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Abstract: The decomposition effect of variational mode decomposition (VMD) mainly depends on
the choice of decomposition number K and penalty factor α. For the selection of two parameters, the
empirical method and single objective optimization method are usually used, but the aforementioned
methods often have limitations and cannot achieve the optimal effects. Therefore, a multi-objective
multi-island genetic algorithm (MIGA) is proposed to optimize the parameters of VMD and apply
it to feature extraction of bearing fault. First, the envelope entropy (Ee) can reflect the sparsity of
the signal, and Renyi entropy (Re) can reflect the energy aggregation degree of the time-frequency
distribution of the signal. Therefore, Ee and Re are selected as fitness functions, and the optimal
solution of VMD parameters is obtained by the MIGA algorithm. Second, the improved VMD
algorithm is used to decompose the bearing fault signal, and then two intrinsic mode functions
(IMF) with the most fault information are selected by improved kurtosis and Holder coefficient for
reconstruction. Finally, the envelope spectrum of the reconstructed signal is analyzed. The analysis of
comparative experiments shows that the feature extraction method can extract bearing fault features
more accurately, and the fault diagnosis model based on this method has higher accuracy.

Keywords: rolling bearing; fault feature extraction; Variational Mode Decomposition; multi-island
genetic algorithm; parameter optimization

1. Introduction

The failure of the wind turbine rolling bearing has a significant impact on the entire
rotating machinery and even the operating state of the entire fan [1]. Due to the complex
vibration transmission path of rolling bearing, it is very difficult to extract the fault informa-
tion. Therefore, understanding how to effectively reduce the noise of the vibration signal
and accurately extract fault features are key to early fault diagnosis of bearing [2,3].

In view of the above problems, scholars have put forward a variety of countermeasures.
Empirical mode decomposition (EMD) can highlight the local characteristics of unstable
signals and has good time-frequency aggregation ability [4]. However, the envelope
estimation error of EMD will be amplified due to multiple recursive decompositions,
which may be accompanied by modal aliasing, endpoint effect, pseudo pulse, and other
phenomena [5]. To solve this problem, Wu et al. [6] proposed an ensemble empirical mode
decomposition (EEMD), which effectively suppressed the phenomenon of mode aliasing.
Gu et al. [7] used complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) to decompose the vibration signals, and then combined the signal quality
index and singular value decomposition to extract local fault information of gearbox.
Liu et al. [8] decomposed the vibration signal by local mean decomposition (LMD), and
then adaptively learned the fault features combined with the SDAE model. However,
these methods only reduce the mode aliasing phenomenon to a certain extent but do
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not completely eliminate it. Therefore, Dragomiretskiy et al. [9] proposed a variational
mode decomposition algorithm. The bearing signal is processed into several sub-signals
by the VMD algorithm to avoid the occurrence of mode aliasing. Jiang et al. [10] used
the VMD algorithm to decompose the cylinder head vibration signal, and the obtained
modal components to construct the characteristic matrix. Then, they calculated its singular
value as the characteristic parameter, and then input it into the random forest classifier
for diesel engine valve clearance fault diagnosis, and achieved good results. Qi et al. [11]
used the VMD algorithm to process vibration signals into several IMFs and then combined
with entropy value method and support vector machine classifier to complete bearing
fault diagnosis.

However, the decomposition result of VMD largely depends on the choice of penalty
factor α and decomposition number K. Wang et al. [12] proposed an improved VMD
method based on the beetle antenna search (BAS) algorithm, which takes the kurtosis value
of the intrinsic mode function as the fitness function in the search process, so as to optimize
the parameters of the VMD algorithm. Gai et al. [13] optimized the parameters of VMD by
the hybrid Gray Wolf algorithm and applied it to the extraction of bearing fault features.
Yan et al. [14] optimized the parameters of VMD by a cuckoo search algorithm and applied
it to fault detection of bearings.

As artificial intelligence technology progresses, bearing fault classification algorithms
have become a hot topic for scholars. To learn the part-based representation of data and
enhance sparseness, Zhang et al. [15] demonstrate the embedding of non-negativity con-
straints in the deep network. A state recognition method for the rolling bearing is proposed
based on the deep autoencoder neural network with nonnegative constrains. In order
to eliminate the distribution difference between training data and test data, Yu et al. [16]
proposed an unsupervised domain adaptive fault diagnosis method based on a symmetric
co-training framework. Given that it is difficult to obtain a large number of labeled data
samples, Tao et al. [17] proposed an unsupervised rolling bearing fault diagnosis method
based on short-time Fourier transform and categorical generative adversarial networks.
The above bearing fault diagnosis methods belong to the category of neural network and
deep learning. Although the neural network has a strong learning ability, it needs to
set more parameters, and may converge too early to get the local optimal solution. The
diagnosis accuracy of deep learning is relatively high, but its learning time is relatively
long, and it needs a lot of labeled data. In order to simplify the classifier and detect the fault
information of the signal, the envelope spectrum analysis of the fault signal is carried out.

On the basis of the above literature, this paper proposes a rolling bearing fault feature
extraction method based on MIGA-VMD. Firstly, the bearing vibration signal is decom-
posed, and then the two IMFs with the most fault information are selected by the improved
kurtosis and Holder coefficient for reconstruction, and the fault information is identified by
envelope spectrum analysis. The contributions of the paper can be summarized as follows:

• A new fitness function is designed to optimize the parameters of VMD.
• The feature extraction method based on MIGA-VMD is studied through the actual

data of rolling bearing.
• Compared with other feature extraction methods, the effectiveness of the proposed

feature extraction method is verified.

The rest of the paper are organized as follows: Section 2 gives a brief introduction
to the VMD method. In Section 3, the optimization algorithm and fitness function used
to optimize VMD parameters are introduced, and the effectiveness of fitness function is
proved. Section 4 introduces the improved kurtosis and Holder coefficient. The flow chart
of the proposed method is given in Section 5, and the experimental analysis is carried out
in Section 6. Finally, the conclusion of the paper is drawn in Section 7.
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2. Brief Introduction of VMD

VMD is actually a method to solve variational problems. VMD can process a signal
into K modal signals uk(k ∈ 1, 2, · · · , K), the bandwidth of uk in the frequency domain has
specific sparsity property [18]. The specific solving steps are as follows:

1. For each mode, the single side spectrum can be obtained by calculating the analytical
signals related to each mode by Hilbert transform:[

δ(t) +
j

πt

]
∗ uk(t). (1)

2. An exponential term is added to modulate the spectrum of each mode to the corre-
sponding baseband: [(

δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt. (2)

3. Each mode is near the center pulse frequency ωk, and the bandwidth of ωk is estimated
by the H1 gaussian smoothness of the demodulated signal, i.e., the squared L2-norm
of the gradient. In this way, we obtain a constrained variational problem [19]:

min
{uk},{ωk}

{
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}
s.t.

K
∑

k=1
uk = x

(3)

where x is the original signal, uk is the modal function, ωk is the central frequency of
each mode, δ(t) is the Dirichlet function, ∗ is the convolution operation.

4. In order to obtain the optimal solution of the constrained variational problem, the
augmented Lagrange function is introduced:

L({uk}, {ωk}, λ) =〈
λ(t), x(t)−∑

k
uk(t)

〉
+

‖x(t)−∑
k

uk(t)‖2

2
+ α∑

k
‖∂t

[(
σ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

(4)

where α is the penalty factor and λ is the Lagrange factor.
5. In this way, the optimal solution problem of the constrained variational model can

be transformed into the saddle point problem of the augmented Lagrange function,
and the saddle point of the augmented Lagrange function can be obtained by using
the alternating direction method of multipliers (ADMM). The expression of mode
function is obtained as follows:

ûn+1
k (ω) =

x̂(ω)−
K
∑

i=1,i 6=k
ûi(ω) +

λ̂(ω)
2

1 + 2α(ω−ωk)
2 (5)

where ûn+1
k (ω) is the Wiener filter of the current residual x̂(ω)−

k
∑

i=1,i 6=k
ûi(ω), and

the real part obtained by inverse Fourier transform of Wiener filter is uk(t). By
transforming the center frequency problem into the frequency domain, the expression
of center frequency can be obtained as follows:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(6)
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where ωn+1
k is the center frequency of the corresponding mode component.

The flow of the VMD algorithm is as follows.

1. Setting initial parameter u1
k , ω1

k , λ1, n as 0;
2. n = n + 1, start the iteration cycle;
3. Update uk and ωk according to expressions (5) and (6), where k cycles from 1 to K and

K is the number of modes;
4. Update λ:

λn+1 = λn + τ

(
x−∑

k
un+1

k

)
(7)

5. Given the decision accuracy ε > 0, if the decision expression is satisfied:

∑
k
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε (8)

then stop the iteration, otherwise return to step (2).

3. Multi-Objective Multi-Island Genetic Algorithm Optimizes the Parameters of VMD

According to reference [9], the VMD algorithm needs to determine the following
parameters: Penalty parameter α, decomposition number K, updating parameters of
Lagrange factor τ, center frequency initialization setting ω1

k , termination condition ε. In the
process of VMD decomposition, the decomposition result of VMD mainly depends on the
selection of penalty parameter α and decomposition number K, and the other parameters
are set according to experience, that is, τ = 0, ω1

k = 0, ε = 1e− 7. Under specific α and
K, each IMF component has limited bandwidth. The size of bandwidth depends on the
setting of penalty parameter α. The smaller α is, the smaller the bandwidth is; the larger α
is, the larger the bandwidth is. In addition, the choice of decomposition number K is more
important. If K is too small, it will lead to mode aliasing; if K is too large, it will lead to the
generation of useless components. Therefore, it is necessary to set the appropriate α and K
through the optimization algorithm. In this paper, the selection range of α is [50, 3500], and
the selection range of K is [2, 12].

The PSO algorithm, introduced by Kennedy and Eberhart [20,21], is a population-
based stochastic approach for solving continuous and discrete optimization problems.
Its advantage is that there are not too many complex parameters to adjust, and it is
easy to achieve, so some scholars optimize the parameters of VMD through a particle
swarm optimization algorithm [22]. However, the PSO algorithm has the disadvantage of
premature convergence. The genetic algorithm simulates the process of biological evolution,
including selection, crossover, mutation, and other operations, relying on continuous
evolution to get the optimal solution [23]. Its advantage is that the search starts from
the group and has potential parallelism. The genetic algorithm is also easy to converge
in advance, which affects its own optimization ability. In order to prevent premature
convergence, a multi-island genetic algorithm is proposed. The algorithm adds many
“islands” on the basis of the genetic algorithm, and there will be some individuals on each
island. It is assumed that individuals can migrate between each island, and those with
migration ability are excellent individuals, which can help the algorithm avoid premature
convergence [24]. The flow of MIGA is shown in Algorithm 1.
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Algorithm 1 Multi-Island Genetic Algorithm

1: Randomly generate N individuals as the initial population P0.
2: The population P0 is divided into some “islands”.
3: The fitness values of each individual in the “island” were obtained.
4: Perform operations such as selection, crossover, and mutation on the island.
5: If the migration condition is satisfied, the individual will migrate from the current island to
other islands.
6: If the current number of iterations does not reach the set value, step 3 will be returned,
otherwise step 7 will be executed.
7: The optimal solution is the one with the least fitness among all individuals.

When using a multi-objective multi-island genetic algorithm to optimize VMD param-
eters, the key is to select appropriate fitness functions. The concept of envelope entropy
Ee is proposed in the literature [25]. The bearing signal is decomposed into multiple IMF
components by VMD, and the Ee value of the component can represent the sparsity of the
component signal. The larger the Ee value is, the smaller the sparsity of the IMF component
is and the more noises it contains; the smaller the Ee value is, the greater the sparsity of the
IMF component is and the more periodic shocks it contains. Therefore, the fitness function
is constructed as follows:

minF1 = minEe (9)

where Ee is calculated as follows:
Ee = −

N
∑

j=1
ej log ej

ei = a(j)/
N
∑

j=1
a(j)

(10)

where j = 1, 2, 3, . . . , N, a(j) is obtained by Hilbert demodulation of the original signal.
In order to prove that Ee can be used as fitness function, we construct a simulation

signal of faulty bearing, and the expression is as follows: f (t) = y0e−2π fnξt sin
(

2π fn
√

1− ξ2t
)

c(t) = ∑
τ

f (t− τ) + n(t)
(11)

where t is the sampling time, τ = 0, 0.02, 0.04, 0.06 . . ., f (t) stands for the single impulse
response, n(t) represents Gaussian white noise, and the noise intensity is determined by
the standard deviation, and c(t) is a sum of time-shifted impulse responses with noise.
Here, we set y0 = 3, fn = 3000 Hz, ξ = 0.09. In addition, sampling frequency fs = 20 kHz,
sampling number N = 4096.

Figure 1 shows the vibration waveforms of the faulty bearing simulation signal when
there is no noise, the noise intensity is 1, the noise intensity is 2, and the noise intensity is
3. It can be seen from the figure that with the increase of noise intensity, the background
noise will gradually submerge the fault impact. By comparing the four images, it can be
found that the greater the noise intensity of the signal is, the more blurred the periodic
pulse becomes, the weaker the sparsity of the signal is, and the greater the Ee value is; The
less noise the signal contains, the more significant the periodic pulse becomes, the stronger
the sparsity of the signal is, and the smaller the Ee value is. Therefore, the smaller the Ee
value of the signal, the more obvious the fault impact of the signal, and Ee can be used as a
fitness function.
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Figure 1. Time-domain waveforms of simulated signals under different noise intensities.

Renyi entropy Re further expands the concept of information entropy, which can
reflect the energy aggregation of signal in time-frequency distribution and the complexity
of signal [26]. Compared with information entropy, Renyi entropy is more sensitive to
the change of signal and easier to identify the small change of signal [27]. For a fault
signal, if the noise is smaller, the main frequency will be more concentrated, the energy
aggregation will be better, and the Re value of the signal will be smaller; If the noise is
bigger, the complexity will be bigger, the energy aggregation will be worse, and the Re
value of the signal will be bigger. In other words, the smaller the Re value is, the less noise
the signal contains and the better the energy aggregation of the signal is. Therefore, the
fitness function is constructed as follows:

minF2 = minRe (12)

where Re is defined as:

Re(X) =
1

1− α

n

∑
i=1

log pα
k (13)

where α ≥ 0, indicating the order of Re; pk is the probability density of X = xk.
In order to prove that Re can be used as fitness function, we still use Equation (11) as

simulation signal of faulty bearing. Figure 2 shows the frequency-domain waveforms of
the simulation signal when there is no noise, the noise intensity is 1, the noise intensity
is 2, and the noise intensity is 3. It can be seen from the figure that with the increase of
noise intensity, the main frequency in the signal is gradually submerged by the background
noise. By comparing the four images, we can find that the less noise the signal contains,
the more concentrated the main frequency is, the better the energy aggregation is, and the
smaller the Re value is; The larger the noise intensity of the signal is, the more scattered
the main frequency is, the worse the energy aggregation is, and the greater the Re value
is. Therefore, the smaller the Re value of the signal, the more it contains the main fault
information, and Re can be used as the fitness function.
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Figure 2. Frequency domain waveforms of simulated signals under different noise intensities.

Due to the influence of parameters K and α, each IMF has its own Ee value and Re
value. The smallest one of K Ee values is selected as the local minimum Ee, and the smallest
one of K Re values is selected as the local minimum Re, the components corresponding
to these two minimum entropy values contain rich feature information [28]. The average
value of local minimum Ee and local minimum Re is taken as fitness function to search the
most suitable parameters K and α. Therefore, the final fitness function is as follows:

minF =
1
2
(minEe + minRe) (14)

4. Brief Introduction of Improved Kurtosis and Holder Coefficient

Bearing fault signals are decomposed into some IMFs by MIGA, and only some of
these IMFs contain bearing fault information. Therefore, screening the most effective IMF
is more conducive to fault feature extraction, but this has been ignored in most studies. The
holder coefficient can measure the correlation between signals, and the larger the holder
coefficient is, the more significant the correlation is [29]. Kurtosis is easy to sense local
fault impact, so it is widely used to screen IMF containing bearing fault information, but
the interference pulse affects the effect of kurtosis index [30]. Therefore, it is necessary to
eliminate the influence of some extreme values when calculating kurtosis. The calculation
method of improved kurtosis is as follows:

For a vibration signal x(t) = [x(1), x(2), . . . , x(N)], whose absolute value vector is:

y(t) = |x(t)|, t = 1, 2, . . . , N (15)

The extremum of signal x(t) corresponds to the maximum point of y(t), the kernel
density estimation method is used to calculate the probability density function of y(t),
as follows:

F(y) =
1

Nd
√

2π

N

∑
t=1

exp

{
− (y− |x(t)|)2

2d2

}
(16)
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If F(y) is greater than α(0 ≤ α ≤ 1), the minimum value of y can be expressed as:

ylow = min
{

y : F(y) =
∫

u≤y
f (s)ds ≥ α

}
(17)

where α is a critical probability and F(y) is the probability distribution function of signal
y(t). If α tends to 1, then ylow can be regarded as the boundary-value extreme point. If the
absolute value y(t) of the sample point x(t) is greater than ylow, then the sample point x(t)
is regarded as the extreme point.

In order to reduce the influence of these abnormal extreme points on kurtosis, we use
the linear interpolation algorithm [31] to replace these abnormal extreme points. Then, we
calculate the kurtosis of the adjusted signal xadj:

Kadj =
∑N

t=1 (xadj(t))
4

(∑N
t=1 (xadj(t))

2)
2 − 3 (18)

For two signal samples x(t) = [x1, x2, · · · , xn] and y(t) = [y1, y2, · · · , yn] with n
values, the Holder coefficient is defined as:

H =
∑N

i=1 xiyi(
∑N

i=1 xp
)1/p

·
(

∑N
i=1 yq

)1/q (19)

where 1/p + 1/q = 1 and p, q > 1; 0 ≤ Hc ≤ 1.
In this paper, improved kurtosis and Holder coefficient are used to select the most

effective IMF for fault feature extraction.

5. Fault Feature Extraction Model Based on MIGA-VMD

In general, the proposed fault feature extraction model is shown in Figure 3, and the
implementation process is as follows:

Step 1: Taking the average value of local minimum Ee and local minimum Re as the
fitness function, using the MIGA algorithm to search the most suitable VMD parameters K
and α.

Step 2: The VMD with optimized parameters is used to process the vibration signals
of different states, and K IMFs are obtained, respectively.

Step 3: Calculate the improved kurtosis of each IMF; calculate Holder coefficients
between each IMF and the original signal.

Step 4: The IMF with the largest kurtosis value and the IMF with the largest Holder
value are selected for reconstruction.

Step 5: The envelope spectrum of the reconstructed signal is obtained by Teager energy
operator envelope demodulation.

Step 6: The frequency of the larger peak value is marked in the envelope spectrum,
which is compared with the bearing fault frequency obtained by theoretical calculation, so
as to judge whether the fault feature is extracted accurately.
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6. Experimental Study
6.1. Introduction of Experiment

The experimental data are from Case Western Reserve University (CWRU) Bearing
Data Center [32]. The experimental center processes single point damage on SKF6205
bearing by EDM technology and uses an acceleration sensor to measure the bearing
vibration signal. Other parameters of bearing are shown in Table 1. The data contains
multiple sets of data under different conditions. Here, the bearing drive ends signals
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with the sampling frequency of 12,000 Hz and load of 0 Hp are selected for simulation
verification, including inner race fault signal, ball fault signal, outer race fault signal, and
normal signal. The sample length of this experiment is set to 2048, and the specific data
information is shown in Figure 4.

Table 1. Rolling bearing parameters.

Model Pitch Diameter BallDiameter Number of Rollers Contact Angle

6205-2RSJEM SKF
deep groove ball bearing

D (mm)
39.0398

d (mm)
7.94004

Z
9

α
0
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6.2. Comparison and Analysis of the Experiment

The load is 0 Hp, the corresponding motor speed is 1797 rpm, so the motor frequency
f0 is 29.95 Hz. According to the empirical formula (21)–(23) of bearing fault frequency,
the theoretical inner race fault frequency f1, ball fault frequency f2, and outer race fault
frequency f3 are 162.19 Hz, 141.16 Hz, and 107.36 Hz, respectively.

f0 = 29.95 Hz (20)

f1 =
Z
2
×
(

1 +
d
D
× cos α

)
× N

60
(21)

f2 =
1
2
× D

d
×
(

1−
(

d
D

)2
× cos2 α

)
× N

60
(22)
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f3 =
Z
2
×
(

1− d
D
× cos α

)
× N

60
(23)

The time domain and frequency domain waveforms of bearing vibration signals under
inner race fault, ball fault, outer race fault, and normal state are shown in Figure 5. Due to
the influence of noise interference, it is difficult to observe the obvious fault frequency from
Figure 5. Therefore, in the follow-up experiments, the VMD algorithm is used to process
the bearing vibration signal.
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Figure 5. Time-domain diagram and frequency domain diagram of vibration signals of inner race fault, ball fault, outer race
fault, and normal state. (a) Time-domain diagram; (b) frequency domain diagram.

Prior to using the VMD algorithm to process the bearing signal, it is necessary to use
optimization algorithm to determine the most appropriate parameters K and α. In order to
prove the convergence and optimization performance of MIGA, different algorithms are
used to optimize the VMD parameters of inner race fault signal, including PSO algorithm,
GA algorithm, and MIGA algorithm. In the process of testing, Equation (14) is used as the
fitness function of the three algorithms. Figure 6 shows the change process of fitness values
of the three algorithms in the optimization process.
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Figure 6. Performance comparison of PSO algorithm, GA algorithm, and MIGA algorithm.
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It can be seen from Figure 6 that in this test, PSO algorithm converges faster than
GA algorithm, but both PSO algorithm and GA algorithm converge in advance. The
MIGA algorithm used in this paper not only has better convergence speed than PSO
algorithm and GA algorithm, but also avoids falling into a local optimum and has better
optimization ability.

Taking the average value of local minimum Ee and local minimum Re as the fitness
function, the most suitable parameters K and α are searched by the MIGA algorithm.
Figure 7 shows the change process of fitness values of four types of signals with the
increase of iterations in the optimization process. Finally, the VMD optimal parameter
combinations [K0, α0] of four types of signals are found as [11, 350], [9, 3241], [7, 3497],
[11, 3498]. According to the optimal parameter combination [K0, α0], the VMD parameters
of each state signal are set and the signal is decomposed by VMD.
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Figure 7. The MIGA convergence curve for VMD parameter optimization. (a) Inner race fault; (b) ball fault; (c) outer race
fault; (d) normal.

The improved kurtosis and Holder coefficient can evaluate the degree of IMF contain-
ing fault information. The improved kurtosis values and Holder coefficient values of each
IMF after four types of signals are decomposed by the MIGA-VMD algorithm are shown in
Figure 8.

The IMF with the largest kurtosis value and the IMF with the largest Holder value
are selected for reconstruction. The time-domain waveform and envelope spectrum of the
reconstructed signals of the four types of signals are shown in Figures 9 and 10, respectively.
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Figure 8. The improved kurtosis values and Holder coefficient values of each IMF after MIGA-VMD decomposition of four
different state signals. (a) Inner race fault; (b) Ball fault; (c) Outer race fault; (d) Normal.
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Figure 9. Time-domain diagrams of reconstructed signals of four different state signals. (a) Inner race fault; (b) Ball fault;
(c) outer race fault; (d) normal.

It can be seen from Figure 10a that the maximum peak value appears in the figure
when the frequency is 161.1 Hz, and the obvious peak value also appears in the figure
when the frequency is 322.3 Hz and 486.3 Hz. These three frequencies are close to the
theoretical fault frequencies f1, 2 f1, and 3 f1, respectively. It can be seen from Figure 10b
that the maximum peak value appears in the figure when the frequency is 140.6 Hz, which
is close to the theoretical fault frequency f2. As can be seen from Figure 10c, when the
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frequencies are 108.4 Hz, 216.8 Hz, 323.5 Hz, and 430.7 Hz, obvious peaks appear in
the figure. The four frequencies are close to the theoretical fault frequencies f3, 2 f3, 3 f3,
and 4 f3 respectively. As can be seen from Figure 10d, when the frequencies are 29.3 Hz
and 58.59 Hz, obvious peaks appear in the figure. These two frequencies are close to the
theoretical motor frequencies f0 and 2 f0. Due to the fault frequency of different fault signals
is different, it can be determined that the method in this paper can accurately extract the
fault features of the bearing vibration signal.
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Figure 10. Envelope spectrum of the reconstructed signal of four different state signals. (a) Inner race fault; (b) ball fault; (c)
outer race fault; (d) normal.

In order to further verify the effectiveness of the proposed method, the inner race
fault signals of 1797 rpm, 1772 rpm, 1750 rpm, and 1730 rpm are tested. According to
the formula (21), the inner race fault frequencies frpm1, frpm2, frpm3, and frpm4 under four
rotational speed conditions are 162.19 Hz, 159.93 Hz, 157.94 Hz, and 156.14 Hz.

The time domain waveform and frequency domain waveform of bearing vibration
signals under four rotational speed conditions are shown in Figure 11.

Taking the average value of local minimum Ee and local minimum Re as the fitness
function, the most suitable parameters K and α are searched by the MIGA algorithm.
Figure 12 shows the change process of fitness values of signals under four rotational speed
conditions with the increase of iterations in the optimization process. Finally, the VMD
optimal parameter combinations [K0, α0] of signals under four rotational speed conditions
are found as [11, 350], [10, 3236], [11, 750], [12, 501]. According to the optimal parameter
combination [K0, α0], the VMD parameters of signals under four rotational speed conditions
are set and the signal is decomposed by VMD.

The improved kurtosis values and Holder coefficient values of each IMF after signals
under four rotational speed conditions are decomposed by the MIGA-VMD algorithm are
shown in Figure 13.
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Figure 11. Time-domain diagram and frequency domain diagram of vibration signals of 1797 rpm, 1772 rpm, 1750 rpm, and
1730 rpm. (a) Time-domain diagram; (b) frequency domain diagram.
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Figure 12. The MIGA convergence curve for VMD parameter optimization. (a) 1797 rpm; (b) 1772 rpm; (c) 1750 rpm;
(d) 1730 rpm.
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Figure 13. The improved kurtosis values and Holder coefficient values of each IMF after MIGA-VMD decomposition of
four different state signals. (a) 1797 rpm; (b) 1772 rpm; (c) 1750 rpm; (d) 1730 rpm.

The IMF with the largest kurtosis value and the IMF with the largest Holder value
are selected for reconstruction. The time-domain waveform and envelope spectrum of
the reconstructed signals of signals under four rotational speed conditions are shown in
Figure 14, and Figure 15, respectively.
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Figure 14. Time-domain diagrams of reconstructed signals of signals under four rotational speed conditions. (a) 1797 rpm;
(b) 1772 rpm; (c) 1750 rpm; (d) 1730 rpm.
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Figure 15. Envelope spectrum of the reconstructed signal of signals under four rotational speed conditions. (a) 1797 rpm;
(b) 1772 rpm; (c) 1750 rpm; (d) 1730 rpm.

It can be seen from Figure 15a that the maximum peak value appears in the figure
when the frequency is 161.1 Hz, and the obvious peak value also appears in the figure
when the frequency is 322.3 Hz and 486.3 Hz. These three frequencies are close to the
theoretical fault frequencies frpm1, 2 frpm1, and 3 frpm1, respectively. Figure 15b shows that
when the frequencies are 159.65 Hz and 319.3 Hz, obvious peaks appear in the figure.
These two frequencies are close to the theoretical fault frequencies frpm2 and 2 frpm2. As can
be seen from Figure 15c, when the frequencies are 158.2 Hz and 316.4 Hz, obvious peaks
appear in the figure. These two frequencies are close to the theoretical fault frequencies
frpm3 and 2 frpm3. As can be seen from Figure 15d, when the frequencies are 155.3 Hz
and 310.5 Hz, obvious peaks appear in the figure. These two frequencies are close to
the theoretical fault frequencies frpm4 and 2 frpm4. In addition, the peak value appears
when the frequency is 58.59 Hz in the four figures, which is the motor frequency. As the
fault frequency of signals under different rotational speed conditions is different, it can be
determined that the method, in this paper, can accurately extract the fault features of the
bearing vibration signal.

6.3. Comparison of Feature Extraction Methods

In order to verify the superiority of the MIGA-VMD algorithm, the CEEMDAN
algorithm and traditional VMD algorithm are used to replace the MIGA-VMD algorithm.
Figures 16 and 17 are the envelope spectrum of reconstructed signals of four types of signals
processed by the CEEMDAN algorithm and traditional VMD algorithm respectively. In
the traditional VMD algorithm, K and α are set to [28]: K = 6, α = 2000.
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Figure 16. The envelope spectrum of the reconstructed signal of the four different state signals processed by the CEEMDAN
algorithm. (a) Inner race fault; (b) ball fault; (c) outer race fault; (d) normal.
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Figure 17. The envelope spectrum of the reconstructed signal of the four different state signals processed by the traditional
VMD algorithm. (a) Inner race fault; (b) ball fault; (c) outer race fault; (d) normal.
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It can be seen from Figure 16a that the maximum peak value appears in the figure
when the frequency is 161.1 Hz, and the obvious peak value also appears in the figure
when the frequency is 322.3 Hz and 486.3 Hz. Although these three frequencies are close to
the theoretical fault frequencies f1, 2 f1, and 3 f1 respectively, there are many interference
frequencies in the figure, which may affect the accuracy of fault feature extraction. As
shown in Figure 16b, although there is a peak at 140.6 Hz, the frequency is submerged in
other noise frequencies, so it is difficult to obtain it accurately. As shown in Figure 16c,
there are seven obvious peaks in the figure, and their frequencies are close to the theoretical
fault frequencies f3, 2 f3, 3 f3, and 4 f3 respectively. As shown in Figure 16d, when the
frequencies are 29.3 Hz and 58.59 Hz, obvious peaks appear in the figure. Although these
two frequencies are close to the theoretical motor frequencies f0 and 2 f0, there are also
many interference frequencies in the figure. In Figure 17, similar situations also appear,
such as the fault frequency is not obvious, a large number of noise frequency are doped,
and even the fault frequency is submerged by the noise frequency.

To sum up, the results processed by the MIGA-VMD algorithm show obvious fault
information, and the fault frequency is clearly visible. Although, the CEEMDAN algorithm
and traditional VMD algorithm can also extract part of the feature information, it is mixed
with more noise interference, resulting in the feature frequency is not clear or completely
submerged in the noise. Therefore, for the fault feature extraction of the rolling bearing
vibration signal, the performance of the MIGA-VMD algorithm is better than that of the
CEEMDAN algorithm and traditional VMD algorithm.

6.4. Performance of Bearing Fault Diagnosis

In order to further prove the effectiveness of the proposed feature extraction method,
this method is combined with the classifiers in three literatures for bearing fault diagnosis,
and the diagnosis accuracy is compared with the original method, as shown in Table 2.

Table 2. Comparison of fault diagnosis accuracy.

Literature Feature Classifier Accuracy

[13] EMD-SVD DBN 93.55%
This Work MIGA-VMD-SVD DBN 95.1%

[26] EEMD-Renyi entropy-PCA PNN 91.7%
This Work MIGA-VMD-Renyi entropy-PCA PNN 93.9%

[32] \ 1-DCNN 99.34%
This Work MIGA-VMD 1-DCNN 99.7%

In Table 2, literature [13] decomposes the bearing signal by EMD, and then calculates
the singular value of the matrix composed of IMFs as the feature vector, which is input
into the DBN classifier. The accuracy of the diagnosis result is 93.55%. In this paper,
MIGA-VMD method is used to replace EMD method, and then combined with SVD and
DBN. The diagnostic accuracy is 95.1%. In literature [26], the bearing signal is decomposed
by EEMD, and the Renyi entropy of each IMF is calculated to form the feature vector, and
then reduced dimension by PCA. Finally, it is input into PNN classifier, the diagnostic
accuracy is 91.7%. In this paper, MIGA-VMD method is used to replace EEMD method,
and then combined with Renyi entropy, PCA, and PNN. The diagnostic accuracy is 93.9%.
In literature [32], the original signal of bearing is directly input into 1-DCNN classifier, and
the accuracy of diagnosis result is 99.34%. In this paper, the original signal is processed by
MIGA-VMD, and the two IMF which contain the most fault information are reconstructed,
and then it is input into the 1-DCNN classifier. The accuracy of the diagnosis result is 99.7%.
To sum up, the combination of the proposed feature extraction method and the classifiers
in the literature may increase the computational burden, but the diagnosis accuracy has
been significantly improved compared with the previous ones.



Entropy 2021, 23, 520 20 of 21

7. Conclusions

In this paper, a feature extraction method based on MIGA-VMD is proposed, and
the effectiveness and superiority of this method are verified by experiments. Finally, the
following conclusions are drawn:

1. Taking the average value of local minimum Ee and local minimum Re as the fitness
function, the most suitable parameters K and α can be found by the MIGA algorithm.

2. Compared with the CEEMDAN algorithm and traditional VMD algorithm, the MIGA-
VMD algorithm has obvious advantages in fault feature extraction of bearing vibra-
tion signals.

3. This feature extraction method can effectively suppress the noise interference, accu-
rately extract the fault information of the rolling bearing vibration signal, and the
accuracy of bearing fault diagnosis is effectively improved.
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