
RESEARCH ARTICLE

Solving the influence maximization problem

reveals regulatory organization of the yeast

cell cycle

David L. Gibbs*, Ilya Shmulevich

Institute for Systems Biology, Seattle, Washington, United States of America

* david.gibbs@systemsbiology.org

Abstract

The Influence Maximization Problem (IMP) aims to discover the set of nodes with the

greatest influence on network dynamics. The problem has previously been applied in epide-

miology and social network analysis. Here, we demonstrate the application to cell cycle reg-

ulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is

linked to the flow of information. Therefore, our implementation of the IMP was framed as an

information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory

edges from YeastMine, gene expression dynamics were encoded as edge weights using

time lagged transfer entropy, a method for quantifying information transfer between vari-

ables. By picking a set of source nodes, a diffusion process covers a portion of the network.

The size of the network cover relates to the influence of the source nodes. The set of nodes

that maximizes influence is the solution to the IMP. By solving the IMP over different num-

bers of source nodes, an influence ranking on genes was produced. The influence ranking

was compared to other metrics of network centrality. Although the top genes from each cen-

trality ranking contained well-known cell cycle regulators, there was little agreement and no

clear winner. However, it was found that influential genes tend to directly regulate or sit

upstream of genes ranked by other centrality measures. The influential nodes act as critical

sources of information flow, potentially having a large impact on the state of the network.

Biological events that affect influential nodes and thereby affect information flow could have

a strong effect on network dynamics, potentially leading to disease. Code and data can be

found at: https://github.com/gibbsdavidl/miergolf.

Author summary

The Influence Maximization Problem (IMP) has been applied in fields such as epidemiol-

ogy and social network analysis. Here, we apply the method to biological networks, aiming

to discover the set of regulatory genes with the greatest influence on network dynamics.

Fundamentally, since gene regulation is linked to the flow of information, we framed the

IMP as an information theoretic problem. Dynamics were encoded as edge weights using

time lagged transfer entropy, a quantity that attempts to quantify information transfer
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across variables. The influential nodes act as critical sources of information flow, potentially

affecting the global network state. Biological events that impact the influential nodes and

thereby affecting normal information flow could have a strong effect on the network,

potentially leading to disease.

Introduction

In order to respond to messages and environmental changes, cells dynamically process infor-

mation arriving from cell surface receptors [1,2]. Information is transferred, stored, and pro-

cessed in the cell via molecular mechanisms, often triggering a response in the regulatory

program. These types of dynamic genetic regulatory processes can be modeled and analyzed

using networks.

The cell cycle process in Saccharomyces cerevisiae is well studied, but not completely charac-

terized [3]. The dynamic regulatory process is controlled by a network that processes signals. To

gain further understanding of the regulatory structure, we used publicly available time series

data and regulatory databases to solve the influence maximization problem (IMP) (Fig 1) [4,5].

Recently, the influence maximization problem (IMP) has received a great deal of interest in

social network analysis and epidemiology as a general method for determining the relative

importance of nodes in a dynamic process [6,7]. Use case examples are found in modeling the

spread of infectious disease in social networks and in identifying optimal targets for vaccina-

tion (or advertisements) [8]. The IMP is a search over sets of nodes that, when acting like

sources in a diffusion process, cover as much of the network as possible [9,10].

Diffusion on graphs is part of a general class of problems where some quantity flows from

source nodes, across the edges of a graph, draining in sink nodes. Various forms of network

flow methodologies have found success in algorithms such as Hotnet, ResponseNet, resistor

networks, and others [11,12,13]. Diffusion, like the propagation of infection, does not follow

algorithmically defined paths on graphs, such as shortest paths, but instead flows on all possi-

ble paths. In this work, we use a diffusion algorithm that is modeled using a random walk,

Fig 1. Analysis workflow. All regulatory edges from the YeastMine DB formed the regulatory network scaffold. Using time series gene expression data, time

lagged transfer entropy was calculated and each edge was evaluated using a permutation-testing framework. The resulting network was used for solving the

Influence Maximization Problem.

https://doi.org/10.1371/journal.pcbi.1005591.g001
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where transition probabilities are proportional to edge weights. The random walk produces an

expected number of visits to each node. If the expected number of visits is greater than a given

threshold (here 0.0001), the node is considered to be ‘covered’, and the network cover is a

count of ‘covered’ nodes. The goal of the IMP is to maximize this network cover with a fixed

number of nodes.

In our application of the IMP to genetic regulatory networks, the diffusion process repre-

sents a flow of information on the network, which opens up many applications in biology

[14,15,16]. Directional information flow can be described quantitatively using the model free

method, transfer entropy (TE) [15]. Since processes in biology are not instantaneous, time lags

are introduced, representing a lag between the transmission and reception of information. As

an example, the expression of transcription factors, their subsequent binding to promoter

regions, and ultimately, the induction of transcription can take substantial amounts of time.

In this case, we use ant optimization to search for sets of source nodes that lead to diffusion

generated network covers that score highly [17]. Typically, ant optimization is used for path

finding, but it can also be applied to combinatorial, subset selection problems [18,19]. In ant

optimization, ants construct potential solutions as sets, which are scored and reinforced,

encouraging good solutions in later iterations. In this work, the result of the optimization pro-

cedure is an optimal, or nearly optimal, set of nodes that maximizes network cover after apply-

ing the diffusion [15]. In application to biological networks, the IMP essentially remains an

unexplored area of research [20].

Each run of the IMP returns a solution set of size K. Using both ‘fast’ and ‘slow’ parameter

sets for the ant optimization, we have run the IMP for values of K from 1 to 50, resulting in 50

solutions, one set for each value of K. Genes were ranked by counting the number of times a

given gene appeared in a solution set. A highly influential gene would appear in the solution

for many values of K, regardless of the solution set size, implying that topologically, the gene is

in an optimal position as a source of information, enabling contact to a large portion of the

network. Optimization can proceed at different rates; more restarts, more ants, a slow phero-

mone evaporation rate, and a high number of local optimization steps may result in more

robust and repeatable results, but more iterations might be needed and the run time can be

longer. On the other hand, few restarts with a small number of ants and a fast evaporation rate,

plus fewer local optimization steps, leads to more stochastic results and a shorter run time. The

slow-and-steady approach can consistently get stuck in non-optimal minima, whereas the

highly stochastic results can sometimes ’jump’ out of non-optimal minima. In order to explore

results and convergence behavior, both fast and slow parameter sets were used. Our results

from either parameter set were in excellent agreement regarding influence rankings, reducing

concerns about the stochastic nature of ant optimization.

To better understand topologically where the influential genes are situated, we compare the

IMP solution sets to gene sets derived from other centrality metrics, such as degree centrality

[21], betweenness-centrality [22], where shortest paths are considered, and PageRank [23], the

algorithm used in web search.

This analysis produced a ranked list of genes that agrees with previous studies of cell cycle

regulators and models, giving credence to the method as a fairly general approach to analyzing

large scale biological network dynamics.

Results

Statistical network construction using time lagged transfer entropy

The yeast genetic regulatory network was constructed starting with 26,827 genetic regulatory

edges from YeastMine and statistically filtering out edges [4]. Regulatory processes in biology

Influence maximization on cell cycle regulatory networks
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are not instantaneous, so time lags are introduced to account for propagation time (S1 Fig)

[24]. Further, genetic regulatory interactions are directional; transcription factors act on genes,

and not the other way around. So, although correlation is easy to compute and is sometimes

used to estimate the activity of regulatory edges, there are more appropriate metrics to use

with time series data, such as transfer entropy. Transfer entropy (TE) is a model-free method

that attempts to quantify information transfer between two variables in a directional manner.

At present, computing transfer entropy is not trivial, and there is active research in comparing

and deriving methods for approximating the value. In this work, we used a Gaussian kernel

density based approach, which has been previously shown to be relatively accurate [25,26].

Using time series data for 5,080 measured genes and 26,827 genetic regulatory edges from

YeastMine, both time lagged Spearman’s correlation and transfer entropy were computed for

all regulatory edges. Permutation-based statistics were applied to assess the significance of TE.

Edges were accepted if empirical p-values was less than or equal to 1

ðpnþ1Þ
where pn is the num-

ber of permutations (pn = 50,000).

Spearman’s correlation tests were performed on each time lag (0–5 time steps). The maxi-

mum ρ was kept, and at FDR 1%, this resulted in 12,555 edges, containing 3,939 nodes. Sig-

nificant edge weights had a median correlation of 0.58. Most of the edges (52%) showed a

maximum correlation when using a time lag of zero.

The metric of interest, time lagged TE, resulted in 2,084 significant edges containing 1,409

nodes with median values of 0.499 (Fig 2).

The overlap between the correlation and TE networks is moderate; only 16% of the edges in

the correlation network are shared with the TE network (1,988 of 2,084 edges in the TE net-

work or 97%), and while most TE nodes are found in the correlation network (95%), only 35%

of the correlation nodes are found in the TE network. When comparing Spearman’s and TE

weights on matched edges, the correlation between matched edge weights was moderately

weak (Spearman’s correlation 0.43). Additionally, the mean node degree distribution in the

Fig 2. The resulting cell cycle network after significance testing. BioFabric representations are a novel way to visualize graphs. The depiction

shows each node as a unique horizontal line and each edge as a unique vertical line. This makes some network structures easy to visualize. For

example, high degree nodes can be seen as ‘wedges’ in the graph (nodes with out-degree 0, and in-degree 1, have been filtered out).

https://doi.org/10.1371/journal.pcbi.1005591.g002
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correlation network is much higher than that of the TE network. For example, SFP1 has degree

923 in the correlation network, compared to 76 in the TE network (summing both in- and

out-edges). The high node degree in the correlation network suggests that correlation testing

may be overly permissive, with less informative edge weights.

Clauset, Shalizi, and Newman’s method for statistically determining whether a network is

‘scale-free’ showed that the TE network is not [27]. Using the TE network, the result showed

alpha = 2.17, which is consistent with power law networks. However, the goodness of fit test

using the Kolmogorov-Smirnov statistic produced a p-value of 0.011, indicating that only a

small fraction of the simulated scale-free distributions are "close" to the observed degree

distribution.

In the rest of the analysis, only the transfer entropy network is used, since it is clear that the

correlation-based network is not a super-set of the transfer entropy network, does not agree in

the weighting, and is likely overly permissive with regard to active interactions.

Influence ranking through iteratively solving the influence maximization

problem

Using transfer entropy to quantify information flow, if an upstream node transfers informa-

tion to a downstream node, respecting edge directions, the downstream node is said to be

’influenced’. The area of influence can be found by application of a diffusion process, where

the flow follows edges with greater information transfer (edges with greater weights), ‘visiting’

nodes and resulting in a cover on the network. The maximization problem involves finding a

set of nodes with size K, that when treated as sources, influences the largest proportion of the

network, which is to say, that after the diffusion process is applied, no other set would lead to a

greater network cover.

The Influence Maximization Problem (IMP) was solved over a range of set sizes, K = 1 to

50. Since ant optimization is stochastic and can result in variable solutions, two different

parameter sets were used (S1 Text). First a ‘slow’ parameter set was used (best of 8 restarts, 64

ants, 32 local optimization steps, evaporation rate 0.2). The range of K was run three times, for

a total of 150 ant-optimization runs. A count was made on the number of times genes were

selected across solutions. As an example, if a gene appeared in 46 solutions, on average, for

K = 1 to 50, it would be considered a high-ranking gene. The influence score, representing a

network cover, increased quickly for small values of K, gradually leveling out. With K = 44
source nodes (3% of the network), a maximum network cover of 1,308 nodes (93%) was pro-

duced. Beyond K = 44, the score increased by single digits through the addition of single nodes

(see S2 Fig). Regarding the rate of change in network cover, from K = 1 to K = 2, the total net-

work cover increased 12%. However, after that, the rate of increase drops quickly. Between

K = 14 to K = 15, the network cover increased at a rate of less than 1%, and after K = 24, for

each additional node added to the set of sources, the increase in network cover dropped to less

than 0.5%. The top ranked gene FKH1, was selected on average 49 (out of 50 possible) times,

followed by two genes, SFP1 and TFC7, that were selected on average 47 and 46 times respec-

tively. Overall, 52 genes were selected in at least one run.

A second parameter set, the ‘fast’ set, used 4 restarts, 16 ants, 8 local optimization steps,

evaporation rate 0.2. For each value of K, 49 optimizations were run, for a total of 2,450 result

sets. We found that faster optimization runs lead to more variation in the results. However,

using the same ranking method, counting the number of times a gene was selected, resulted in

excellent agreement with the ‘slow’ parameter set (S1 Text, S3 Fig). The set of genes in the top

15 ranked influencers are identical across parameter sets. The top 15 influencers from both

parameter sets are found in Table 1.

Influence maximization on cell cycle regulatory networks
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Comparing influence to more traditional metrics of centrality

To provide a basis for comparison to the ranked influencers, 13 different centrality measures

were computed on the TE network. Brief descriptions of each centrality metric can be found

in supplementary text (S1 Table).

As stated earlier, after K = 24, the increase on network cover had dropped below 0.5%, mak-

ing this a reasonable stopping point in selecting the most influential genes. To compare with

other metrics, the top 24 genes were selected for each centrality measure. A Jaccard index

was computed for each pair of centrality measures (Fig 3), and although some clustering is

observed among centrality metrics, especially among node-degree related measures, there

remains substantial disagreement in top ranked genes.

The top ranked influential genes are not found among highly ranked genes in eigenvector

based centrality measures including authority, eigenvector centrality, and alpha centrality.

However, eigenvector related measures of centrality revealed important genes that are not

found in other lists. For example, the well-known cell cycle regulatory gene CLB2 was selected

by alpha centrality and authority, while it was not found using influence ranking or between-

ness. Overall, no ranked list contained a definitive set of cell cycle related regulators. Across

measures, gene set enrichment showed a wide variety of associations with biological processes,

illustrating differences in the gene rankings (S2 Text).

Influential topology in the regulatory network

We have found that within the regulatory network structure, the influential genes tend to be

situated upstream of genes selected by other centrality measures (Fig 4, S4 Fig).

For example, the influencer genes act as regulators for genes selected by alpha centrality,

while no genes selected by alpha centrality regulate the influencer genes. The same is found for

the eigenvecteor centrality and betweenness sets. In some cases, there is a fair amount of over-

lap in the top-level regulators, such as among the high degree nodes and the articulation set.

But, overall, we see the influencers stay as top-level regulators to genes selected by other cen-

trality measures. This can be quantified by computing the fraction of reachable genes, starting

at a given measure, and excluding overlapping genes (Fig 5).

Table 1. Top 15 ranked influencers and associated centrality metrics.

Gene Slow

Rank

Fast

Rank

Alpha

Central

Degree Strength Authority Ego2 SubGraph

Centrality

Betweenness 1-Constraint Hub

Score

FKH1 1 9 4.61 92 53.18 0.148 191 0.00 1005 0.019 0.740

SFP1 2 1 1 76 33.88 0 146 143.78 0 0.014 0.003

TFC7 3 2 1 140 73.85 0 164 108.33 0 0.008 0.530

RAP1 4 3 2.37 87 47.78 0.096 159 0.00 1365 0.019 0.434

GCN5 5 4 1 73 46.11 0 175 52.67 0 0.016 0.624

SOK2 6 6 1 7 2.93 0 82 4.78 0 0.197 0.000

RFX1 7 5 1 58 29.96 0 62 49.33 0 0.019 0.006

CBF1 8 12 1 8 3.23 0 104 3.83 0 0.145 0.014

MED2 9 7 1 48 23.86 0 58 50.67 0 0.022 0.022

STP1 10 9 1 55 26.81 0 64 80.17 0 0.019 0.015

MBP1 11 10 1 41 22.01 0 95 202.67 0 0.039 0.285

YAP1 12 11 1 43 22.34 0 50 27.00 0 0.025 0.006

DAL82 13 14 1 6 3.39 0 46 203.00 0 0.181 0.003

MED4 14 13 1.62 103 56.26 0.0002 144 0.00 290 0.011 0.022

ABF1 15 15 1 39 19.95 0 70 19.5 0 0.026 0.080

https://doi.org/10.1371/journal.pcbi.1005591.t001
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For example, starting at the set of influential genes, 79% of the betweenness selected genes

can be reached, while starting at the betweenness genes, only 12% of influencers can be

reached. Starting at the influencer genes, 41% of degree central nodes can be reached, while

only 12% of influencers can be reached from the degree central nodes. Starting from every cen-

trality measure, the fraction of reachable nodes is fewer, compared to starting from the influen-

tial genes. On average, 54% of “central genes” (excluding subgraph centrality) can be reached

when starting at the influential genes, compared to 8% of reachable influential genes, after

starting from “central genes” of other measures. Subgraph centrality forms a strong intersec-

tion with the influential genes, resulting in no connections between sets. These influential

genes are, in a sense, topologically central and connect to important genes found by other cen-

trality measures.

Evaluation of top ranked genes

Since the yeast cell cycle has been the subject of many studies, we have data and results from

other projects which we can use in the evaluation of the algorithm.

First, we examined the experimental outcomes for yeast genetic experiments found in the

SGD [28]. In order of influence ranking, large-scale genetic survey phenotypes are listed in

Fig 3. (A) The Jaccard index was used to compare centrality measures. The top 24 ranked genes from 14 different centrality measures were compared

using the Jaccard index, which gives values of 1.0 for perfect agreement between sets, and 0 for disjoint sets. All genes from the articulation set were used as

they have binary values. (B) Highly influential genes often selected by other centrality metrics. Genes are sorted by influence ranking in rows (top to

bottom), and centrality metrics are found in columns.

https://doi.org/10.1371/journal.pcbi.1005591.g003
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Table 2, as well as PubMed Central IDs for papers showing evidence of cell cycle regulation. If

a direct cell cycle related phenotype was found, it was reported in Table 2. But given the close

connection between lifespan, metabolism and the cell cycle, if no direct cell cycle phenotype

was found, then a related phenotype was reported. It should be noted that even MBP1, which

Fig 4. Topology of influential nodes. Highly influential nodes (blue) tend to be upstream of other genes (red) selected by a variety of centrality

metrics (edges are directed towards the bottom of the figure). Genes selected by both centrality metrics are shown in purple. For more centrality

metrics, please see S4 Fig.

https://doi.org/10.1371/journal.pcbi.1005591.g004
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is clearly involved in the G1/S transition, does not have a phenotype listed that directly men-

tions the cell cycle. Nearly all ranked genes have phenotypes that are in some way related to

cell cycle, metabolism, or longevity.

Fig 5. Influence can be quantified by computing node reachability. In (A), an example of node

reachability is shown. After starting from a defined set of nodes, O, a node, v, is considered reachable if there

exists a directed path leading from any node in O to v. For example, starting at the set of influential nodes,

79% of top ranking nodes using the betweenness measure can be reached, compared to only 12% of

influential nodes after starting at the “betweenness nodes”. Overlapping nodes found in both sets have been

removed. In (B) node reachability over all centrality measures is aggregated in a boxplot.

https://doi.org/10.1371/journal.pcbi.1005591.g005

Table 2. Influential ranked genes show evidence for association to cell cycle.

Influence

ranking

Gene Genetic experiment Phenotype Evidence as a cell cycle

regulator

1 FKH1 Null Altered rates of cell cycle progression through the S and G2/M

phases

PMC3872199

2 SFP1 Null Cell cycle progression in G1 phase: delayed, increased duration PMC1460418

3 TFC7 Null Inviable PMID:9584160

4 RAP1 Null Inviable PMC1637117

5 GCN5 Null Chronological lifespan: decreased PMC3771362

6 SOK2 Classic Over Expr. Cell cycle progression in G1 phase: abnormal PMC3872199

7 RFX1 Null Cell cycle progression in G1 phase: delayed PMC1291218

8 CBF1 Overexpression Cell cycle progression: abnormal PMID:18617996

9 MED2 Transcriptional regulator

10 STP1 Null Cell cycle progression in G1 phase: increased duration PMC2613934

11 MBP1 Null Cell size: increased PMID:15965243

12 YAP1 Overexpression Cell cycle progression: abnormal (YAP6 has evidence)

13 DAL82 Parallels DNA during cell cycle PMC4384442

14 MED4 Null Inviable

15 ABF1 Null Inviable; conditional mutants show delayed progression through G2

phase

PMC1637117

https://doi.org/10.1371/journal.pcbi.1005591.t002
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To compute gene set enrichment, over-representation testing was performed using the

ConsensusPathDB service, which utilizes a hypergeometric test over a large collection of path-

ways and gene ontology (GO) terms [29]. P-value adjustment is done using FDR correction

and a background of 4,766 genes was used relating to the array used. Gene set enrichment

showed that the influence ranked genes were significantly associated with cell cycle related

pathways and cell cycle related GO categories. The “regulation of transcription involved in

G1/S phase of mitotic cell cycle” GO term (GO:0000083) had a q-value of 1.1e-4, the "regula-

tion of transcription involved in G2/M-phase of mitotic cell cycle" GO term (GO:0000117)

had a q-value of 1.08e-3 and the cell cycle phase (GO:0022403) had a q-value of 0.008. The

KEGG pathway “Cell cycle—yeast—Saccharomyces cerevisiae (budding yeast)” had a q-value

of 0.02.

In Eser et al., the source of the data, 32 hypothesized cell cycle regulators were named [5],

five of which are found in the 24 top ranked influencer list. Comparing the top ranked influen-

tial genes, we see again that the influential genes are immediately upstream of the Eser TFs

(Fig 6), where in total, out of 27 TFs in the network, 15 cell cycle regulators overlap with the

influential list, or are regulated by influential genes. Two more, SWI6 and BAS1 were selected

as low ranking influential genes (ranks 33 & 34). Therefore, the influential ranked list con-

tained or regulated 63% of the available Eser genes.

Recently a cell cycle model by Tyson et al. that successfully accounts for 257 of 263 pheno-

types [30] was published. In total, 29 genes were extracted from the model where complexed

genes were considered separately (e.g. SWI6 and SWI4 were used instead of SBF). The full

Fig 6. Influence ranking of cell cycle related transcription factors. Of the 32 cell cycle related transcription factors given by Eser et al. [5] (in red), most

are directly downstream of influential genes (blue). Purple shows an overlap between influential and Eser selected genes and blue-circled genes show low

ranking influential members.

https://doi.org/10.1371/journal.pcbi.1005591.g006
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YeastMine network scaffold contained 28 of the 29 genes (CDC55 was not present), and 20

genes were in the TE network. Three genes from the model were ranked as influencers (MBP1,

SWI4 and SWI6).

While most of the Tyson model genes are not ranked influencers, they are immediately reg-

ulated by influential genes. SWE1 is regulated by 4 ranked genes. CDC20 is regulated by 2

ranked genes. CLB5 is regulated by 2 ranked genes. SIC1 is regulated by 1 ranked gene. So, in

almost all cases, the Tyson model genes are not regulated by a single influencer, but by multi-

ple influencers. This shows that even though the mechanistic modelers have different goals–

the derivation of small models consisting of well-known elements on multiple levels (protein

level and others) that produce a desired behavior, such as cell cycle timing, and timing changes

with given mutations–there is a clear relation to the influential genes.

Discussion

Transfer entropy has been shown to be useful in quantifying information transfer. Here, we

showed that using time lagged transfer entropy, along with a permutation testing framework,

leads to biologically salient network structures. Even though the network was constructed by

considering all possible regulatory edges, it recovers much of the structure and functional

enrichment that one would expect, as demonstrated by the lists of genes returned by com-

monly used centrality metrics, such as betweenness and degree.

Edges with the highest weights, implying greatest information transfer, include (SWI4!

SPT21, TE = 1.57), (TFC7!MSL1, TE = 1.36), (FKH2! ALK1, TE = 1.34), (TFC7!

CHL1, TE = 1.27) and (SWI4! RNR1, TE = 1.27). The source nodes are well-known, multi-

functional transcription factors, while the target nodes have more focused functions. SPT21

has a role in regulating transcription through chromatin silencing. MSL1 is involved in mRNA

splicing through interactions with the U2 small nuclear RNA. ALK1 is involved in proper spin-

dle positioning and nuclear segregation following mitotic arrest. CHL1 is related to the cohesion

of sister chromatids during mitosis. Finally, RNR1 plays an essential role in the cell cycle, assist-

ing with DNA replication and repair. More well-known cell cycle interactions also have high TE

edge weights. These include SWI4-SWE1 (TE ranked 7th highest out of 2,084), NDD1-SWI5

(ranked 17/2084), RAP1-FKH2 (ranked 20/2084), and SWI4-YHP1 (ranked 30 / 2084).

Yeast is often used as a model organism in the study of aging. Interestingly, the top two

most influential genes, FKH1 and SFP1 have both been related to lifespan [31–34]. The close

ties of sources and edge weights to the cell cycle process show that the general dynamics of

the cell cycle were captured, reinforcing the usefulness of transfer entropy in biological

investigations.

Some well-known cell cycle regulators, such as NDD1, were not selected by influence maxi-

mization. In cases such as this, it can often be explained by exploring the immediate neighbor-

hood. In the TE network, NDD1 has upstream regulators FHL1, STB1, SWI4 and SWI6 (three

of which are ranked influencers). NDD1 itself targets 18 other genes, all with no influence

ranking. Among the targets, we found ALK1, which is also a target from FKH2 as mentioned

earlier, as well as CLN1, which is also targeted by three influencers FKH2, SWI4, and SWI6.

So, although NDD1 is famous as a cell cycle regulator, when solving the IMP, there are more

optimal sources that target the same downstream genes.

When we considered the ranking of influential genes, we saw that high-ranking genes were

also more likely to be ranked by other centrality metrics. But there are several notable excep-

tions. SWI4 and SWI6 were relatively low ranked influencers, but were highly ranked by other

metrics. These examples are notable due to their established role in the cell cycle and regular

inclusion in models. Proteins SWI4 and SWI6 are members of the SBF complex, interacting
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with the MBF complex (SWI6-MBP1) to regulate late G1 events. The “low” influence ranking

was due to higher ranked influencers being upstream in the regulatory network. Therefore,

they were only selected as K, the set of requested influencers, grew large enough.

Network control is one goal in the study of dynamic networks [35,36]. Given that influen-

tial nodes seem to have a topologically advantageous position, one could speculate that influ-

ential genes might be useful selections for network control. Biological events that impact the

influential nodes, thereby affecting normal information flow, could have a strong effect on the

network, potentially leading to disease states. Discovering the minimum sets of biological enti-

ties that hold the greatest influence in the network context could lead to further understanding

of how network dynamics is associated with disease.

Materials and methods

The work in this paper can be summarized in a few important steps that are discussed in more

detail below: 1) time lagged variants of Spearman’s correlation and transfer entropy are de-

scribed, which were used in constructing the genetic regulatory network; 2) the diffusion

model is described, which forms the basis of the score function; and 3) the ant optimization

method is described, which was used to maximize the score function, thereby solving the IMP.

The methods described here have been implemented in python and are freely available.

Run times are kept low by computing the diffusion using sparse matrix linear solvers, and

using a multicore-parallel strategy for performing ant optimization. The network weighting,

optimization, and diffusion methods are independent, allowing researchers to "mix-and-

match" their favorite modules.

Data sources

Eser et al. [5] generated time series expression data from two replicates of synchronized yeast

producing metabolically labeled RNA levels every five minutes over 41 time points. The

expression series spans three cell cycles, which progressively dampen in wave amplitude, as

yeast synchrony is lost. Using a model for detecting periodicity in gene expression, 479 genes

were labeled as statistically periodic. Additionally, 32 transcription factors were predicted to be

cell cycle regulators.

YeastMine, the database of genetic regulatory interactions in yeast (May 2015) [4] provided

regulatory edges. Using 6,417 yeast genes, 26,827 genetic regulatory edges were collected. Edge

weights were computed using a variation of transfer entropy, as described below.

The Saccharomyces Genome Database (SGD) was used to reference experimental pheno-

types and gene annotations [28].

Computing weights with transfer entropy and time lagged Spearman’s

correlation

Given two genes connected by an edge, the edge weight was computed in two ways. First,

time lagged Spearman’s correlation was used with time lags of 0 to 5 steps (0 to 25 mins.),

keeping the maximum. Second, time lagged transfer entropy (TE) was used, similar to what is

described in [37,38]. TE is computed at each time lag along with a robust distance comparing

the observed TE to TEs generated from permuted data. The TE and lag time is returned that

maximizes this distance.

Time lagged Spearman’s correlation is computed by taking two time series, or numeric vec-

tors x = {x1,x2,. . .,xn} and y = {y1,y2,. . .,yn}, and computing the correlation on sub- sequences

{x1+k,. . .xn−1,xn} and {y1 y2,. . .yn−k}, where k is some integer representing the time lag between

variables.

Influence maximization on cell cycle regulatory networks
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Transfer entropy (TE) is an information theoretic quantity that uses sequence or time series

data to measure the magnitude of information transfer between variables [25,38]. Transfer

entropy is model-free, directional, and shown to be related to Granger causality [39]. In TE,

given two random variables variables X and Y, where X is directionally connected to Y (or

X! Y), we would like to know if prior states X help in the prediction of Y, beyond knowing

the prior states of Y.

Given two sequences x and y, we describe transfer entropy as

TðkÞx!y ¼
X

yt ;yt� 1 ;xt� k

Pðyt; yt� 1; xt� kÞ log
Pðyt; yt� 1; xt� kÞPðyt� 1Þ

Pðyt� 1; xt� kÞPðyt; yt� 1Þ
;

where xt−k indicates value of the sequence at time step t − k.

To perform the computation, first x and y are mean-centered and scaled to be within the

range [−1,1]. A Gaussian kernel density estimate (KDE) is fit with a bandwidth given by

“Scott’s rule”. Then, a three-dimensional grid is generated by equally spacing some number

of points between −1 and 1 in each dimension. Using the grid, points are sampled from the

KDE, creating a joint probability distribution, which is normalized in order to sum to 1. The

required distributions are marginalized from the joint distribution by summing across the

grid. Smaller grid sizes provide a finer grained probability distribution, but slow the computa-

tion without changing the values substantially. A three-dimensional grid of 103 points was

found to be a good compromise between computation time and accuracy.

A permutation test was performed to assess statistical significance of the transfer entropy,

Tx!y. The sequence x was split into a list of subsequences with length 3 and permuted 50,000

times. A robust distance, ðTx!y � MedianðTperm
x!y ÞÞ=MADðTperm

x!y Þ, was computed where Tx!y is

the observed transfer entropy and Tperm
x!y is the set of TEs resulting from permuted sequences,

and the MAD is the median absolute deviation. The time lag maximizing the robust distance is

selected and a p-value is computed by taking a count on the number of times the permuted TE

was greater than the observed TE, giving an empirical p-value. Edges were accepted if empiri-

cal p-values were less than or equal to 1/(pn + 1), where pn is the number of permutations (pn =

50,000).

The diffusion model is used to score solutions to the IMP

The IMP maximizes a network cover based on diffusion. The diffusion model, and most of the

nomenclature, is described in [15]. The diffusion models are Markov chains with absorbing

states [40]. In the model, vertices are first partitioned into sets S� V and T� V, where V is

the set of all vertices. The set S contains sources, which in the model are generating informa-

tion flowing through the rest of the network (nodes in T) until reaching a dead end or absorb-

ing back into S.

The stochastic matrix, defining the probability of moving from one vertex to another, is

defined as

pij ¼
wij
P

jwij
;

where edge weights wij are the weights on outgoing edges. Sets S and T partition the stochastic

matrix as

P ¼
PSS PST

PTS PTT

" #

;
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where PSS defines the transition probabilities from nodes in S to S, and PST defines transition

probabilities from S to T, and so on. Although the matrix is square, it is not symmetric, given

the directed edges.

Ultimately, we wish to compute the expected number of visits from a node vi 2 S, to a node

vj 2 T, defined as matrix H. At time step t, information can travel from vi 2 S to vj 2 T directly,

or it would already be at adjacent node vk, and would travel from vk 2 T to vj 2 T in the next

time step. So, at time point t, the estimated number of visits from vi 2 S to vj 2 T is given as

hðtÞij ¼ pij þ
P

k2Th
ðt� 1Þ

ik pkj;

where pij is the transition probability of vi 2 S to vj 2 T, hðt� 1Þ

ik is the expected number of visits

that have already taken place at time (t − 1), from vi 2 S to vk 2 T, and pkj is the probability of

the transition from vk 2 T to vj 2 T. The matrix form of the equation is

HðtÞ ¼ PST þHðt� 1ÞPTT:

In the long run, at steady state, when H(t) * H(t−1), the equation reduces to H(I − PTT) =

PST, where I is the identity matrix. By taking the transpose of both sides, we have ðI � PTTÞ
0H0 ¼

P0ST. This form lets us avoid the matrix inverse when solving for H, which can be expensive or

impossible to compute given that the directed network is represented as an asymmetric matrix.

Fortunately, the appropriate iterative solvers are available in the Python SciPy sparse linear algebra

library and are robust enough to handle singular matrices.

To compute a measure of influence on the network, after solving for H the expected num-

ber of visits on nodes, the influence is summarized as the “influence-score”,

Os ¼
X

i2S

X

j2T

Iðhij > yÞ
� �

where hij is the number of visitations (using matrix H) from node vi 2 S to connected nodes

vj 2 T. Indicator function I (hij> θ) is equal to 1 if the number visitations is greater than a

threshold θ. The sum of edge weights, ∑i2S wi, is used as a tie-breaker in the case of degenerate

solutions. Degenerate solutions refer to the situation where different solution sets produce an

identical cover on the network. In that case, we would like to give preference to the solution

that contains nodes with higher overall edge weights, indicating greater degree of information

transfer to the network, and potentially greater influence. This influence score is equivalent to

computing the cover on nodes in T. In this work, θ = 0.0001 is used, which was selected after

observing values in H.

Ant optimization is used to search for influential nodes

An implementation of the hypercube min-max ant optimization algorithm was used to search

for solutions to the Influence Maximization Problem [41,42]. Ant optimization is based on the

idea of probabilistically constructing potential solutions to a given problem, in this case a sub-

set selection problem, and reinforcing good solutions with a "pheromone" weight deposited

on solution components, ensuring that good solutions become increasingly likely in later

iterations.

Since the algorithm is stochastic, and results can vary, the optimization is repeated for a

defined number of runs. The main results were produced using a ‘slow’ parameter set, using 8

restarts per value of K, 64 ants, and 16 local optimization steps (full parameterization is given

in S1 Text). Each convergence (before restarting) takes a number of iterations where ants con-

struct solutions, perform a local search, score the solutions using the influence score, and
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reinforce the components in that order. As a run progresses, the pheromone values move to

either one or zero, indicating whether the component was selected. The goal of the optimiza-

tion is to find the subset S� V of vertices such that

Sopt ¼ argmax
fS�V:jSj¼KgOs:

At the start of each iteration, ants construct potential solutions, a subset of vertices, by sam-

pling from nodes using probability distribution

qi ¼
ua
i r

b
i

P
ua
i r

b
i

;

where qi is the probability for sampling any node vi, with the sum of outgoing edges giving

node weight ui and pheromone weight ri. The α and β parameters are used to give importance

to either node weights or pheromones. Solutions are constructed by sampling one node at a

time. After each sample, the probabilities are renormalized. Here, α and β are set to 1.

Local search is performed by stochastic hill climbing, where we try alternative solutions

produced by random single bit flips. If a better score is found, the solution is replaced, and car-

ried forward. Local search has a fairly strong effect on the quality of the solutions, and even a

small number of hill climbing steps tends reduce the time required for convergence.

Next, using the influence score function, each potential solution is scored, with the best

solution kept and compared to solutions found in earlier runs. As part of the Min-Max algo-

rithm, three solutions are kept throughout the run: the iteration-best, the restart-best and the

overall-best. The pheromone updates use a weighted average over the three solutions. At the

beginning of the run, the pheromone updates are entirely from the iteration-best solution, but

gradually, the updates are increasingly influenced by the restart and overall-best solutions,

which is done to avoid local minima. The weighted average pheromone would be ravg = f1bi +

f2br + f3bb where bi is the iteration best, br is the restart best, bb is the best overall, and fractions

f1 + f2 + f3 = 1. The pheromone updates are defined as r(t+1) = r(t) + d (ravg − r(t)), where r(t) is

the pheromone weights at time t, d is the learning rate, and ravg is the average over the three

solutions. Eventually, the pheromone weights become sufficiently close to zero or one, and the

rate of change among the weights slows. When the difference in sums over the last solution (all

r) and the next solution is less than 0.0001, the solution is returned along with the influence

score.

Additional ‘off-the-shelf’ analysis

BioFabric, R and the R packages igraph, pheatmap and ggplot2 were used for visualization and

analysis [43,44,45,46]. Cytoscape 3.5.1 was used for visualizing graphs [47,48]. Pathway and

GO term enrichment was generated using the CPDB from The Max Planck Institute for

Molecular Genetics [49]. SciPy was used in the software implementation [50].

Supporting information

S1 Fig. Similarity metrics vary with the amount of time lag. A.) The transcription factor

REB1 interacts with MDH2. Expression levels are shown across three cell cycles where time

points are in 5 minute increments. B.) In this example, when time lags are introduced the

Spearman’s correlation between the two genes decreases. Transfer entropy values show a peak

at a time lag of 3.

(TIF)
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S2 Fig. The network cover, related to Os, increases with the number of source nodes (K). A

highly ranked node will appear in solutions for all values of K.

(TIFF)

S3 Fig. (A) Average Jaccard across reps. For each value of K, 49 fast runs were performed.

Each point represents the mean Jaccard for pairwise comparisons across reps, within a given

value of K (x-axis). We see that at smaller values of K, the fast settings return consistent results,

while beyond a certain threshold (K = 9), the similarity drops and becomes more unstable. (B)

Comparison of influence rankings between fast and slow parameter settings.

(TIF)

S4 Fig. Topology of influential nodes in remainder of centality metrics. Highly influential

nodes (blue) tend to be upstream of other genes (red) selected by a variety of centrality metrics

(edges are directed towards the bottom of the figure). Genes selected by both centrality metrics

are shown in purple.

(PDF)

S1 Table. Description of centrality metrics. Brief descriptions of the 14 centrality metrics as

discussed in the manuscript.

(DOCX)

S2 Table. Brief listing of enrichment results using the top 24 influential genes.

(DOCX)

S1 Text. The ‘fast’ parameter set for ant optimization compares favorably to results from

the ‘slow’ parameter set.

(DOCX)

S2 Text. Functional enrichment on selected genes. To determine gene set functional enrich-

ment, over-representation testing was performed using the ConsensusPathDB service utilizing

a hypergeometric test over a large collection of pathways and gene ontology (GO) terms.

(DOCX)

S1 Dataset. Four result files are included.

1. time_lag_TE_filtered_edges.tsv—the TF network with TE weights.

2. fast_vs_slow_rankings.txt—the ranking of TFs using both parameter sets

3. top_24_centrality_metrics.xlsx—the centrality metrics for top 24 ranked TFs

4. top_24_ranked_genes_in_each_centrality.tsv—top genes per metric.

(GZ)
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