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Multiscale criticality measures 
as general‑purpose gauges 
of proper brain function
Tomer Fekete1,2,3*, Hermann Hinrichs3,4, Jacobo Diego Sitt5,6, Hans‑Jochen Heinze3,4 & 
Oren Shriki1,2,7

The brain is universally regarded as a system for processing information. If so, any behavioral or 
cognitive dysfunction should lend itself to depiction in terms of information processing deficiencies. 
Information is characterized by recursive, hierarchical complexity. The brain accommodates this 
complexity by a hierarchy of large/slow and small/fast spatiotemporal loops of activity. Thus, 
successful information processing hinges upon tightly regulating the spatiotemporal makeup of 
activity, to optimally match the underlying multiscale delay structure of such hierarchical networks. 
Reduced capacity for information processing will then be expressed as deviance from this requisite 
multiscale character of spatiotemporal activity. This deviance is captured by a general family of 
multiscale criticality measures (MsCr). MsCr measures reflect the behavior of conventional criticality 
measures (such as the branching parameter) across temporal scale. We applied MsCr to MEG and EEG 
data in several telling degraded information processing scenarios. Consistently with our previous 
modeling work, MsCr measures systematically varied with information processing capacity: MsCr 
fingerprints showed deviance in the four states of compromised information processing examined in 
this study, disorders of consciousness, mild cognitive impairment, schizophrenia and even during pre-
ictal activity. MsCr measures might thus be able to serve as general gauges of information processing 
capacity and, therefore, as normative measures of brain health.

Over half a century ago, it was first suggested that brains are information processing systems1. Consequently, 
any brain-related dysfunction, should be characterizable as information processing deficiency. This calls for 
general-purpose measures of such deficiency in brain activity. Seventy years afterwards, such measures are still 
found wanting. Here, we propose a family of measures and apply them, as a proof of concept, to EEG and MEG 
datasets in four scenarios: disorders of consciousness (DOC), mild cognitive impairment (MCI), schizophrenia, 
and in the pre-ictal state.

In face of several processing constraints, such as limited capacity bottlenecks and transmission delays, the 
brain must represent information hierarchically2. Brains succeed in this through division of labor, in which local 
networks share similar specializations. However, to ensure coherence in the resulting distributed representation, 
local networks need to be dynamically synchronized, forming components of a higher order network, coarser 
in spatial and temporal grain (see Fig. 1). Successful information processing critically depends on this process 
of orchestration proceeding recursively up to the level of the entire brain3–5. Therefore, during peak operation, 
neuronal activity must generate spatiotemporal activity reflecting this hierarchical organization of processing. 
Specifically, activity will possess just the right admixture of a multitude of small-scale fast activity (resulting 
from local 1st order processing) together with much less frequent increasingly slower and more wide-spread 
events (resulting from higher order orchestration), in effect matching the hierarchical delay structure embedded 
in neural network organization. Consequently, deviance from this optimal organization will gradually disrupt 
information processing until the point it altogether vanishes.

The framework of critical dynamics lends itself to characterization of the spatiotemporal structure of activity. 
The basic units of analysis are neuronal avalanches6—spatiotemporal bouts of activity—whose basic properties 
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(e.g. size, duration) give rise to distributions. Such distributions tend to be scale free, which is to say, follow a 
power law6–19, a property that is maintained across a wide range of species, conditions and experimental setups 
e.g. wakefulness vs. some anesthetic protocols;20. Thus, criticality analysis results in several power law expo-
nents (see Table 1), associated with the expression of avalanches in a given state of the brain in the sense of21. 
Recently20 we have shown that, when criticality analysis is applied recursively across several temporal grains, 
the scale-dependence of these exponents and their pairwise relationships are sensitive to the state of the animal 
(e.g. awake monkey vs under anesthesia). Using a model of a mesoscopic cortical network, we were able to show 
that multi-scale criticality (MsCr) measures co-vary systematically with network state/composition (e.g. with 
excitation-inhibition balance; EIB).

Crucially, these measures also co-vary with information theoretic measures e.g. pattern entropy, pairwise 
mutual entropy, and Lempel–Ziv complexity, which has been shown to vary with anesthesia level;22. MsCr 
measures could thus serve to determine whether the conditions for neural information processing are optimally 
realized – namely whether activity is regulated to possess the requisite spatiotemporal makeup. Conversely, 
MsCr measures will be systematically shifted from optimal values when brain function, and hence information 
processing, is compromised. To test this hypothesis, we applied MsCr analysis to four EEG and MEG data sets 
collected from populations in which function is compromised: subjects with disorders of consciousness (DoC), 
subjects with mild cognitive impairment (MCI), in schizophrenia, and during  preictal activity in epilepsy.

Methods
All experiments reported here were performed in accordance with the guidelines of the Helsinki declaration.

Data preprocessing.  Data were preprocessed separately for each sensor type (EEG, MEG gradiometers 
and magnetometers) and were analyzed using a combination of EEGLab routines and custom code. Data were 
first high-pass filtered (cut-off 1 Hz), then a customized adaptive filter was applied to suppress line-noise. This 

Figure 1.   The importance of the hierarchical spatiotemporal structure of neural information processing. 
Each node in the tree (gray full circles) represents a category, starting from basic features, through objects and 
ultimately abstract concepts. For illustration purposes we assume each such node is processed by a single local 
network (red circles). Local networks processing related information need to be orchestrated into a higher 
order network (“binding”). This process must take place recursively up to the highest level of organization—the 
entire brain39. Because of synaptic delays, which depend on distance, as such higher order networks increase 
in scale spatially with order, length of communication cycle increases as well. Therefore, activity orchestrated 
to efficiently match this organization—a necessary precondition for effective information processing—will 
exhibit the right mixture of fast local events, and increasingly less frequent slower and more extended events. 
Conversely, the further activity is removed from optimal spatiotemporal makeup, information processing 
will degrade, until it all but vanishes. The latter can occur naturally, such as during dreamless sleep, as a result 
of pharmacologically active substances, e.g. anesthetics, or due to brain maladies, e.g. conditions leading to 
minimally conscious states.

Table 1.   Notation used to denote MsCr measures. See Fig. 2 for an illustration of computing MsCr features as 
well as for a detailed description20.

σ: neural gain parameter (branching parameter) γ: The exponent of the power law fit to the avalanche average size per 
duration distribution

α: The exponent of the power law fit to the avalanche size distribution δ: The exponent of the power law fit to inter avalanche interval 
distribution

τ: The exponent of the power law fit to the avalanche duration 
distribution

a, b: the slope and intercept of the linear fit to a given exponent (or 
pair of such) time dependent curve, e.g. aσ ,α would be the slope of 
α(�t) plotted against σ(�t)
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followed by Artifact Subspace Reconstruction23, re-referencing to the mean for EEG, and low-pass filtering (cut-
off 40 Hz). Next Infomax ICA24 was carried out. The resulting ICs were evaluated automatically for artifacts, by 
combining spatial, spectral and temporal analysis of ICs in conjunction with analysis of EOG channels where 
they were recorded (see below). ICs identified as containing ocular, muscular or cardiac artifacts were removed 
from the data25.

Avalanche analysis.  Altogether 33 features pertaining to the spatiotemporal scaling behavior of each data 
set were derived. To extract avalanches from multi-sensor arrays, data need to be coarse-grained (i.e. choosing 
a time scale), and then discretized using a thresholding operation. Avalanches are defined as clusters of events 
across channel (i.e. with no interspersing quiet bins across channels). Avalanches were extracted for a range of 
thresholds (2.5–3.5 stds for EEG data and 3–4 stds for MEG data) and time scales (1–10�t) . Following our pre-
vious work, which indicated that avalanche distributions are relatively insensitive to choice of threshold within 
appropriate ranges17,20, distributions were averaged across thresholds to increase signal to noise. The exponents 
describing the size (α), duration (τ), average size per duration (γ), and inter avalanche interval distributions (δ) 
were derived using a Maximum Likelihood estimator (the procedure is described in detail in17), as well as the 
branching parameter (σ). Next, each of these 5 parameters was assessed for its temporal scale dependent profile 
(by deriving the slope and intercept of each time dependent curve—e.g. aγ , bγ for γ (k�t), k = 1, . . . , 5 ). Simi-
larly, the time dependent curves for each pair of these 5 parameters (altogether 10 pairs) were analyzed (deriving 
slope and intercept; e.g. aσ ,τ and bσ ,τ ) producing an additional 10 × 2 parameters. Finally, the magnitude distri-
bution was analyzed for its deviance from an ideal power law using the kappa and generalized kappa measures, 
and the drop-off of each such distribution was derived.

The �t for all data sets was chosen as 1/Sr = 4ms (sampling rate), after down-sampling data to 250 Hz. For 
each data set, MsCr measures were derived for three intervals, 1–5�t , 3–7�t and 6–10�t.

We report the most significant result for each data set, and hence conservatively only p-values smaller than 
0.01.

ANOVA/t-test results were corrected for each data set across the 33 MsCr measures using an FDR approach26. 
These results were compared to similar non-parametric tests namely Kruskal–Wallis/Mann–Whitney corrected 
for multiple comparisons in a similar fashion.

DOC data.  The data comprise 183 EEG records from 4 groups—control healthy subjects and patients emerg-
ing from minimal consciousness state, minimally conscious state and vegetative state (VS: n = 77, MCS: n = 70, 
EMCS: n = 24, control: n = 12). EEG was recorded using an EGI 256 electrode sensor net, during a ‘Global–Local’ 
auditory task27. Data were epoched into 1.5 s segments around stimulus onset (for a complete description of 
these data and procedure see28, with the difference that there only part of each trial was analyzed). EOG channels 
were defined from the appropriately located electrodes in the sensor net.

MCI data.  Data were collected at the neurology department at the OVGU hospital, Magdeburg, Germany. 
All procedures were approved by the local ethics committee Ottovon-Guericke University, and informed con-
sent was obtained from all participants. Data comprise combined EEG/MEG (32 channel/102/204 magnetom-
eters/planar gradiometers Elekta NeuroMag + EOG) records collected from 75 participants (21 controls). There 
were no significant differences in group demographics: age (average patient age was 68.47 ± 1.06 years, while 
average control age was 69.07 ± 3.04 years) sex and handedness. During scanning, participants underwent an 
attention detection task, adapted from a previous task reported in29. The task comprised 4 blocks whereby block 
1 and 3 presented the attentional task and block 2 and 4 a simple detection task. The stimuli consisted of 4 
squares each filled with a single color chosen randomly from 8 possible colors. Stimuli were presented in the 
center of the screen covering a visual angle of about 2°. Stimuli persisted for 400 ms, with ISIs randomly drawn 
from the 1.3–1.7 s range. The total duration of each block was 280 s, including a short 8 s pause every 40 s. In the 
attentional condition (blocks 1 and 3) participants were asked to indicate the presence of a red colored square 
among the 4 squares with a button press with their right middle finger of the right hand and otherwise press a 
button with the right index finger. The probability for the appearance of red in any of the 4 squares was 15%. In 
the simple detection task (blocks 2 and 4) participants were press a button with the right index finger as soon as 
the stimulus appeared. Participants were instructed to fixate to the center of the screen and press the buttons as 
fast and accurately as possible.

For avalanche analyses, the magnetometers channels were concatenated with EEG channels, for a total of 134 
channels. Before further analysis, data were down sampled to 250 Hz.

Schizophrenia data.  Data were recorded at the MEG core facility at the National Institutes of Health 
(NIH)–National Institute of Mental Health in the United States. Resting data were acquired during rest using an 
MEG SQUID sensor array comprising 275 radial first order gradiometers uniformly distributed over the inner 
surface of a whole-head helmet (600 Hz sampling frequency; 0–150 Hz bandwidth; CTF Systems, Inc., Coquit-
lam BC, Canada).

Data included a total of 100 controls and 56 patients. Control groups included 63 healthy females and 37 males 
(mean age: 32.47 ± 1.11 years) and patient groups consisted of 16 females, 40 males (mean age: 33.53 ± 1.85 years) 
diagnosed following DSM-IV criteria. Out of controls, 8 were left-handed. Among the patients, 2 were left-
handed. Controls did not have any neurological or psychiatric illnesses or any history of head trauma. All 
the controls underwent Structured Clinical Interview and were reported normal. Patients were all under anti-
psychotic medication.
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Before further analysis, data were down sampled to 250 Hz. Additionally, data from 2 broken sensors were 
removed for all subjects.

Epilepsy data.  The data were obtained from the European epilepsy database—EPILEPSIAE30. This database 
contains annotated long-term EEG recordings, obtained with scalp electrodes, from 31 patients. The data consist 
of 19 channels sampled at 256 Hz. The data were separated into 6235 segments of 4 min, with approximately half 
of the segments marked as pre-ictal and extracted from up to an hour before a seizure, and the other half marked 
as inter-ictal and extracted from a period a least four hours before/after the occurrence of a seizure.

Results
We applied multi-scale criticality (MsCr) analyses to 4 different datasets (see “Methods” section) and examined 
their utility in discriminating between different information processing states of the brain. Below we present the 
results obtained from each of these datasets in detail. In MsCr, the spatiotemporal behavior of a system (network) 
is characterized by observing the change in the properties of the spatiotemporal activity patterns it produces 
– taken as neuronal avalanches – as a function of temporal scale. Figure 2 illustrates the process of deriving MsCr 
measures from criticality measures iterated across increasing temporal scales. The behavior of such measures as 
a function of temporal scale is well described by a linear fit. Therefore, the temporal multiscale behavior of given 
criticality measures can be expressed by two terms—the slope and intercept of the fit.

MsCr in disorders of consciousness.  We reanalyzed a previously published dataset28, comprising high 
density EEG collected during an auditory task from 4 groups: control subjects, emerging from minimal con-
sciousness, minimally conscious and vegetative state. Significant difference among the groups was found for 
13 out of the 33 MsCr features (ANOVA, at least p < 0.01 corrected for multiple comparisons—see “Methods” 
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Figure 2.   Deriving MsCr measures from standard criticality measures. (A) an illustration of deriving MsCr 
measures. Exponents characterizing a given aspect of the distribution of neuronal avalanches in an experimental 
condition (e.g. of the distribution of avalanche sizes during sleep) are computed across several temporal scales. 
They are then fit with a line, and the slope and intercept are taken to represent the multiscale temporal behavior 
of a subject in a given state of the brain. (B) Difference in experimental condition can manifest in difference 
in intercept—in this case between subjects suffering from disorders of consciousness (see details below) and 
controls for the avalanche size distribution. (C) Difference in experimental condition can manifest in difference 
in slope—here for the inter-avalanche interval (IAI) across temporal scale (same data as B). (D) Difference can 
also manifest in both slope and intercept—in this case in the joint behavior (interaction) of avalanche size and 
IAI when temporal scale increases.
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section; see Table 2, Fig. 3A as well Methods for feature definition). The basic statistics for each group are given 
in supp. Table S1. Similar results were obtained also using non-parametric tests (supp. Table S5/S6).

MsCr in mild cognitive impairment.  MsCr measures were derived from joint MEG/EEG collected dur-
ing an attention task (see METHODS). Significant difference between MCI patients and matched controls (two-

Table 2.   Significant MsCr measures in DOC.

aσ bτ bγ aδ bσ ,τ bσ ,γ aα,τ

p < 10−11 p < 0.01 p < 0.001 p < 0.001 p < 0.001 p < 0.01 p < 0.01

bα,τ aα,δ bα,δ aτ ,δ bτ ,δ κgen

p < 0.01 p < 10−7 p < 10−7 p < 0.01 p < 0.01 p < 0.01

Figure 3.   MsCr measures are sensitive to compromised capacity for information processing. The most 
significant MsCr features for each of the analyzed data sets. (A) The time dependent behavior of the neural gain 
parameter σ differentiates between control subjects and DOC patients and between vegetative state (VS) and 
minimally conscious (MC) subjects. MsCr measures were derived from high density EEG collected during an 
auditory task. (B) The slope of the σ/α curve aσ ,α , derived from joint MEG/EEG collected during an attention 
task is attenuated in MCI patients. This curve describes the time dependent relationship between the neural 
gain parameter σ, and the exponent α of the avalanche size distribution. (C) The slope of the α δ curve aα,δ , 
derived from resting state MEG is attenuated participants with schizophrenia. This curve describes the time 
dependent relationship between the exponent α of the avalanche size distribution, and the exponent δ, of the 
inter-avalanche interval distribution (IAI). (D) The slope of the δ curve aδ , derived from resting state EEG is 
attenuated during pre-ictal activity. This curve describes the time dependent behavior of the IAI distribution.
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sided t-test; at least p < 0.01 corrected – see “Methods” section) was found for 20 out of the 33 MsCr features 
(see Table 3, Fig. 3B). The basic statistics for each group are given in supp. Table S2. Similar results were obtained 
also using non-parametric tests (supp. Table S5/S6).

MsCr in schizophrenia.  MsCr measures were derived from resting state MEG collected from schizophre-
nia patients and healthy participants. Significant difference between patients and controls (two-sided t-test; at 
least p < 0.01 corrected – see “Methods” section) was found for 8 out of the 33 MsCr features (see Table 4, 
Fig. 3C). The basic statistics for each group are given in supp. Table S3. Similar results were obtained also using 
non-parametric tests (supp. Table S5/S6).

Sex was unbalanced between groups. Two-way ANOVA, however, did not find any significant effects of sex, 
or interactions with MsCr effects. Moreover, discarding controls until balance was obtained resulted in a similar 
pattern of results (see Table 5).

MsCr in epilepsy.  MsCr measures were derived from resting state EEG. Significant difference (two-sided 
t-test at least p < 0.01 corrected—see “Methods” section) between resting EEG recorded during inter ictal activ-
ity (at least 4 h from a seizure) and pre-ictal activity (recorded during the hour preceding a seizure) was found 
for 14 out of the 33 MsCr features (see Table 6, Fig. 3D). The basic statistics for each group are given in supp. 
Table S4. Similar results were obtained also using non-parametric tests (supp. Table S5/S6).

Table 3.   Significant MsCr measures in mild cognitive impairment (MCI).

bσ aα bα aτ aγ

p < 0.001 p < 0.001 p < 0.001 p < 10−4 p < 0.001

bδ aσ ,α bσ ,α aσ ,τ bσ ,τ

p < 0.01 p < 10−5 p < 10−6 p < 10−4 p < 0.001

aσ ,γ bσ ,γ aσ ,δ bσ ,δ aα,τ

p < 10−4 p < 0.001 p < 10−4 p < 0.001 p < 10−4

bα,τ aτ ,δ bτ ,δ bγ ,δ κgen

p < 10−4 p < 10−4 p < 10−5 p < 0.01 p < 0.001

Table 4.   Significant MsCr measures in Schizophrenia—full data set.

aτ aγ bδ aα,τ

p < 0.001 p < 0.001 p < 10−5 p < 10−5

aα,γ bα,γ bα,τ bα,δ

p < 0.001 p < 0.001 p < 10−5 p < 0.01

Table 5.   Significant MsCr measures in Schizophrenia—balanced dataset. Discarding patients to balance sex 
between groups doesn’t affect overall pattern of results (compare to Table 4).

aτ aγ bδ aα,τ

p < 0.01 p < 0.001 p < 10−7 p < 0.001

aα,γ bα,γ bα,τ bα,δ

p < 0.01 p < 0.01 p < 0.001 p < 0.01

Table 6.   Significant MsCr measures during pre-ictal activity.

aσ bσ bτ bγ aδ aσ ,τ bσ ,τ

p < 10−8 p < 0.001 p < 0.001 p < 10−6 p < 10−8 p < 0.001 p < 0.001

aσ ,γ bσ ,γ aσ ,δ aα,δ bα,δ κ α cutoff

p < 0.001 p < 0.001 p < 0.01 p < 10−5 p < 10−5 p < 10−4 p < 0.001
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MsCr across datasets
While some MsCr features were highly indicative for some of the datasets analyzed here it was not the case for 
all of them. Figure 4 portrays the same measures represented in Fig. 3 across all experiments. Only for one of 
these features, aδ , the same trend (although not significance) was observed across all four data sets. It is true, 
that some of the differences between data sets stem from the nature of MsCr measures—as multiscale measures 
they are also sensitive to spatial scale and not only temporal scale. And indeed, our data derived from different 
recording apparatus differing in their spatial resolution and sensor density. Nevertheless, for the most part the 
33 MsCr behaved differently across datasets (and see also supp. Tables S1–S6). This is to be expected, as the 
cognitive deficits associated with each condition are not one and the same, and as our previous modeling work 
shows, different facets of information processing co-vary with different patterns of MsCr measures20, suggest-
ing that MsCr should be best considered as dynamical fingerprints characterizing different states of the brain.

Discussion
MsCr fingerprints of informational processing states.  We set out to investigate whether information 
processing impairment manifests itself as deviance from typical neuronal activity. Typical activity was depicted 
in terms of the multiscale spatiotemporal makeup (dynamical fingerprint) associated with alert wakefulness in 
healthy brains. Upholding this state was considered a necessary condition for achieving meaningful dissemina-
tion of information throughout brain networks at various spatiotemporal scales, and hence for information 
processing at large. Therefore, deviance from this state will characterize the dynamic fingerprints of cognitive 
and behavioral deficits. To test this hypothesis, we analyzed electrophysiological data, either MEG or EEG, from 
patients showing a range of deficits.

To capture its dynamical fingerprints, spatiotemporal brain activity was depicted as neuronal avalanches. 
Statistical properties of their fundamental quantities (e.g. their size and duration distributions) were computed 

Figure 4.   The most significant features in each dataset (see Fig. 3) across all datasets. In general, MsCr features 
displayed disparate patterns across the different populations. This is consistent with previous modeling work 
showing that MsCr measures are tuned differentially to different network information processing characteristics. 
This implies that it is the co-variation of MsCr measures, rather than the values of a single such measure, that in 
fact characterize information processing states of the brain. Note that MsCr measures, as multiscale measures 
are sensitive not only to temporal grain but also to spatial grain. The datasets we analyzed were collected 
from arrays differing in their temporal resolution and sensor density, therefore accounting for (some of the 
differences) in control population values.
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across a range of temporal scales, resulting in multiscale criticality (MsCr) measures. Our previous modeling 
work20 had suggested that MsCr measures are strongly associated with the information processing capacity of 
generic cortical-like networks, while also varying systematically with the state of the network (e.g. EIB) and its 
composition (connectivity pattern)—see Fig. 5a.

As we expected, MsCr fingerprints showed deviance in states of compromised information processing such 
as disorders of consciousness, mild cognitive impairment, and schizophrenia and even during pre-ictal activity 
(where mild cognitive deficits such as confusion are common, but not universal31–33). Figure 5b represents the 
MsCr fingerprints associated with the informationally compromised states of the brain examined in this study, 
in terms of deviance from the MsCr fingerprints of matched controls.

Our main goal in this study was to extend our previous modeling and animal results to humans, motivated 
mostly by theoretical considerations. Nevertheless, many open questions regarding the application of MsCr 
measures to data remain. One such question is the nature of the scaling function, should more complex functional 
forms than linear ones be used? A second question is the effect of modality (e.g., EEG/MEG), and recording 
device on our results. Another question is to what extent application of state-of-the-art machine learning could 
leverage MsCr features for biomarker development. All these questions and more will be addressed in future 
studies with the necessary substantially larger cohorts (thousands rather than dozens).

Our results do not derive from mere difference in event rates (e.g., such as those induced by task demand34) 
between the different populations examined in this study, but rather indicate true changes in spatiotemporal 
makeup of neural dynamics. To see that this is the case, note that change in event rate can be offset by changing 
the temporal unit of analysis Δt to be inversely proportional. Mathematically, changing Δt is expressed as the 
transformation �t2 = s�t . Thus, if we have y(�t) = a�t + b , after rescaling we get y(�t2) = as�t + b . In 
other words, rescaling results in a function with a rescaled slope (as) and an unchanged intercept. Accordingly, 
the null hypothesis we would need to reject is that the slopes and intercepts for each group are randomly drawn 
from identical normal distributions. If that were the case, we would expect an excess of significant differences in 
slope, and no differences between intercepts (above chance level). However, our results express a similar number 
of significant differences in slopes and intercepts.

Figure 5.   MsCr fingerprints characterize information processing states of the brain. (A) the correspondence 
between patterns of MsCr correlation to network control parameters, and patterns of correlation between 
MsCr measures and information measures, in a simulation of a generic cortical network described in20. Each 
horizontal color bar corresponds to a correlation pattern between the 33 MsCr measures used in this study and 
a variable of interest. The patterns are color coded according to the strength of correlation. rMsCr(x) denotes 
the correlation of x to MsCr measures across various realizations of the simulated architecture. gEIB is the 
parameter controlling EIB (its increase increases excitation relative to inhibition), g∗EIB is a numerically derived 
intermediate value in which informational measures are maximized. σxy is the parameter used in the simulation 
to control the spatial extent of connectivity. H(x) denotes activity pattern entropy. LZt and LZxy denote Lempel–
ziv temporal and spatial complexity respectively. The correlation between pairs of patterns from top to bottom 
is 0.95, 0.99 and 0.75 respectively. (B) MsCr fingerprints of compromised informational states of the brain. 
Magnitude is expressed in z scores relative to the MsCr fingerprint of matched controls. Note that none of the 33 
measures exhibits the same relation to the norm (e.g. exceedingly high) across all 6 experimental conditions (see 
also Fig. 4, and Supplementary Tables S1–S4).
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Relationship to conventional criticality theory.  Observations of 1/f scaling in neuronal avalanches 
have traditionally been understood in terms of criticality, namely the idea that cortical dynamics is poised at the 
transition between qualitatively different types of dynamical behavior35. Operating near the critical state offers 
several computational advantages16,36,37, such as increased sensitivity to input, facilitation of information trans-
fer, and increased pattern repertoire. However, there are good reasons to think that the brain is not operating as 
a critical system, at least not at the macroscopic level. First, criticality involves fine-tuning of the system state, 
which is antithetic to robustness (say to injury). Moreover, as there is some evidence to the effect that the above-
mentioned computational benefits are maintained (and perhaps even maximized) in slightly subcritical states 
of the brain4,20,38. It is therefore unclear what would motivate expending the resources necessary to maintain a 
critical state. Indeed, while brain dynamics share many features of critical dynamics, nevertheless at no point do 
they manifest all the features that criticality theory predicts (e.g.7 and in contrast to the predictions in20). This led 
us to suggest that brain dynamics are regulated by various homeostatic processes to be near-critical, that is, give 

Figure 6.   MsCr parameters as bridging constructs between network composition and macroscopic behavior. 
(A) Healthy alert brains are optimally situated with respect to information processing in terms of the 
“control parameters” governing neural network function (e.g., EIB, various neuromodulator concentrations, 
connectivity features). Shift in the information processing state of the brain (from minor changes brought 
about by drowsiness to profound changes under anesthesia or maladies such as schizophrenia) is brought 
about by change to network function as a result of change to these parameters (e.g., through neuromodulator 
concentrations, pharmacology, trauma). (B) Deriving MsCr measures embeds a system’s activity into a new 
space parametrized by these measures. As our modeling work and previous results suggest, this embedding 
preserves important information about the topology of the original system’s phase space, which is parametrized 
by the above-mentioned control parameters. This can be utilized to further the understanding of brain maladies: 
first the macroscopic deviance in neural activity characteristic of a given condition can be characterized through 
MsCr analysis—the MsCr “fingerprint”. Next, models such as those suggested in20 can be elaborated with 
detailed network composition features to determine which network properties are the likely culprits. In turn, 
experiments can select between alternative targets that can reproduce the MsCr fingerprint and help refine 
modeling. This can also potentially enable rational development and screening of novel therapeutics.
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rise to neuronal avalanches that share some (and at times many), though not all, of the scaling properties pre-
dicted by theory. This can be phrased in terms of states of the brain (dynamical regimes) lying on a near-critical 
manifold—a landscape consisting of points each of which represents a state of the brain, in which neuronal 
avalanches exhibit near critical behavior to varying extents. Alert wakefulness comprises an optimal zone (as far 
as information processing capacity goes; Fig. 6a) on this manifold, and to the extent a system moves (e.g. drowsi-
ness) or is pushed away from this zone (e.g. via pharmacology or injury), information processing is increasingly 
compromised, until it all but vanishes.

This near-critical manifold of states of the brain is best thought of as parametrized by various “control param-
eters”—factors which have widespread effects on the dynamics (and hence function) of brain networks. Among 
those factors would be network properties such as EIB, levels of neuromodulators, and network connectivity. 
The brain’s ability to regulate such properties allows it, on the one hand, to effectively shut itself off (e.g. during 
sleep) but at any point with relative ease switch back sufficiently close to the optimal zone when sudden alertness 
is needed, for instance to engage in fight or flight behavior.

From this perspective, deriving MsCr fingerprints can be viewed as a transformation, embedding the near 
critical manifold in a new space parametrized by MsCr measures (Fig. 6b). Our results indicate that this trans-
formation preserves important features of the topology of this manifold. This suggests that MsCr can serve as a 
mechanism linking between collective behavior (at the macro or meso scales) and underlying network structure. 
To the extent this idea holds, MsCr (or in the future more exact multiscale complexity measures deriving from 
neural computational theories), can cast the illusive ideas of ‘function’ and ‘information processing’ in opera-
tional terms, affording significant clinical benefits. For example, better understanding of states of the brain in 
which information processing is compromised (and neuronal systemic health) would follow from an iterative 
“procedure”: first, MsCr fingerprints of such states of the brain can be identified. Next, modeling can capitalize 
on these empirical generalizations by exploring which network properties can give rise to them. Experimentation 
at the sub-network level in animal models can then select between competing potential mechanisms, and in turn 
help refine modeling. This invokes an intriguing prospect—namely employing multiscale complexity measures 
such as MsCr to try and coax maligned network dynamics (say due to a neurological disorder, or after trauma) 
towards health. This would be achieved through employing MsCr fingerprints of healthy brain as targets to be 
attained via pharmacology and brain stimulation, potentially facilitating rational development of therapeutics. 
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