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Abstract
Pharmacometric modeling can capture tumor growth inhibition (TGI) dynamics and 
variability. These approaches do not usually consider covariates in high- dimensional 
settings, whereas high- dimensional molecular profiling technologies (“omics”) are 
being increasingly considered for prediction of anticancer drug treatment response. 
Machine learning (ML) approaches have been applied to identify high- dimensional 
omics predictors for treatment outcome. Here, we aimed to combine TGI modeling and 
ML approaches for two distinct aims: omics- based prediction of tumor growth profiles 
and identification of pathways associated with treatment response and resistance. We 
propose a two- step approach combining ML using least absolute shrinkage and selec-
tion operator (LASSO) regression with pharmacometric modeling. We demonstrate our 
workflow using a previously published dataset consisting of 4706 tumor growth profiles 
of patient- derived xenograft (PDX) models treated with a variety of mono-  and combi-
nation regimens. Pharmacometric TGI models were fit to the tumor growth profiles. The 
obtained empirical Bayes estimates- derived TGI parameter values were regressed using 
the LASSO on high- dimensional genomic copy number variation data, which contained 
over 20,000 variables. The predictive model was able to decrease median prediction 
error by 4% as compared with a model without any genomic information. A total of 74 
pathways were identified as related to treatment response or resistance development by 
LASSO, of which part was verified by literature. In conclusion, we demonstrate how the 
combined use of ML and pharmacometric modeling can be used to gain pharmacologi-
cal understanding in genomic factors driving variation in treatment response.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Pharmacometric tumor growth inhibition models represent a well- established 
approach— quantify tumor growth dynamics and the effects of therapeutics agents. 
High- dimensional molecular profiling technologies (“omics”) are relevant predictors 
for prediction of interindividual variation in tumor growth dynamics.
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INTRODUCTION

Pharmacometric modeling of tumor growth inhibition (TGI) 
dynamics is extensively used to model the longitudinal re-
sponse of tumor size in response to drug treatment in preclin-
ical animal models or patients. Pharmacometric TGI models 
have increasingly been used to characterize drug- exposure 
response relationships using semimechanistic parameters re-
lated to, for instance, direct treatment effects or resistance to 
personalize drug treatment.1,2 Using TGI models, interindi-
vidual variation in tumor growth rate, treatment efficacy, and 
treatment resistance can be quantified and related to patient- 
specific characteristics.1,3 In recent years, TGI models have 
been integrated with time- to- event models to predict clinical 
outcomes, such as overall survival, which allow prediction of 
clinical outcomes based on the patient- specific tumor growth 
dynamics parameters.4– 6

The use of high- dimensional molecular profiling tech-
nologies, including next- generation sequencing, to develop 
personalized treatment schedules is rapidly developing. In 
particular in oncology, the use of “omics” technologies to 
characterize tumor- specific molecular differences to predict 
variation in treatment response is of great interest.7 Although 
both omics and TGI modeling are of relevance toward per-
sonalized treatment strategies, pharmacometric TGI models 
are not frequently directly applied to high- dimensional co-
variates. In pharmacometric modeling, stepwise covariate 
inclusion approaches are still the most commonly used ap-
proach to include covariates, which is unsuitable for testing 
of covariates in a high- dimensional setting.

Current analyses of high- dimensional “omics” datasets 
predicting treatment response are mostly performed using 
machine learning (ML) methodologies, such as sparse 

regression models, random forests, and deep learning, to 
obtain predictive signatures of treatment response.8– 10 The 
majority of studies with ML approaches are based on either 
dichotomous survival response or clinical response met-
rics, such as based on the Response Evaluation Criteria in 
Solid Tumors (RECIST) system,11,12 wherein the observed 
dynamic tumor disease progression profile is reduced into a 
limited number of categories. These simplified categorical 
treatment response metrics lack biological or pharmacolog-
ical relevance, because factors, such as resistance and direct 
treatment effects, are merged.13

A commonly used ML method is the least absolute 
shrinkage and selection operator (LASSO), which is a linear 
regression method with �1 regularization that can be used for 
high- dimensional analysis, and results in variable selection.14 
Although ML approaches, such as sparse regression models 
using the LASSO,15– 18 have been implemented in pharma-
cometric modeling, they are computationally expensive due 
to the combination of nonlinearity and estimation of random 
effects, which often lead to convergence problems. The im-
plementations of the LASSO involve alternating algorithms, 
which alternate between estimating the random effects and 
the LASSO optimization, so although LASSO is rather ef-
ficient, iterating through multiple random effect estimation 
steps can severely reduce computational efficiency. This can 
lead to long computation times and poor convergence rates, 
especially in high- dimensional settings.

In this study, we propose a two- step approach combining 
ML, using LASSO regression, with pharmacometric model-
ing. We demonstrate our approach using a large dataset con-
sisting of longitudinal tumor growth profiles of patient- derived 
xenograft (PDX) models treated with a variety of mono-  and 
combination regimens.19 We develop pharmacometric tumor 

WHAT QUESTION DID THIS STUDY ADDRESS?
How can high- dimensional omics- based predictors be efficiently identified for tumor 
growth inhibition model parameters?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Two- step approach combining tumor growth inhibition modeling and least absolute 
shrinkage and selection operator regression allows identification of pharmacologi-
cally predictive and mechanistically relevant omics- derived molecular predictors for 
variation in tumor growth dynamics.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
This developed approach can be used to enable personalized omics- derived predic-
tions of optimal treatments and dosing schedules, through its integration with tumor 
growth modeling. The integration with tumor growth modeling also allows identi-
fication of molecular predictors specifically associated with efficacy or treatment 
resistance.
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growth models quantifying intertumor variation in growth 
rates, drug effect, and resistance, after which we implement 
ML- based LASSO models to address the following aims: (1) 
to predict longitudinal tumor growth profiles based on omics- 
derived predictors using a multivariate LASSO model; and 
(2) to identify biological pathways associated with interin-
dividual variation in treatment response or resistance devel-
opment using a group LASSO regression model (Figure 1).

METHODS

Data

Data from a large scale preclinical study in PDX mice models 
were used.19 This dataset consisted of over 4000 PDX ex-
periments, which were derived from a total of 277 patients, 

where multiple PDX experiments were derived from the 
same tumor. The PDX experiments from one tumor were all 
treated with different anticancer agents as mono treatment or 
combination treatment, or left untreated (e.g., natural growth 
experiments). There was a total of 62 unique treatments and 
for every tumor treated one PDX was left untreated, lead-
ing to an incomplete design with multiple PDX experiments 
per treatment. Tumor volume was measured daily. For each 
unique tumor, at the start of the treatment, genomic data 
based on gene copy number variations (CNVs) were ob-
tained, yielding a total of 23,852 CNVs. We included data 
for 174 unique tumors and 55 unique treatments, correspond-
ing with 3244 tumor- treatment combinations. This selection 
was based on availability of CNV data and adequate fit (see 
section below). The analysis was conducted separately for 
every treatment, so the number of observations differed per 
analysis, ranging from 17 to 171 observations (Table S1).

Tumor growth inhibition model

A TGI model was fitted to the longitudinal tumor volume 
measurements using the nonlinear regression modeling soft-
ware NONMEM,20 with first order conditional estimation 
with interaction.4 The TGI model captured the longitudinal 
tumor volume measurements, per PDX, through estimation 
of three parameters: growth rate (kg), treatment efficacy (kd),  
and time- dependent resistance development (kr) in an ordi-
nary differential equation (Equation 1).

with tumor volume V (t) at time t and tumor growth model 
parameters kg, kd, and kr. Random effects with a log- normal 
distribution, were added to all fixed effect TGI parameters as 
follows: kg,i = kg ⋅ exp

(
�kgi

)
.

To fit the TGI model, we first estimated individual value 
for kg separately for every tumor using the untreated PDX 
data (Equation 2).

The empirical Bayes estimates (EBEs) of kg were extracted 
and included as data in the TGI model. EBEs in NONMEM 
is the estimation of the posterior individual random effects 
(�̂i), based on the empirically obtained prior distribution of � 
and the individual data, as previously described.21 The resid-
ual error was modeled with both an additive and proportional 
error.

We observed that not all tumor growth curves showed 
time- dependent resistance development (e.g., regrowth), so 

(1)dVi (t)

dt
= kg,i ⋅ Vi (t) − kd,i ⋅ e− kr,i ⋅ t ⋅ Vi (t)

(2)dVi (t)

dt
= kg,i ⋅ Vi (t) .

F I G U R E  1  A schematic visualization of the proposed two- step 
approach. First, the tumor growth curves were modeled to obtain tumor 
growth parameter estimates, second, the individual estimates tumor 
growth parameter estimates were regressed on copy number variations 
(genomics) by different least absolute shrinkage and selection operator 
(LASSO) techniques. The group LASSO was applied to obtain 
biological pathways. The multivariate LASSO was applied to predict 
the tumor growth parameter values, which were then inserted into the 
tumor growth inhibition model equations to obtain predictions of the 
tumor growth curves
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both a full TGI model and a reduced model, without a term 
for resistance, were fitted, effectively allowing kr to become 
zero. For every PDX, a likelihood ratio test was conducted 
to evaluate whether inclusion of kr added significantly to the 
model fit (at significance level 0.05). A second criterium 
was added to only select the full model if the kr was esti-
mated to be smaller than 1.0, because the term kd ⋅ e− kr ⋅ t goes 
to zero very fast with t for larger kr, effectively making kd 
unidentifiable.

To evaluate the model fit separately for each treatment, 
we plotted the conditional weighted residuals per treatment, 
which represent the goodness of fit for the TGI models.22 
Due to the large number of tumor growth curves, treatments 
with curves with a bad model fit were removed from further 
analysis. The EBEs of kd and kr were extracted for the treat-
ments with good model fit.

Tumor growth profile prediction

The multivariate outcome the log- transformed kg, log- 
transformed kd, and kr was regressed on the genomic CNV 
data within every treatment using a multivariate LASSO 
(Equation 3).23 The multivariate lasso, similarly to the stand-
ard LASSO, minimized the loss function to estimate the lin-
ear parameters � is mainly due to outcome Y  and parameter �, 
which are, in this case, both matrices containing a column for 
every outcome. The penalty term is the root of the summed 
square error over the vector � j.

The LASSO hyperparameter �, which determines the size 
and number of non- zero parameters, was chosen through 10- 
fold cross- validation, to identify the �, which minimized the 
prediction error in terms of mean squared error. This min-
imizing � differed per treatment. The treatments where the 
minimizing � did not outperform the null model, which esti-
mated no non- zero coefficients for the CNVs, were removed 
from further analysis, both in prediction of the tumor growth 
curves and the pathway selection. In a second analysis, only 
the log- transformed kg, log- transformed kd were regressed on 
the CNV data. Prediction errors were evaluated both on the 
scale of the predicted parameter values and on the scale of the 
predicted tumor growth curves.

The individual TGI parameter values predicted from 
the LASSO were extracted. The ordinary differential equa-
tion (Equation 1) was solved for these predicted parameter 
values to bring the predictions back on the longitudinal 
tumor volume scale. For robustness, the cross- validation 
step was repeated 20 times over different cross- validation 

splits and the predicted curves were averaged over the 20 
repetitions.

A measure of prediction error was defined on tumor curve 
scale through comparing the curves from the estimated pa-
rameters from the TGI model to the curves with the predicted 
parameters from LASSO. The prediction error was defined 
as the absolute fraction of the area between the predicted and 
the estimated curves (ABC) over the area under the estimated 
curve (AUC), called the scaled ABC (sABC; Equation 4).

for individual i with volume Ṽi (t) estimated from the TGI 
model fit (IPRED) and volume V̂i (t) predicted from the mul-
tivariate LASSO. The area is considered until some cutoff �,  
which in our study was set to 56 days (2 months). The sABC 
was used because it is a one- dimensional and interpretable error 
measure. The sABC metric allowed for the comparison of the 
two functions produced by the TGI model fit and the LASSO 
parameter value prediction. The sABC of the LASSO with 
CNVs was compared with the sABC of the null model, to see 
whether the CNVs added predictive power.

Pathway selection

To gain biological insight gained beyond selection of indi-
vidual genes contributing to the predictive performance of 
treatment efficacy and time- dependent resistance develop-
ment, the log- transformed kd and kr were separately regressed 
on the CNVs through pathway analysis using overlapping 
group LASSO.24,25 The overlapping grouped LASSO uses a 
combination of the LASSO and the �2 norm, a square root 
of the sum of squares of the coefficients, which is also used 
for RIDGE regression,26 to select variables on a group level 
(Equation 5). Each of the G groups contain a set of indices 
ℐg, including all parameter indices of the �s in group g. The 
size of the group is denoted as |ℐg|, which is used to scale the 
penalty to account for the different group sizes.

The groups were defined as the pathways from the 
WikiPathways ontology, which contains a comprehensive 
overview of biological pathways and processes.27– 29 A total 
of 5998 CNVs was grouped to one or more pathways.

Again, 10- fold cross- validation was used to identify the �, 
which determined how many pathways were selected. While 
utilizing a combination of �1 and �2 penalties, there is only 

(3)�̂MVlasso = arg min
�

�
‖Y − X�‖2

2
+ �

p�

j= 1

���� j
���2

�

(4)sABC
i
(�) =

∫ �
0

|||Ṽi
(t) − V̂

i
(t)
||| dt

∫ �
0

Ṽ
i
(t) dt
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one hyperparameter in the group lasso.24 Subsequently, part 
of the discovered correlations between pathways and treat-
ment response was researched in literature for validation. 
This analysis was conducted in R30 (version 3.6.3) using the 
library grpregOverlap (https://github.com/Yaohu iZeng/ grpre 
gOverlap).

Code availability

All scripts and models used for the analysis are available on 
github (https://github.com/vanha sselt lab/PDX).

RESULTS

Tumor growth inhibition model development

The TGI model was fitted to the PDX tumor growth curves, 
separately for every treatment. For three treatments, no model 

was converged, these were left out of the analysis. The model 
fit was evaluated through the conditional weighted residuals 
(Figure S1) and the visual inspection of the PDX fits (Figure 
S2). The visual inspection showed the tumor dynamics for 
treatment TAS266 were not captured. Combination therapy 
LFW527 and binimetinib showed skewed residual distribu-
tions. The two treatments were discarded for further analysis. 
The model fit for the other treatments was sufficient.

All individual parameter estimates (EBEs) were extracted 
from the TGI model (Figure 2a). Figure 2b shows how the 
values of the parameter estimates affect the curve. The per-
centage of PDX experiments with non- zero time- dependent 
resistance development was 12.6%. The TGI model for the 
chosen treatments showed sufficient fits for the next step pa-
rameter values prediction step.

The effect of shrinkage of the individual prediction val-
ues (�), often referred to as eta- shrinkage, was evaluated in 
Figure S2. The fit of the individual growth curves was not 
influenced by shrinkage. Because the tumor volumes were 
densely sampled over time, with an average of 0.3 samples 

F I G U R E  2  Results of the tumor growth inhibition (TGI) model estimation. (a) The distributions of the individual, estimated TGI parameters. 
(b) Selected tumor growth profiles showing how k

d
 and k

r
 vary for different treatments, with from left to right a very ineffective treatment, a slightly 

effective treatment, a very effective treatment and a very effective treatment with time- dependent resistance development
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per day, 50 days follow- up time, and 14 measurements per 
experiment, we did not expect problems with shrinkage.

Prediction of tumor growth profiles using 
genomic predictors

The estimated individual TGI parameters kr, log- transformed kd,  
and log- transformed kg were simultaneously predicted by the 
multivariate LASSO. The prediction errors for the kg, kd, and kr 
were calculated as root mean square error (RMSE). Although 
the variation between the treatments was high (Figure S3a), 
overall, the RMSE was high. For kg, the RMSE was 0.035, 
whereas a mean estimated kg of 0.0564. For both the kd and the 
kr, the RMSEs 0.044 and 0.049, respectively, were actually 
higher than the mean estimated kd (0.033) and the kr (0.0564), 
indicating a bad prediction of the tumor growth dynamics from 
CNVs. A multivariate LASSO with only the log- transformed 
kd and log- transformed kg was also fitted. These two LASSO 
models were compared based on the prediction error of the 
log- transformed kd and log- transformed kg and the sABC error 
measure (Figure S3), where the model without predicting the 
kr seemed to fit better, especially in the case of combination 
therapies BYL719 and cetuximab, and BKM120 and LJC049, 
which was used for consecutive analysis.

Of 52 treatments, 33 treatments were detected with a 
better prediction than the null model, based on the average 
MSE over the cross- validation replications. For the other 
treatments, the predictive ability was not improved by adding 
CNVs as predictors to the LASSO regression. The log kg and 
log kd were transformed back to their original scale and the 
parameters were used to solve the ordinary differential equa-
tion (Equation 1) from the model.

The predictive performance of the LASSO for predict-
ing the TGI parameter values was evaluated by comparing 
the curves from the predicted estimates to the curves from 
the TGI model fit, because the estimated curves were already 
shown to fit the data well. The predictions and estimations 
are functions instead of measures, so the scaled area between 
the curves was calculated as error. The overall median sABC 
is 0.456, which can be interpreted as the area between the 
predicted and estimated curve, is less than half the area below 
the estimated curve (Figure 3a). The sABC distributions for 
the different treatments are shown (Figure 3b). A lower sABC 
shows a lower prediction error. There were 23.6% of the 
curves that had an sABC below 0.2, so the difference between 
the curves is less than 20% of the AUC of the estimated curve. 
The treatment LFA102 has a median sABC of only 0.153, 
indicating a good prediction. The worst predictions are in the 
treatment LGH447 with a median sABC of 0.867. Compared 
with the null model, the LASSO reduced the sABC by a me-
dian decrease of 3.8%. This shows low predictive ability of 
the CNVs to predict tumor growth curves.

Identification of pathways associated with 
treatment efficacy and resistance

The TGI parameter values of kd and kr were regressed on 
CNVs grouped in pathways using the overlapping group 
LASSO. The group LASSO selected the pathways with pre-
dictive power for the 33 treatments where predictiveness was 
shown in the curve prediction step. Out of the 472 pathways 
from WikiPathways,29 71 different pathways were selected 
for one or more of 19 different treatments, with a total of 118 
detected pathway- treatment response correlations (Figures 4, 
5). The pathways were specifically correlated to either treat-
ment efficacy or resistance development. More pathways 
were identified for kd than kr, due to smaller variation in kr.

For paclitaxel, trastuzumab, encorafenib, and figitu-
mumab, the US Food and Drug Administration (FDA) ap-
proved drugs administered as monotherapy, we compared 
identified pathways with literature reports to evaluate their 
biological validity. We identified 14 pathways for these 4 
drugs, of which 9 could be confirmed in literature (Table 1), 
where we confirm previously described mechanisms were 
detected through our method.

DISCUSSION

In order to utilize high- dimensional omics data to further ad-
vance treatment response prediction and understanding, we 
developed a two- step approach combining an ML method 
with pharmacometric modeling.

We showed how CNVs can contribute to prediction of 
variability in tumor growth dynamics. This approach estab-
lishes a practical framework to enable personalized treatment 
selection or even dose optimization. Even though we have 
applied our approach to preclinical PDX data, TGI mod-
els have been widely used for modeling of clinical tumor 
size measurements to which our approach can be applied. 
Pharmacometric models, including TGI models, are typically 
based on ordinary differential equation (ODE) models, which 
is why we have chosen to formulate our model as ODEs and 
not using an analytical expression. Importantly, the use of a 
TGI model enables further integration with either clinical 
outcome prediction models41 or it can be integrated with 
pharmacokinetic- pharmacodynamic (PK- PD) models for 
TGI to refine dosing regimens to optimally suppress tumor 
growth. We expect this approach can also be implemented for 
the analysis of clinical tumor growth data.

In this study, we have set a cutoff of 56 days to evaluate 
the ability to back- predict tumor growth profiles; however, the 
predictions can also be extrapolated over a longer time- span, 
depending on the nature of available omics- data or specific 
disease or treatment characteristics. In terms of this sABC, the 
CNVs did, however, not show great improvement of predictive 
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ability as compared with a null model. This was already visi-
ble in the large prediction errors on the tumor growth param-
eter values. The predictive ability was evaluated instead of the 
model fit in order to study more generalizable results. A large 
proportion of variance can often be explained by omics data, 
but the high- dimensional nature of the data makes it hard or im-
possible to distinguish between noise and structural differences.

To identify biological factors predictive for either treat-
ment efficacy or resistance development we used a group 
LASSO, grouping individual gene- associated CNVs to 
known biological pathways. We have used the WikiPathways 
ontology for grouping pathways, although other pathway da-
tabases can be used in a similar fashion. The pathway group 
LASSO yields a set of pathways predictive of the outcome 

treatment efficacy and time- dependent resistance develop-
ment. Of 14 identified pathways predictive of treatment effi-
cacy and resistance development, 9 pathways were confirmed 
by literature search. This is an indication of how omics path-
way analysis for dynamic tumor growth responses could be 
a useful tool for validating pathway associations with factors 
responsible for treatment response, as well as discovering 
new correlations with pathways. Such a pathway- oriented 
approach has been previously proposed, but not in context 
with TGI or pharmacometric modeling.42

In this study, we have used two versions of LASSO regres-
sion for two distinct aims: variable selection and prediction. 
We selected the use of the LASSO over other ML approaches 
due to its intrinsic property of variable selection.14 The 

F I G U R E  3  Predicted curves from the multivariate least absolute shrinkage and selection operator. (a) Tumor growth curves visualized with the 
area under the estimated curve (orange) and between the estimated and predicted curves (grey) and the error (in scaled area between the predicted 
and the estimated curves [sABC]). From left to right show a very good prediction to a very poor prediction. (b) The distributions of the individual 
patient- derived xenograft sABCs for the different treatments, given by the interquartile range. Outliers are not included in the plot
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F I G U R E  4  Selected pathways obtained by the group least absolute shrinkage and selection operator for the treatment efficacy (k
d
 = black), 

time- dependent resistance development (k
r
 = orange) or both (blue) over the different treatments. The distribution of pathways found for different 

treatments (top)
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selection for variables in high- dimensional data is not well 
accommodated in many algorithms, whereas the LASSO 
inherently shrinks noise variables to zero. The LASSO can 
achieve high sensitivity, but it can suffer from low specific-
ity, this, however, is not considered as much of a problem in 
exploratory analyses.

The use of the group LASSO allows for direct pathway 
selection based on omics data, which is computationally effi-
cient and interpretable.42 The variable selection performance 
of the LASSO has been investigated previously, and has been 
shown to perform competitively or comparatively better than 
other methods.43– 45

The multivariate LASSO was used to simultaneously 
predict the three model parameter values. A limitation of 
the multivariate LASSO used in this study is that it does 
not take into account the dependence between the outcome 
variables, whereas the tumor growth model parameters are 
expected to be correlated. A second limitation was shown 
by the comparison between the predictions with and with-
out adding kr to the multivariate outcome. Prediction of one 
parameter can restrict the prediction of another parameter. 
We expect this problem can be overcome by better model-
ing of the joint and marginal distributions of the multivar-
iate outcome.

The LASSO has been previously implemented in phar-
macometric nonlinear mixed effect models.16– 18 These 

direct implementations have the advantage of informing the 
LASSO directly within the longitudinal modelling. Models 
with a very high number of variables, however, become 
computationally hard. To our knowledge, these LASSO im-
plementations have not been successfully applied to very 
high- dimensional data, where the number of variables (p) 
was an order of magnitude larger than the number of obser-
vations (n), either due to convergence problems, or exploding 
computation times. The two- step method is more dependent 
on the fit of the first model and the accuracy of the EBEs. 
Our method is more feasible in high- dimension, because the 
steps of the complex longitudinal model estimation and the 
high- dimensional predictors are separated.

The two- step approach can directly use other ML algo-
rithms besides the LASSO. Algorithms, such as Random 
Forests and Gradient Boosting, are able to capture non-
linearity more easily, and can be used to improve model 
prediction accuracy. There is still a challenge in modeling 
multiple outcomes at the same time, such as the kg, kd, and kr 
in our study, but multivariate outcome modeling extensions 
have been made in in other high- dimensional methods, 
such as random forests,46 which can be also used to predict 
tumor growth parameter values, as in the second step of our 
approach.

In summary, we demonstrated how combining machine 
learning and pharmacometric modeling can be used to gain 

F I G U R E  5  Overview of overlapping pathways between the different treatments. The nodes are the treatments (white background) and 
pathways (orange background) and the edges indicate which tumor growth inhibition parameter links the pathway to the treatment
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pharmacological understanding of factors driving variation 
in treatment response, and to enable omics- based personal-
ized treatment regimens.
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