluating the performance of different rare cell type detecting methods based o

genes Scores were all less than 0.6 and their results overlapped and 
were overlaid in Fig. 5B.

4.3. scSID is scalable and efficient

The advancement of scRNA-seq technology has greatly facilitated 
the study of cell types. As the field progresses towards large-scale single-

cell sequencing, the computational efficiency of algorithms becomes a 
prominent concern in scRNA-seq research. To assess the computational 
efficiency of RaceID3, GiniClust2, scLDS2, FiRE, and CellSIUS, we im-
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plemented these methods on a single machine equipped with four Intel 
eir sensitivity.

Xeon E5-2620v4 CPUs and 376.33 GB of memory. We recorded the 
runtimes of these methods using different input data sizes. To facilitate 
comparison, we performed subsampling from the 68K PBMC dataset, 
which comprises of expression profiles ranging from 1,000 cells to 
approximately 68,000 cells. Our findings indicate that RaceID3, Gini-

Clust2, CellSIUS, and scLDS2 exhibit longer runtimes (Fig. 6A). Among 
them, RaceID3 has the longest runtime compared to the other meth-

ods. For instance, while scSID processes 50,000 cells within seconds, 
RaceID3 requires 8,338.03 minutes to process slightly over 50,000 cells. 
In contrast, FiRE, leveraging sketching technology [25], demonstrates 

rapid processing of cells, completing the analysis of the entire 68K 
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Fig. 4. scSID analysis unveiled differences in the detection of rare cells within a simulated dataset that included Jurkat and 293T cells. (A) 𝐹1 scores were computed 
for the rare (Jurkat) populations to evaluate the performance of various methods in identifying these rare cell types. (B) The sensitivity of rare (Jurkat) populations 
were calculated to assess how well various approaches for identifying rare cell types performed. (C) Rare cells detected by various algorithms were plotted on a 2D 

plot based on t-SNE, specifically focusing on the 2.5% rare cell concentration.

PBMC dataset in just a few seconds, which is approximately twice the 
runtime of scSID.

In the current landscape of large-scale single-cell transcriptomics, 
the spatial complexity of algorithms poses a significant challenge to 
their scalability. When studying rare cells, it is crucial to consider 
not only the accuracy of the algorithms, but also their memory uti-

lization during runtime [20,23]. In our assessment of six algorithms 
on the 68K PBMC dataset, we observed that GiniClust2 exhibited the 
highest memory usage, exceeding 250 GB. This finding aligns with the 
results reported in GiniClust2 by its authors [23] (see Fig. 6B). CellSIUS 
and RaceID3 demonstrated relatively lower memory usage, although 
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both exceeded 100 GB. scLDS2 showed an improved memory footprint, 
utilizing less than 50 GB. The FiRE algorithm achieved a significant re-

duction in memory usage, requiring less than 20 GB. Similarly, scSID 
also demonstrated improved memory utilization, consuming less than 
3 GB. By experimental comparison of methods, we found that scSID of-

fers faster processing speed and lower memory utilization when dealing 
with large datasets.

4.4. scSID identifies rare cells from the single-cell transcriptome of the 
intestine and in a large 68K PBMC dataset

To evaluate the performance of the model, we utilized two publicly 

available datasets: the single-cell transcriptome of the intestine [34,41]
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Fig. 5. Comparison of sensitivity in different methods for cell type identification with differential gene expression (DE) analysis. (A) The schematic overview 
illustrates perturbations in the dataset. Starting with the 68K PBMC dataset, where CD19+ B cells constitute the predominant cell type and CD14+ monocytes are 
rare, we created a dataset with a rarity of approximately 0.4% by employing secondary sampling. Pairwise screening was conducted to identify DE genes between 
the two cell types. Non-DE genes were then replaced with a predetermined number of DE genes. The number of replaced genes ranged from 1 to the total number of 
DE genes. (B) The performance of different methods for cell type detection was compared using sensitivity as the evaluation criterion. The number of replaced DE 
genes was varied to assess the impact on sensitivity.

Fig. 6. scSID achieves the balance of efficiency and scalability. (A) The execution time of six methods, RaceID3, GiniClust2, CellSIUS, FiRE, scLDS2, and scSID, with 
cell counts varying from 1 to approximately 50,000. (B) The memory usage of the six methods was recorded when applied to a dataset containing approximately 
68,000 cells.
and the 68K PBMC dataset (Fig. 7, A and B). The 68K PBMC dataset 
is widely used as a large-scale dataset in various computational algo-

rithms. Previous analyses using GiniClust2 and FiRE have identified a 
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rare cell type, specifically (CD34+) megakaryocytes, with cell propor-
tions below 0.4%. Our interest lies in investigating whether scSID can 
detect the rare cells in these datasets.

We utilized scSID to analyze the single-cell transcriptome of the ir-

radiated mouse intestine. This approach yielded 11 enteroendocrine 
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Fig. 7. Analysis of the intestinal dataset and a large 68K PBMC dataset. (A-B) Rare cell types within the intestinal dataset and the 68K PBMC dataset were visually 
highlighted using different colors in the 2D embedded plots. (C) Marker gene expression within all rare cell types was analyzed, providing insights into the specific 
genetic signatures associated with these rare cell populations. (D-E) Heatmaps were generated to display the rare cell clusters detected within the intestinal dataset 
and the 68K PBMC dataset, showcasing their gene expression patterns. Additionally, the top differentially expressed genes within each sub-cluster were identified 

and depicted in the heatmaps.

CD3+CD8+ T cells and 95 goblet cells. Additionally, 150 enteroen-

docrine cells were identified, corresponding to three distinct rare cell 
clusters, designated as R1, R2, and R3. We performed differential anal-

yses to identify marker genes to distinguish each cell cluster from other 
cell types (Fig. 7C). Specifically, we found that marker genes such as 
Cd3d and Gzmb showed expression specifically in subpopulation R1 
(Fig. 7D), indicating that this group of 11 cells is among the enteroen-

docrine CD3+CD8+ T cells [42]. Markers such as ZG16, CLCA1, FFAR4, 
TFF3 and SPINK4 genes were specifically expressed in R2, suggest-

ing that the 95 cells in R2 represent thrush cells. Similarly, marker 
genes, including CHGA1, CHGA2, and CHGA3, were also specifically 
expressed in R2, further confirming the presence of thrush cells in this 
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cell population [43]. In addition, we identified marker genes such as 
CHGA, CHGB, CPE, NEUROD1, and PYY, which are specifically ex-

pressed in R3, suggesting that these 150 cells belong to enteroendocrine 
cells.

With the rapid advances in single-cell technology, it is now possible 
to analyze tens of thousands or even millions of transcriptomes at the 
single-cell level. The 68K PBMC dataset has become a benchmark for 
large-scale data analysis, and we employed scSID to analyze the entire 
68K PBMC dataset [25] in order to uncover rare cell types. Using scSID, 
we successfully detected 164 CD34+ megakaryocytes, while exclud-

ing the remaining 77 CD34+ cells in PBMC, leading to the differential 
analysis of the two clusters (Fig. 7E). In cluster R1, we observed high 
expression levels of HLA-A, HLA-B, and HLA-C genes, which belong to 

the human leukocyte antigen (HLA) gene family [44,45]. HLA genes 
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Fig. 8. Analysis of the High-Fat diet dataset. (A) Rare cell types within the high-fat diet dataset were visually highlighted using different colors in the 2D embedded 
plot. (B) Marker gene expression in all rare cell types was examined. (C) Violin plots were generated to depict the expression of differentially expressed genes within 

each cluster.

play a crucial role in cell recognition, immune response regulation, 
and are widely studied in immune-related diseases, organ and bone 
marrow transplantation, vaccine and drug target population screen-

ing, tumor immunology research, and more. In addition, we found 
that ribosomal protein genes such as RPL34, RPL31, RPS9 and RPL32, 
as well as inflammatory chemokine genes, were highly expressed in 
the remaining CD34+ cells. This suggests the presence of different 
isoforms within the CD34+ cell population that were captured by sc-

SID.

4.5. scSID identifies nitrergic neurons in high-fat diet dataset

To validate the detection ability of our model, we applied it to the 
high-fat diet dataset (Fig. 8A). Our objective was to determine whether 
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the model could successfully detect rare cells in this dataset.
We applied scSID to analyze 9,139 cells from the high-fat diet single-

cell transcriptome dataset. In our experimental investigations, we dis-

cerned two distinct rare cell clusters, characterized as neuronal and 
erythroid clusters, labeled R1 and R2 in Fig. 8A. The cell counts for 
these clusters were 10 for R1 and 47 for R2, respectively. Notably, clus-

ter R1 is subdivided into two subgroups, R1-1 and R1-2, consisting of 
six neurons and four nitrergic neurons. We conducted differential anal-

yses on these cell populations (R1-1, R1-2 and R2) to ascertain their 
respective cell types accurately.

In R1-1 and R1-2, we observed specific expression of marker genes 
such as Tubb3, Elavl3, and Elavl4 (Fig. 8B). Based on this expression 
pattern, we concluded that a total of 10 cells in the R1 subpopulation 
are neuronal cells. Furthermore, significant expression of the Nos1 gene 
was observed specifically in R1-2, indicating the presence of nitrergic 

neurons, which are a specific subtype of neurons [46,47].
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For the R2 cluster, comprising a total of 47 cells, all of which were 
identified as erythrocytes based on the presence of contamination mark-

ers such as Hbb-bs, Hba-a2, Hbb-a1, and Hbb-bt, that are associated 
with hemoglobin genes (Fig. 8C). Additionally, significant expression 
of erythrocyte markers, including Alas, was detected [48].

Through analysis of the dataset via screening for high expression 
of neuronal cell marker genes, we observed that neuronal populations 
constituted approximately 0.3% of the total cell count within the high-

fat diet dataset. Therefore, scSID successfully identified rare neuronal 
cells and further classified them into subtypes, specifically nitrergic neu-

rons, which represented approximately 0.043% of the total cells in the 
dataset.

5. Discussion

The advancement of transcriptomics in single cells has dramatically 
improved cell type identification. Furthermore, the detection of rare 
cell types remains challenging due to the presence of a large number 
of other cell types. In this study, we aim to address the need for an 
algorithm that combines efficiency, scalability, and accuracy for identi-

fying rare cells in single-cell data. To achieve this, we propose a novel 
algorithm based on cell similarity division, which identifies rare cells 
by analyzing the variation of similarity differences between cells of the 
same class and those of different classes.

By comparing scSID with RaceID3, GiniClust2, CellSIUS, FiRE, and 
scLDS2 methods on 68K PBMC and 293T-Jurkat datasets, we observed 
that scSID has the ability to detect subtypes that may not be recog-

nized using other single-cell analysis methods. Utilization of single-cell 
data demonstrates that scSID achieves high sensitivity and specificity 
in detecting subtypes within single-cell populations, thereby facilitat-

ing downstream classification of single cells. Notably, the application 
of scSID to the high-fat diet dataset uncovered previously unrecognized 
subtypes, highlighting its potential in identifying rare cell types. The 
high sensitivity of scSID contributes to the effective fractionation of 
single cells in downstream analyses. Measuring the similarity between 
cells from different perspectives should be considered in future work. In 
addition, scSID was designed for single-cell RNA sequencing data, and 
future studies should extend its application to multi-omics data.
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