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Abstract: A strategy to improve the cancer therapies involves agents that cause the depletion of the
endogenous antioxidant glutathione (GSH), increasing its efflux out of cells and inducing apoptosis
in tumoral cells due to the presence of reactive oxygen species. It has been shown that Casiopeina
copper complexes caused a dramatic intracellular GSH drop, forming disulfide bonds and reducing
CuII to CuI. Herein, through the determination of the [CuII]–SH bond before reduction, we present
evidence of the adduct between cysteine and one Casiopeina as an intermediate in the cystine
formation and as a model to understand the anticancer activity of copper complexes. Evidence of
such an intermediate has never been presented before.

Keywords: copper complexes; glutathione depletion; cysteine; Casiopeina; intermediate; copper
reduction

1. Introduction

The study of the oxidation of endogenous thiolated compounds, such as glutathione
(GSH) and cysteine (Cys), is essential to understand the oxidative stress within the cells [1].
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, GSH) is a tripeptide that participates in
redox processes into the cells, where the Cys residues of GSH are easily oxidized to disulfide
(GSSG) [2,3]. It also participates in cancer cell protection against xenobiotics, ionizing
radiations, and oxidative stress. Its oxidation favors the opening of the mitochondrial
permeability transition pore complex, facilitating the release of death-related molecular
signals [4,5]. A strategy to improve cancer therapies’ efficacy should involve cytosolic
and mitochondrial GSH depletion through an increase of GSH efflux out of cells [4].
Kachadourian and coworkers tested, in human lung cancer cells (H157 and A549), one
copper complex of the Casiopeina® family, showing that it induced a dramatic drop in
the intracellular levels of GSH (Figure 1A) [6]. Additionally, there are reports of GSH
depletion produced by copper complexes on cervix HeLa and neuroblastoma CHP-212.
GSSG/GSH and cystine/cysteine’s redox potentials are very similar,−263 and−220 mV vs.
normal hydrogen electrode (NHE) respectively [7,8], with glutathione being a slightly better
reducing agent (Figure 1C). The oxidation by copper(II) ions of cysteine-containing peptides
such as glutathione and cysteine has been studied to understand this biometal’s role in
oxidative stress processes [9–12]. The copper favors the oxidation of thiols [11,13], where
CuII reacts with thiols to form [CuII]–thiol adducts depending on their molar ratio. The
[CuII]–thiol complex is reduced to CuI, and in turn, thiols are oxidized to the corresponding
radicals. The CasIII-ia ([Cu(4,4′-dimethyl-2,2′-bipyridine)(acetylacetonate)]NO3*(H2O)2,
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Figure 1B) is a copper(II) complex from the Casiopeina family with a potential of 62 mV vs.
NHE [14], which could mediate the oxidation of biological thiols (Figure 1C). Recently, a
paper [15] demonstrated the formation of O2·− when bisdiimine copper(II) chelates were
reduced by ascorbate. However, the pathway by which CuII is reduced to CuI has not yet
been described; therefore, in this work, we present a strategy to understand this reduction
process and determine the possible intermediate.
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dation reaction rate. The family of Casiopeínas® [16] was designed considering three ele-
ments: copper(II) as a central metal and two mixed ligands with several substituents, 
providing to copper the possibility of producing cytotoxicity through different mecha-
nisms of action [17]. Ligands modify the cationic copper’s transport properties [18], the 
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plex [20]. The Casiopeina activity goes along with the cytotoxic effects, such as the gener-
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times higher than that observed in tumor lines, suggesting a selectivity towards tumoral 
cells [27]. Additionally, pharmacokinetic analyses performed with rat urine [28] and dog 
blood [29] samples have proved a high elimination rate of the Casiopeinas. All these re-
sults indicate an increase in the in vivo activity of the compound CasIII-ia, concerning the 
cisplatin activity as a positive control, evaluated in the same system. Our group has in-
vestigated the relationship between the features of the metal complex and their activity. 
A QSAR study showed that the half-wave potential and aromatic ring in the molecule are 
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These observations suggest the importance of copper complexes, such as the Ca-
siopeinas, to oxidate thiol residues, inducing mitochondrial damage [6]. From the above
considerations, in the present work, we study the specific interaction between cysteine
and CasIII-ia to understand the pathway leading to a final reduction of the copper metal
center and the disulfide bond formation. We focused on Cys, the reactive site of GSH,
because it reacts slower than GSH in solution, and standard analytic techniques can detect
its reactive intermediates. Additionally, we used mechanochemical methods to reduce the
oxidation reaction rate. The family of Casiopeínas® [16] was designed considering three
elements: copper(II) as a central metal and two mixed ligands with several substituents,
providing to copper the possibility of producing cytotoxicity through different mechanisms
of action [17]. Ligands modify the cationic copper’s transport properties [18], the electronic
properties of the central metal [19], and the molecular recognition of the complex [20]. The
Casiopeina activity goes along with the cytotoxic effects, such as the generation of reactive
oxygen species (ROS) [21,22], which can damage cellular components through oxidation
and alter the oxidation-reduction balance cell or interfere with the mechanisms of cellu-
lar signaling related to the redox state [23]. There are reports about the antiproliferative
and antineoplastic activities over murine and xenografted human tumors [24,25]. On the
other hand, survival was evaluated in murine models: L1210 (leukemia), S180 (sarcoma),
and B16 (melanoma) [26]. In non-tumor cells, the mean inhibitory concentration of this
compound was 4.7, determined in lymphocytes, approximately 250 times higher than that
observed in tumor lines, suggesting a selectivity towards tumoral cells [27]. Additionally,
pharmacokinetic analyses performed with rat urine [28] and dog blood [29] samples have
proved a high elimination rate of the Casiopeinas. All these results indicate an increase
in the in vivo activity of the compound CasIII-ia, concerning the cisplatin activity as a
positive control, evaluated in the same system. Our group has investigated the relationship
between the features of the metal complex and their activity. A QSAR study showed that
the half-wave potential and aromatic ring in the molecule are relevant for the compounds’
action [14].

Other derived models can predict mixed chelate copper complexes’ degree of activity
based on the chemical correlation between structure, EPR, and electrochemical behavior,
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supported by DFT calculations [19]. We also developed a regression model to reproduce the
antiproliferative activity involving the atomic delocalization and dipole moment changes
within the ligands’ C-N bonds [30]. These bonds are also determinant for the recognition
site of copper complexes by the DNA backbone [20].

2. Results and Discussion

In solution, the endogenous reductant species, such as GSH, react very fast with
Casiopeinas to be detected by standard analytical methods. For this reason, we decided to
focus on the reactive site of GSH and Cys, and perform the reaction process in the solid
state to observe the steps occurring in the Cys oxidation process. It has been reported that
the Cys redox reaction barrier is smaller than the GSH one and also that the redox process
is faster than any ligand exchange. In this way, Cys is an acceptable model of GSH for the
process catalyzed by the CasIII-ia.

The CasIII-ia was prepared by the patent procedure [31–33]. To prove the inclusion
of Cys in the copper coordination sphere and determine the features of the [CuII]–Cys
interaction, we performed powder X-ray diffraction (PXRD), electronic spectra (UV-Vis-
NIR), infrared spectroscopy (FTIR), electron paramagnetic resonance spectroscopy (EPR),
and mass spectra-direct analysis in real-time (MS-DART) analyses. To understand the
structural evolution of the [CuII]–Cys adduct, we carried out a DFT computational analysis
for the cooper reduction process.

The reaction between equimolar solutions of Cys (colorless) and CasIII-ia (blue)
showed color changes from brown/green to blue color (see the Movie S1 in the Sup-
plementary Materials), and the same observations were reported by Seko et al. [34] and
Ugone et al. [35]. EPR spectra of fresh mixtures of two CasIII-ia and Cys stoichiometric
solutions were recorded at 77 K. Figure 2 shows the copper electronic environment change
of CasIII-ia when it interacts with Cys. Therefore, it is proposed that CasIII-ia generates
a [CuII]–Cys adduct before its reduction. However, the reaction’s rapid kinetics avoids
studying the [CuII]–Cys adduct in solution using this technique. Then, we opted to change
the conditions to reduce the reaction rate with a mechanochemical solid-state approach.
CasIII-ia and Cys were milled until a homogenous solid mixture was obtained, EtOH
was added, and was mixed until dryness. During the mechanical process, it was possible
to observe a color change, from Pantone 2139c to Pantone 289c (Figure 3), that can be
associated with Cys’ coordination to CasIII-ia. It was impossible to isolate and purify the
reaction intermediates; therefore, we used several techniques to identify them within the
reaction mixture.
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First, we analyzed the powder X-Ray diffraction patterns of the reactants and the
reaction mixture. The crystal square pyramid structure of CasIII-ia has been reported in
a previous description (CCDC 1440021). Supplementary Figure S1 shows the diffraction
pattern of the reaction mixture and the two reactants. It is possible to observe that the
crystalline arrangement is conserved. Some remnant signals can be associated with the
Cys and the CasIII-ia; however, some signals are no longer present, such as the 7.9 intense
signals in 2θ. On the other hand, new signals are presented, such as 11.24, 12.12, 17.18,
25.94, 32.58, 33.02, 37.92, and 38.58 (see Supplementary Materials for details). These peaks
confirm a new species that still have copper(II) as a metal center.

The second evidence of the presence of a new copper(II) complex is the UV-Vis
spectrum of the reaction mixture, as shown in Figure 4. The reaction mixture spectrum
resembles that for CasIII-ia–Cys, with maxima at 395 and 598 nm. The latter can be
associated with the electronic transitions of an elongated D4h octahedral structure. The
simulated spectra show that the signals of two possible CasIII-ia–Cys adduct arrangements,
octahedral (axial Cys) and square planar pyramid (equatorial Cys), are very close to the
experimental ones, 626 and 663 nm, respectively. The deconvolution of the two observed
signals agrees with three theoretical excited states of octahedral and square planar pyramid
geometries. These signals are mainly related to the transition to SOMO or LUMO molecular
orbitals (for octahedral geometry: SOMO-20→ SOMO, SOMO-16→ SOMO, and SOMO-16
→ LUMO; for square planar pyramid: SOMO-18 → SOMO, SOMO-18 → LUMO, and
SOMO-15→ LUMO). Details are provided in the Supplementary Materials.
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The third evidence of the interaction between CasIII-ia and Cys is the EPR data.
Figure 5 shows the experimental spectra and fitting models of CasIII-ia (A) and CasIII-ia–
Cys (B). Table 1 presents experimental and computational values for the g and A tensors
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of the spectra in Figure 5. We compared the observed spectra with DFT simulations of
octahedral and square planar pyramid structures. CasIII-ia shows an axial symmetry
spectrum associated with a square planar pyramid geometry. The reaction product is
a 1:1 CasIII-ia/CasIII-ia–Cys mixture in the solid state. The linear combination of the
axial and isotropic EPR profiles of CasIII-ia and CasIII-ia–Cys reproduce the experimental
spectrum. The axial symmetry can be associated with geometry with a pseudo-Janh-Teller
effect, where a Cys occupies the axial position of CasIII-ia. The difference between the
experimental and theoretical g values ranges from 0.004 to 0.10, and for A values, from
25 to 98 MHz. These differences agree with that obtained in other reports [36,37]. For
the CasIII-ia–Cys, we compared the experimental data with two different geometries:
octahedral and square planar pyramid. The difference between the experimental and
theoretical data is 0.004 and 0.030 for giso, respectively. The Aiso value differences are 56
and 25 MHz, respectively. The best fit for giso corresponds to octahedral geometry, while
for Aiso it is given by the square planar pyramid.
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Table 1. Experimental and computational values for the g tensor and the A tensor (in MHz) parame-
ters of spectra A and B in Figure 5.

CasIII-ia (A)

Experimental Computational

gxx = gyy 2.0767 2.0466
gzz 2.2517 2.1458

Axx = Ayy 7.47 105.26
Azz 117.4 −185.99

CasIII-ia–Cysteine 1:1 (B)

Experimental Octahedral Square Planar Pyramid

gxx = gyy = gzz 2.10557 2.1010 2.0755
Axx = Ayy = Azz 48.797 104.57 23.85

The fourth evidence of the Cu–S interaction is the I.R. signals presented in the Sup-
plementary Materials. Since cysteine is a molecule of biological interest, its solid-state
vibrational spectra have been extensively studied, considering the polymorphisms that it
can show [38] and the I.R. modifications with different protonation modes [39]. The Cys I.R.
signals S-H (1063 cm−1), C-S (692 cm−1), and C-N (291 cm−1) [38], agreeing with theoretical
frequencies (1056.73, 669.99, and 278 cm−1, respectively), yield the most significant changes
when interacting with the copper complex. In the case of CasIII-ia, the Cu-O and C-N
bonds’ I.R. signals appear at 596 and 294 cm−1 (603.88 and 279.73 cm−1 theoretical values),
respectively. The 1:1 solid reaction mixture, with drops of EtOH, produces an adduct which
presents I.R. signal variations as evidence of the CasIII-ia–Cys interaction (Figure 6). Based
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on computational information (179 and 194 cm−1 for octahedral and SPP theoretical values,
respectively), we can assign the frequency at 187 cm−1 to the Cu–S interaction between
CasIII-ia and Cys. It is possible to note signals associated with the metal–ligand interaction
within CasIII-ia, such as Cu–O (594 cm−1) and Cu–N (289 cm−1). Cu–N weakened after
Cys coordination from 294 to 289 cm−1. The weakening of the C-S bond is shown by
reducing the frequency from 692 to 685 cm−1. One can observe a small S-H at 1063 cm−1

as evidence of unreacted Cys.
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Figure 6. ATR-FTIR spectrum of CasIII-ia–Cys (1:1) mixture at 5 (red) and 20 (black) minutes.

After NaOH was added in an equimolar amount, S-H frequency, at 1063 cm−1, disap-
peared, but the C-S and Cu-O vibrations remain. We confirmed that Cu–S interaction is
associated with the 187 cm−1 frequency. These signals correlate with those exhibited by
octahedral theoretical geometry. Details are provided in the Supplementary Materials.

Our last evidence is from the direct analysis in real-time mass spectrometry (DART-
MS). Under positive ionization of the DART technique, it has been reported that the
amino-acid presents protonation, radical, and adduct formation [40]. In the Cys case,
it is possible to observe [Cys + H]+ = 122 m/Z and [2Cys + H + H] = 243 m/Z. The
mechanochemical solid-state mixture was analyzed using DART-MS, whose spectrum is
presented in Figure 7. It is possible to observe the signal associated with dimethylbipyridine
(m/Z = 185.1), Cu(acetylacetonate)2 (m/Z = 262), and CasIII-ia (m/Z = 346). At 200 ◦C,
we found a signal of m/Z = 423 corresponding to the CasIII-ia–Cys adduct, with a loss of
carboxylic group. It has been reported that Cys loses CO in situations where the sulfur
atom is involved in a bond or a strong interaction. The fragmentation pattern of Cys
by DART-MS and cystine by TANDEM-MS both present the [Cistina-H2O-CO + H] ion
with m/Z = 195 when the CO loss can be observed [41,42]. The presence of the signals
at 346 and 348 for CasIII-ia, at 262 and 264 for Cu(acetylacetonate)2, and at 422.99 and
424.98 for the adduct agree with the isotopic distribution for 63Cu and 65Cu observed in
a copper(II) species. The abundance of each peak can be related to the stability of the
analyzed species [43]. In this way, the adduct is an unstable species compared with the
CasIII-ia.

To understand the pathway leading to a final reduction of the copper metal center, we
calculated the structures and their dynamics. The two possible molecular arrangements of
the CasIII-ia–Cys adduct are the octahedral and the square planar pyramid (Figure 8). In
the former, the sulfur atom occupies an axial coordination position at 2.82 Å Cu–S distance.
The latter presents the sulfur atom located in an equatorial position, at 2.37 Å Cu–S distance.
The square planar pyramid is 4.9 kcal/mol more stable than octahedral geometry.
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The reductive process’s reaction path begins from the Cys coordination to CasIII-ia
in the square planar pyramid geometry, and it is presented in Figure 8, along with the
atomic spin population. From the initial 2.37 Å, the Cu–S distance increases until 3.9 Å,
where the electron is transferred from sulfur to the copper atom. It is possible to observe a
spin population change from 0.78 to 0.001 e− in the copper atom, which is transferred to
the sulfur atom, which shows an increase from 0.00 to 0.94 e−. In this process, the copper
valence shell changes, and then the geometry of the complex becomes tetrahedral. Our
group has previously reported the spin change effect on the metal valence shell and thus on
the complex structure [44,45]. From this point, the thiyl radical is free to participate in the
following reaction to form the disulfide bond. Details are provided in the Supplementary
Materials.
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3. Materials and Methods
3.1. Chemicals

All reagents: acetylacetone (acacH) (Sigma-Aldrich, St. Louis, MO, USA), Cu(NO3)2·
2.5H2O(Sigma Aldrich, St. Louis, MO, USA), and 4,4′-dimethyl-2,2′-bipyridine (dmbpy)
(Sigma Aldrich, St. Louis, MO, USA), as the organic solvents, were used without further
purification. L-cysteine (Cys) (Sigma Aldrich, St. Louis, MO, USA) was also used without
further purification. The elemental analysis of the white crystalline powder for C3H7O2S
was %C 29.82 (29.73), %H 5.92(5.82), %N 11.70 (11.56), %S 26.97 (26.46) ((#) calculated
values). The far FTIR-ATR spectrum of a deep white powder of Cys showed characteristic
bands at 1614 cm−1 CO2, 1063 cm−1 S-H, 692 cm−1 C-S, and 637 cm−1 CH-CO2.

3.2. CasIII-ia Synthesis

[Cu(4,4′-dimethyl-2,2′-bipyridine)(acetylacetonate)]NO3*(H2O)2 (CasIII-ia) CAS [223930-
33-4], the copper(II) complex, was prepared following the reported patent [31–33]. The
complex was isolated on MeOH/H2O solution, and a blue crystalline powder was obtained.
The elemental analysis of the blue powder for CuC17H19N3O5*(H2O)2 was %C 44.26 (45.89),
%H 4.79(5.21), and %N 9.45 (9.44) ((#) calculated values). The far FTIR-ATR spectrum of
a deep blue powder of CasIII-ia showed characteristic bands at 1616 cm−1 C=O (acac),
1373 cm−1 N-O (nitrate), 596 cm−1 Cu-O, and 294 cm−1 Cu-N.

3.3. Solid-State Reaction

CasIII-ia (30 mg, 0.0674 mmol) and cysteine (8.17 mg, 0.0674 mmol) were milled until
a homogenous solid was obtained. EtOH (400 µL) was added and mixed until dryness.

3.4. Measurements

Powder X-ray diffraction (PXRD) data were collected under ambient conditions
on a Rigaku ULTIMA IV diffractometer operated at 160 W (40 kV, 40 mA) for Cu Kα1
(λ = 1.5406 Å).

Electron paramagnetic resonance spectroscopy (EPR) measurements were carried out
in a JEOL JES-TE300 spectrometer operated at X-Band mode at a microwave frequency of
9.4 GHz and center field of 300 mT. Solid-state measurements were performed at room
temperature, where the samples were placed in a quartz cell. The acquisition and manipu-
lation of spectra were performed using the ES-IPRIT/TE program. The g and hyperfine
tensors were determined by fitting the powder spectra using the EasySpin [46] simulation
package (Version 5.2.28, easyspin.org, (accessed on 6 May 2020)) for MATLAB R2019b.

The solid-state electronic spectra (UV-Vis-NIR) for the samples were measured over
the range 40,000–5000 cm−1 by the diffuse reflectance method on a Cary-5000 Varian
spectrophotometer at room temperature.

The near-FTIR attenuated total reflectance (ATR) spectra were obtained over the
range 4000–250 cm−1 on a Thermo Fisher Scientific Nicolet IS-50 spectrophotometer. The
samples were examined as solid. The middle-FTIR spectra were obtained over the range
4000–400 cm−1 on a Nicolet spectrophotometer Nicolet AVATAR 320. The samples were
analyzed as KBr disk.

The MS-DART spectra were acquired with a JEOL AccuTOF JMS-T100LC spectrometer.
The samples were examined as solid. The values of the signals are expressed in mass/charge
units (m/Z), followed by the relative intensity with reference to a 100% base peak.

The elemental analysis (EA) was carried out using The PerkinElmer® 2400 Series II
CHNS/O Elemental Analyzer.

3.5. Computational Details

All structures were fully optimized at the DFT level in gas phase, with the m05-2x
functional and the LanL2DZ basis set, as implemented in Gaussian 09 software [47]. Then,
we performed frequency calculations to verify the equilibrium states and to obtain infrared
spectra. We used the TD-DFT CAM-B3LYP/SDD theoretical level for the UV-Vis spectra,

easyspin.org
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with the SMD solvation model, with water as the solvent. For the electron transfer studies,
we used the Quantum Theory of Atoms In Molecules [48], using the set of molecular
orbitals of each molecule to compute the atomic properties of the electron density with the
AIMAll software [49]. EPR parameters and g and A tensors of the optimized structures
were calculated with ORCA software [50], using the B3LYP functional and the def2-SVP
basis set.

The initial complex presented a square planar geometry with a water molecule in one
axial site, as in the reported crystallographic geometry [51]. Then, a cysteine molecule was
linked to the complex by the vacant axial site, yielding an octahedral geometry. A base in
the environment removes the -SH proton, expelling the water molecule from the opposite
side. We detected the electron transfer by the complex change to a tetrahedral geometry,
which is the geometry preferred by a copper atom with a 1+ oxidation state.

4. Conclusions

A strategy to improve cancer therapies’ efficacy should involve cytosolic and mito-
chondrial GSH depletion through an increase of GSH efflux out of cells. There are reports
of GSH depletion produced by copper complexes of the Casiopeina family. In this work,
we presented experimental evidence of the formation of an adduct between cysteine and
a Casiopeina complex. This adduct shows equilibrium between octahedral and square
planar pyramid structures. From this equilibrium, it is possible to identify an electron
transfer path when the Cu–S distance increases to 3.9 Å, which produces a thiyl radical
and a reduced tetrahedral copper(I) complex. The proposed mechanism is presented in
Figure 9.
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