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Abstract

Background: Diagnostic accuracy studies aim to examine the diagnostic accuracy of a new experimental test, but do
not address the actual merit of the resulting diagnostic information to a patient in clinical practice. In order to assess
the impact of diagnostic information on subsequent treatment strategies regarding patient-relevant outcomes,
randomized test-treatment studies were introduced. Various designs for randomized test-treatment studies, including
an evaluation of biomarkers as part of randomized biomarker-guided treatment studies, are suggested in the
literature, but the nomenclature is not consistent.

Methods: The aim was to provide a clear description of the different study designs within a pre-specified framework,
considering their underlying assumptions, advantages as well as limitations and derivation of effect sizes required for
sample size calculations. Furthermore, an outlook on adaptive designs within randomized test-treatment studies is
given.

Results: The need to integrate adaptive design procedures in randomized test-treatment studies is apparent. The
derivation of effect sizes induces that sample size calculation will always be based on rather vague assumptions
resulting in over- or underpowered study results. Therefore, it might be advantageous to conduct a sample size
re-estimation based on a nuisance parameter during the ongoing trial.

Conclusions: Due to their increased complexity, compared to common treatment trials, the implementation of
randomized test-treatment studies poses practical challenges including a huge uncertainty regarding study
parameters like the expected outcome in specific subgroups or disease prevalence which might affect the sample size
calculation. Since research on adaptive designs within randomized test-treatment studies is limited so far, further
research is recommended.

Keywords: Accuracy, Adaptive design, Diagnostic research, Patient-relevant outcome, RCT, Sample size,
Test-treatment

Background
Diagnostic accuracy studies are performed to assess how
well a diagnostic test can distinguish between diseased
and non-diseased individuals. Following Schünemann
et al.(2008) [1], whenever a diagnostic test fails to
improve patient health outcomes, it should not be used
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in the daily routine, even though it may have proved
to be highly accurate. Consequently, the resulting diag-
nostic information, that is sensitivity and specificity of
a diagnostic test, is only beneficial if it is appropriately
used in subsequent patient management decisions, and,
thus, clinically relevant outcomes, such as morbidity,
mortality or health related quality of life, are improved
in the long run. For the assessment of a diagnostic test’s
efficacy, randomized controlled trials (RCTs) are needed
in order to compare test-treatment strategies and to
evaluate their performance on patient health outcomes
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as well as to differentiate effects between patient sub-
groups or trial arms [2–6]. The focus of randomized
test-treatment studies lies in the establishment of a
test-treatment process which includes the application
of diagnostic test(s) determining a target condition,
examining the test results, identifying downstream
management strategies through a predetermined link
between test results and management decision and finally
evaluating its implementation on patient health outcome
[2, 6–9]. However, the increased complexity of
trial arms employing diagnostic tests as part of the
patient management decision process led to diag-
nostic RCTs taking quite different forms. Various
designs for RCTs in diagnostic research have been sug-
gested in the literature, but the nomenclature is not
consistent [8–12].
The development of molecular and genetic technolo-

gies has strengthened the understanding of the molecu-
lar structure of a disease, which increased the value of
biomarkers for personalized medicine [13–17]. Biomark-
ers are characteristics that can be used to indicate normal
and abnormal biological mechanisms or predict a patient’s
response to a therapeutic intervention [13, 18]. The clin-
ical value of biomarkers for patient-related outcomes
is demonstrated in biomarker-guided treatment studies,
which are planned to evaluate prespecified biomarker-
based treatment strategies [13, 14, 16, 17, 19–21]. Here,
biomarkers can be classified in prognostic and predictive
biomarkers that are relevant for the selection of individu-
alized treatment strategies [19]. If randomized biomarker-
guided treatment studies compare a biomarker-based
strategy for treatment allocation with another strategy,
they provide a special case of a randomized test-treatment
study. For example, eligible patients are randomized to
a biomarker-based treatment strategy or a control arm
without biomarker evaluation. Both aim to assess the
efficacy of management strategies in test- or biomarker
guided subgroups of patients and evaluate patient-related
outcomes. Several types of biomarker-guided treatment
studies, including the treatment-by-marker interaction
designs, have been introduced in the literature. Similarly,
as in diagnostic RCTs without biomarker evaluation, the
nomenclature in biomarker-guided treatment studies is
not consistent. Tajik et al.(2013) [21] offer an overview
of different designs in the context of biomarker-guided
treatment studies. However, for the remainder of this arti-
cle, we reckon that the term “randomized test-treatment
studies” covers all designs which aim to evaluate test and
treatment strategies together regarding patient-relevant
outcomes, regardless of the type of biomarkers or diag-
nostic tests used. In the context of this paper, the focus is
to evaluate the effect of a diagnostic test in terms of the
impact on patient outcome that is led by the test results,
rather than treatment selection. Test assessment there-

fore requires the consideration of all links included in the
entire test-treatment-process.
An essential part of planning a clinical trial is the sample

size calculation. The study should be adequately powered
to detect a potential test-treatment effect. However, at the
planning stage the sample size calculation of randomized
test-treatment studies is based on assumptions regard-
ing the difference in treatment effects resulting from the
test-based strategies, prevalence of disease and diagnos-
tic accuracy of the investigated tests. Due to possibly
incorrect assumptions, there is always a risk of over- or
underestimation of the sample size. An adaptation of the
initial sample size would be desirable to achieve a suffi-
cient, but not overpowered study. For example, a sample
size re-estimation based on the prevalence or diagnostic
performance would be possible, if a reference standard is
applied in a blinded manner in addition to the tests to be
compared.
Themain contribution of this paper is to present a struc-

tured overview of existing randomized test-treatment
studies. In doing so, we want to emphasize the com-
plexity of such studies and, as a result, provide a first
insight into the potential of adaptive designs, especially
sample size re-estimation. The aim of this article is not
to present a comprehensive adaptive design in the con-
text of such studies. This aspect, and in particular the
extent to which the sample size can be adjusted and
what assumptions have to be made, is part of further
research.
The paper is organized as follows: we start with

some general notations which apply to all presented
designs. Afterwards, every design is described systemat-
ically within a pre-specified framework: firstly, we point
out some basic principles of using testing procedures
to individualize treatment and describe their purpose
as part of RCTs, including the hypotheses to be tested.
Further, for each design, a derivation of the effect size
required for sample size calculations is provided. There-
after, an outlook on adaptive designs within randomized
test-treatment studies is given. Each design as well as
a potential adaptive design is illustrated by an example
study. In the last section, we close with a brief discus-
sion of the findings. Formulas for sample size calculation
for binary and continuous outcomes are given in the
Appendix (see Additional File 1).

Methods
In the following, three main designs are described: the
classical test-treatment RCT, the design with restriction to
discordant pairs, and the design with random disclosure.
The description follows a unified framework consisting of
seven aspects: (1) motivation, (2) aim, (3) basic set-up, (4)
hypotheses to be tested, (5) limitations, (6) nomenclature
and (7) example studies.
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General notation
At the beginning of this section we provide some gen-
eral notation applying to all designs considered. Firstly,
let D ∈ {+,−} be the true disease status of the indi-
viduals, where D = + denotes the truly diseased and
D = − the non-diseased state. Hence, P(D = +) refers to
disease prevalence of the population. It is a common prop-
erty of all designs to compare test-treatment strategies
that in general involve the application of two (diagnos-
tic) tests with binary response. Let T ∈ {A,B} denote
the test applied to a patient and RT ∈ {+, –} the result
of the corresponding test T . In the following we always
assume that an experimental test A is compared with a
comparator test B. It may also be the case that a test or
biomarker based strategy is compared to a non-test or
non-biomarker based strategy, especially in the absence
of a reference standard, in order to compare it with the
test under investigation or when the predictive value of a
biomarker is to be assessed [13, 15, 21]. Let M ∈ {I, II}
denote the intervention (management strategy) given to
the patient. Management strategy I may be a more inva-
sive treatment or therapeutic approachwhich should work
better for truly diseased patients and management II may
represent a standard of care which should work better in
truly non-diseased patients. It is essential that these tests
and their application as well as management strategies
are clearly pre-specified in the study protocol. A well-
defined linking rule of the test results and subsequent
management decisions is mandatory to assure validity and
generalizability of the study results [2, 3, 6, 7, 9]. Finally, Y
defines a binary or continuous patient outcome which is
measured after receiving a treatment strategy.

Classical test-treatment RCT
Motivation: When a new experimental test has shown
improved accuracy, it can still be unclear whether its

application implies a benefit for the patients in the long
run, as this requires translating the improved test results
into improved treatment and consequently improved out-
comes in clinical practice. Hence, there is a need to exam-
ine whether the application of the test indeed improves
long-term outcomes. For this purpose, classical RCTs in
diagnostic research are introduced.
Aim: The aim is to compare two diagnostic procedures

with respect to their impact on patient-related outcomes.
Classical RCTs evaluate the application of the diagnostic
tests together with a treatment strategy (or more gener-
ally a management strategy) based on the test results. This
strategy can range from a fixed, well-defined algorithm to
a very liberal approach only requiring to take the results
into account in the (complex) management of patients.
Basic set-up: Patients are randomized to two arms. In

one arm, the binary test A is applied, in the other, B. Test
results are communicated and associated with subsequent
management decision: test-positives are assigned to treat-
ment I and test-negatives to treatment II. Afterwards, the
patient outcome is evaluated in each subgroup (Fig. 1).
Hypotheses: The hypothesis of interest in the classical

RCT design refers to test whether there is a difference in
outcome between the test-treatment path based on test A
compared to the test-treatment path based on test B. The
hypothesis can be formulated as

H0 : θA = θB vs. H1 : θA �= θB,

with θT := E(Y |T = τ) denoting the expected outcome
in each arm τ = A,B. Sample size calculations hence
require qualified guesses for θA and θB, or at least for
the difference between these two numbers. Two different
approaches to arrive at this information are outlined in the
next section. If such qualified guesses are given, sample
size calculations can follow traditional routes as shown in
the Appendix (see Additional File 1).

Fig. 1 A schematic representation of a classical test-treatment RCT [9]



Hot et al. BMCMedical ResearchMethodology          (2021) 21:110 Page 4 of 12

Limitations: In case of negative study results, it is
unknown whether this is due to an insufficient difference
in accuracy between A and B, suboptimal use of the test
results in further treatment decisions, or due to low effec-
tiveness of subsequent treatments, as the effect of entire
test-treatment strategies is assessed. None of the patients
received both test procedures, thus, it is not possible to
distinguish the treatment effect from the prognostic or
predictive value of the tests, nor is it possible to com-
pare the outcome in the subgroups with discordant test
results. In general, blinding of the physician or patient
to the test results and thus treatment allocation is not
possible, as there is a disclosure of the test results and
treatment assignment [9]. Blinding regarding the applied
testing procedures is possible only if testing procedures
are based on similar approaches, e.g. magnetic resonance
tomography for the diagnosis of one disease based on
different parameters which are compared to each other.
Further, the sample sizes required for this design are
usually large, as enough patients are needed in both
testing arms to detect a difference between the entire
test-treatment pathways.
Nomenclature: Such studies have been called classical

RCT [13], RCT comparing tests [8], ungated RCT [22] and
two-arm design [10]. If a test-based strategy and the stan-
dard, non-test-based strategy are compared, this design
has been called test RCT [8] and due to its prominent role
in biomarker research, biomarker-strategy design [14],
marker-based strategy design I [15, 16, 23], biomarker-
strategy design with standard control [20], and marker
strategy design [17].
Example: A randomized diagnostic study used this

design to investigate two different diagnostic approaches
for the management of outpatients with dysphagia, who
have a high risk for developing aspiration pneumonia
[24]. In this prospective, randomized study it was inves-
tigated whether a modified barium swallow test (MBS),
test A, and flexible endoscopic evaluation of swallowing
with sensory testing (FEESST), test B, as diagnostic tests
are supposed to distinguish patients who can benefit from
behavioral and dietary management (treatment II) from
those who will need a percutaneous endoscopic gastros-
tomy (PEG) tube (treatment I). The outcome variables
were pneumonia incidence and pneumonia-free interval.
In total, 126 outpatients with dysphagia were randomized
to either FEESST or MBS.

Restricting randomization to discordant pairs
Motivation: The limited power of classical RCTs in diag-
nostic research is partially due to the fact that in many
patients the results of the two tests are identical, and
consequently the management will be the same. Only in
patients with discordant results we can expect a differ-
ence in management and hence a difference in outcome

(see classical RCT). This has led to the idea to restrict
randomization to patients with discordant results [9].
Aim: Both tests A and B are applied in all patients. This

makes it possible to assess individual effects of the tests
and the strategy difference in cases with discordant test
results. We can compare whether it is preferable to follow
the results of the experimental test A or the comparator
test B in discordant cases.
Basic set-up: After application of both tests patients with

discordant test results are randomized to follow manage-
ment based on test A or B. Concordant cases with positive
test results receive treatment I and test-negative patients
receive treatment II (Fig. 2).
Hypotheses: The hypotheses of interest for the discor-

dance design can be stated as

H0 : θdiscA = θdiscB vs. H1 : θdiscA �= θdiscB

with

θdiscτ = E (Y |T = τ ,RA �= RB)

and T now denoting the test to be followed according to
the randomization. Again, qualified guesses are required
for these numbers or at least for the difference.We discuss
in the next section corresponding approaches, which are
similar to those for classical test-treatment studies.
Limitations: Similar to the classical design blinding of

the physician and patient to the test result and treatment
allocation is difficult. In discordant cases, results of tests
A and B cannot be deduced and are, therefore, blinded,
whereas the concordance or discordance of test results
cannot be kept secret. Hence, while the design has the
advantage of greater efficiency [10], the question remains,
whether the management of patients can be influenced by
the fact that the treating clinicians are aware of treating a
patient with discordant test results, and to which degree
results obtained from this design are indeed comparable
to results from the classical design. In contrast, a study
in discordant pairs allows also to investigate treatment
effects separately in the two different types of discordant
pairs. It might be the case that it is wise to follow the
new test, if it changes a positive standard test to a nega-
tive result, but not vice versa. Designs where each patient
undergoes both tests are only feasible, if both tests are
applicable in each patient and the performance of the tests
is not affected by each other [9]. For example, this may not
be the case with surgical testing procedures. Additionally,
both tests should deliver test results within comparable
timeframes as different ones might influence the study
results [2].
Nomenclature: This design has been called gated RCT

[22], discordant risk randomization design [20], RCT of
discordant test results [8], paired design [10], and marker
discordance design [17].
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Fig. 2 A schematic representation of a randomized diagnostic study with restricting randomization to discordant pairs [9, 25]

Example: An example of a trial in which patients with
discordant test results are randomized is the FOAM study,
which compares the cost-effectiveness of hysterosalpingo-
foam sonography (HyFoSy) with hysterosalpingography
(HSG) in assessing tubal patency in subfertile women [26].
The study is planned as a multicenter prospective study of
women undergoing tubal patency testing by HyFoSy (test
A) and HSG (test B) during fertility work-up. Women in
this study with discordant test results are randomized to
a management strategy based on HyFOSy (management
strategy I) or HSG (management strategy II) resulting in
a diagnostic laparoscopy with chromopertubation or a
management based on the prognostic model of Hunault.
Data are used in a model-based cost-effectiveness anal-
ysis. The primary endpoint is pregnancy rates within 12
month after inclusion. In total, 1,163 subfertile women
between 18 and 41 years of age who are scheduled for
tubal patency testing during their fertility work-up will be
enrolled to the study.

Random disclosure
Motivation: A hybrid between a full classical randomized
test-treatment study and a study in discordant pairs arises
if both tests are applied in all patients, but randomly only
one test result is disclosed and the other is kept secret.
This design implements the random disclosure principle
[9]. It has the advantage that it can be analyzed like a ran-
domized study, but additionally and timely subsequently
also as a study in discordant pairs.
Aim: The aim of this study design is to test whether a

strategy based on a test A with improved accuracy should
be preferred to a test-treatment strategy based on test
B for all patients recruited to trial. Furthermore, it is

possible to compare the tests in the patients with discor-
dant test results.
Basic set-up: Two tests A and B are applied in all

patients, which are randomized to two arms, in each
of which only the result of one test is revealed. Subse-
quently, test-positive and -negative patients are assigned
to treatment I and II, respectively (Fig. 3).
Hypotheses: Data from a study using a random disclo-

sure design can be analyzed like a classical RCT or like an
RCT in discordant pairs, since on the one hand the aim is
to compare two entire test-treatment paths, on the other
hand we can, additionally, perform a subgroup analysis in
the discordant cases. Sample size calculations can be per-
formed with respect to one of the two possible analytic
strategies. Hence the considerations presented for the two
other designs can be also applied here.
Variant: This design can be reduced to considering only

one test. Here, all patients are randomized to either a dis-
closure or non-disclosure of the test results. Patients with
a positive or non-disclosed test result receive treatment I,
whereas patients with a negative test result are allocated
to treatment II (Fig. 4). Here, treatment I is considered to
be the therapy patients would receive for a specific dis-
ease. This additional arm can provide information about
the prognostic value of the test, as it is often the case in
biomarker studies.
Limitations: This design is only applicable if it is feasible

to apply both tests in all patients. Similar to the classi-
cal RCT design, in general, blinding of the physician and
patient regarding the test results and treatment allocation
is difficult, as test-positive patients receive treatment I and
test-negative treatment II. In case that the applied tests
are based on different methods, e.g. a biochemical test is
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Fig. 3 A schematic representation of a study design with random disclosure principle [9]

compared to an imaging technique, blinding regarding the
applied tests is possible.
Nomenclature: This design is called study regarding

the random disclosure principle [9] or random disclosure
design [11] in case of considering one diagnostic test.
Example: In a randomized study, this design was used

to evaluate Doppler ultrasonography (Doppler US) (diag-
nostic test) of the umbilical artery in the management
of women with suspected intrauterine growth retardation
(IUGR). In total, 150 women with singleton pregnancies
and suspected IUGR were randomized to an intervention
(disclosure group) and a control group (non-disclosure
group). In the intervention group, clinicians were strongly
requested not to hospitalize for suspected IUGR if the
Doppler US findings were normal. In the control group,
the Doppler US results were not revealed and the partic-
ipants received the standard management for suspected
IUGR. Endpoints of the trial were costs in terms of

hospitalization, perinatal outcome, neurological develop-
ment and postnatal growth [27].

Sample size considerations
In the following section, sample size considerations are
presented that start with two different perspectives. The
first perspective refers directly to an unpaired study
design in which study participants are assigned to one of
the two testing procedures. This approach directly aims
at deriving formulas for the expected outcome in each
arm. The second perspective takes into account from the
start that we have discordant and concordant test results
and aims at the difference in expected outcomes. At first
sight this may be seen to be relevant only for studies in
discordant pairs. However, this perspective is also rele-
vant for planning a test-treatment RCT, as the information
we need can be derived from paired accuracy studies and
does not require a paired design of the RCT.

Fig. 4 A schematic representation of a study design with random disclosure of one diagnostic test [9]
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Unpaired approach
For a sample size calculation in the classical RCT design,
we can try to derive at a qualified guess for the expected
outcome θT for T = A,B. If we assume that the test result
determines the choice of treatment, i.e. thatM = m(RT )

with m(+) = I and m(–) = II, then we can express the
expected outcomes for test T as

θτ =
∑

t∈{+,–},d∈{+,–}
μτ
m(Rτ )tdP (Rτ = t|D = d,T = τ)P (D = d|T = τ)

=
∑

t∈{+,–},d∈{+,–}
μτ
m(Rτ )tdP(Rτ = t|D = d)P(D = d)

with

μτ
mtd = E (Y |M = m,Rτ = t,D = d) .

To use this expression for a sample size calculation, we
have to discuss how to determine the different compo-
nents. The parameter P(D = d) is known if we can make
a reasonable assumption about the disease prevalence in
the study population. P(Rτ = t|D = d) refers to the sen-
sitivity and specificity of the two tests, i.e. the proportion
of truly diseased and non-diseased patients, respectively,
who are correctly identified [28]. This may be known from
accuracy studies. The crucial part is, however, to arrive at
assumptions about μτ

mtd. We cannot make the simplifying
assumption that μτ

mtd is independent of t ∈ {+,−}, as a
positive or negative test result can have a prognostic value
on top of the true disease state (e.g. it might be related
to disease progression). We can neither assume that μτ

mtd
is independent of τ ∈ {A,B}, as the prognostic value of
the two tests may differ, nor we can expect to be able
to estimate μτ

mtd empirically from existing studies for all
combinations of τ , m, t, and d. Typically, I is intended for
patients with D = + and II for patients with D = –, hence
it is often unlikely to find studies looking at the opposite
combinations [22]. Moreover, if A represents a new test, it
is also unlikely to find outcome studies using A to deter-
mine the disease status. This challenge will be discussed
in the last section.
The sample size n needed for this trial design can be

calculated by inserting the estimates of θA and θB in the
sample size formulas in the Appendix (see Additional
File 1).

Paired approach
For a sample size calculation it might be sufficient to
have a qualified guess for � = θA − θB. An alternative
expression for this can be derived based on differentiating
between concordant and discordant pairs, which may also
give a better insight how effects of the interventions I and
II interfere with the outcome difference we can expect.
This requires the application of both tests in all patients,
which corresponds to a paired design, as it is the case in

the discordance or randomdisclosure design. In particular
we have:

� = θA − θB

=
∑

tA,tB,d∈{+,–}
�τ

tAtBdP (RA= tA,RB= tB|D = d)P(D = d)

with
�τ

tAtBd = E (Y |T = A,M = m(RA),RA = tA,RB = tB,D = d)

− E (Y |T = B,M = m(RB),RA = tA,RB = tB,D = d) .

Now it is rather safe to assume that RA = RB, i.e. con-
cordant test results, imply �τ

tAtBd = 0 for any test result
and disease status: if both tests give the same result, they
should imply the same intervention. So from the eight
summands above only four remain. Moreover, each sum-
mand can be associated with a clinically relevant situation
with respect to exchanging test A with test B in a sin-
gle patient. We can move from a false positive (FP) to a
true negative (TN) decision or vice versa, or we can move
from a false negative (FN) to a true positive (TP) deci-
sion (or vice versa). If we denote with P(·) the probability
to observe a patient with a specific move, and with �(·)
the expected difference in outcomes in such a patient, we
can simply express the expected outcome difference in the
trial [29] as

� = �(FP → TN)P(FP → TN) + �(TN → FP)P(TN → FP)

+ �(FN → TP)P(FN → TP) + �(TP → FN)P(TP → FN).

This expression corresponds nicely to an intuitive
expectation about the outcome difference: it depends on
how many patients will move from incorrect to correct
decisions (or vice versa) and how big the gain (or loss) in
expected outcome is in these patients. From the perspec-
tive of sample size calculation it requires to know the four
probabilities and the four expected outcome differences.
Estimates of the four probabilities can be derived from
accuracy studies comparing the tests A and B in a paired
design. If such a study is not available, they can be based
on prior knowledge of sensitivity and specificity of the two
tests combined with assumptions about the degree of con-
cordance in diseased or disease-free patients. It is usually
hard to imagine finding empirical estimates for the four
� values involved, as they would require outcome stud-
ies in discordant pairs. However, it might be feasible to
elicit expectations about these values from clinicians. Typ-
ically, it will suffice to elicit two values, as the assumptions
�(FP → TN) = −�(TN → FP) and �(FN → TP) =
−�(TP → FN) are rather safe. In the case of a contin-
uous outcome, we have to supplement a guess about �

with a guess about the variation of Y. Note that within
this approach we do not need to assume explicitly that
the treatment choice is uniquely determined by the test
results.
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With respect to the difference in expected outcome
�disc := θdiscA − θdiscB we have

�disc =
∑

tA ,tB ,d∈{+,–},
tA �=tB

�tAtBdP (RA = tA,RB = tB|D = d,RA �= RB)

P (D = d|RA �= RB)

=
∑

tA ,tB ,d∈{+,–},tA �=tB �tAtBdP (RA = tA,RB = tB|D = d)P(D = d)

P (RA �= RB)

= �

P (TA �= TB)
.

Here, P (RA �= RB) refers to the fraction of discordant
test results in the population of interest. A sample size
determination hence requires specifying exactly the same
quantities as in the case of a classical RCT and addition-
ally needs assumptions about the discordance fraction of
test A and B. The number of discordant cases ndisc needed
for this trial design can be calculated by inserting �disc in
the sample size formula in the Appendix (see Additional
File 1). The required total sample size of concordant and
discordant cases can be determined by dividing ndisc by
the discordance fraction. Lu and Gatsonis (2013) [10] pro-
posed a similar approach for sample size calculation in
randomized test-treatment studies, including the classical
RCT and the design with restriction to discordant pairs,
and discussed a strategy to determine the discordance
fraction. In addition, numerical examples were introduced
to show the difference in the sample size between the two
study designs.
In practice, inmost cases diagnostic tests are highly con-

ditionally dependent on the disease status of the patient,
i.e. the response of one test changes the probability of
response of the other test [30–32]. For example, in case of
positive dependence of two tests a patient with a positive
test result on the one test will rather be tested positively
on the other test and vice versa. Thus maximally negative
dependence between two tests will maximize the number
of discordant cases, whereas maximally positive depen-
dence results in a maximal number of concordant cases
[32]. For sample size determination assumptions about the
degree of conditional dependence and hence concordance
of the two tests are required.

Outlook on adaptive designs
Adaptive study designs with group sequential designs as
special case allow pre-planned interim analyses, which
may lead to an early stopping of the study (for futility
or efficacy) or to modifications of design aspects, includ-
ing sample size [33]. Such adaptive study designs are
well established in intervention trials, but are much less
common in diagnostic trials [34], especially in random-
ized test-treatment studies. Already in diagnostic accu-
racy studies there may be a need for flexible designs, for
example to take into account that a presumed prevalence

could not be reached. At first glance RCTs in diagnostic
research seem to be comparable to RCTs in therapeutic
research, but at second glance differences become obvi-
ous. In this work, for each design formulas for the effect
size are derived, which can inform a sample size deter-
mination. It is a specific feature of all these formulas
that they combine information on the disease prevalence
and accuracy of the diagnostic tests with assumptions
on the expected outcome or outcome difference in sub-
groups defined by disease state and test results. Empirical
information on the former may be available from corre-
sponding studies, but empirical information on the latter
is typically missing, and we have to work with some quali-
fied guesses. Hence sample size considerations will always
be based on a rather weak foundation, making it advis-
able to check the assumptions about the group differences
early in these studies and to allow sample size adaptations.
In principle, corresponding adaptive designs canmake use
of estimates of the group difference as in any interven-
tion trial. However, we can also make use of the original
formulas to derive the sample sizes and try to update the
pieces of information used in these formulas. For example,
we can also apply the reference test in a blinded manner
in these designs, allowing to correct for the estimates of
prevalence and diagnostic accuracy. Alternatively we may
incorporate information from new accuracy studies. We
may also update information on expected outcomes or
outcome differences in certain subgroups which we can
derive from other ongoing studies. Since the small group
of patients with discordant results is driving the interven-
tion difference, it is of specific interest to obtain external
information for this subgroup. This requires access to
studies applying both tests in all patients. It is an attractive
feature of the random disclosure design that such addi-
tional information can be generated already within the
study of interest. In summary, there are different options
to implement adaptive designs for sample size recalcula-
tion in randomized diagnostic studies. Research is needed
to identify the optimal approaches. However, in the fol-
lowing we will illustrate the potential of adaptive designs
using a practical example.
In the previous section describing the classical RCT

design a randomized diagnostic study was introduced,
which used the classical design to investigate which of
two diagnostic approaches, the MBS or FEESST, is more
effective inmanaging patients with dysphagia with respect
to pneumonia incidence [24]. In total, 126 outpatients
with dysphagia were randomized to either FEESST or
MBS. Out of 76 patients examined by the MBS, 14
patients (18.4%) developed pneumonia compared to 6
patients out of 50 (12%) in the FEESST group resulting
in a statistically non-significant difference between the
test-treatment arms. This result can be attributed to the
relatively low prevalence in each diagnostic group. A
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description of the initial sample size calculation of the
study is not sufficiently provided by the authors, there-
fore, we base a re-estimation of the needed sample size
on the observed study results, i.e. the observed pneumo-
nia rates. To detect a statistically significant difference of
6.4% with a power of 80%, one would need a total of 986
patients in the trial (based on the Chi-squared test for two
independent proportions). In this study, the authors could
have used the following adaptive design: first, an initial
sample size planning would be made based on assump-
tions regarding the diagnostic accuracy of the tests, the
prevalence of the disease and the treatment effects in the
individual subgroups. After a certain number of patients
has been recruited, say 50% of all originally intended, a
sample size re-estimation based on the prevalence could
be performed, as long as the reference standard has been
included. At this point, it might have been clear that
additional patients would need to be recruited, or that
the needed sample size is not feasible and the trial is
stopped early for futility. The previously outlined proce-
dure describes a blinded re-estimation of the sample size
based on the prevalence, so that the type I error is not
inflated. A re-estimation of the sample size based on the
sensitivity and specificity or the different treatment effects
is expected to lead to an unblinding of the test-treatment
allocation, resulting in an unblinded interim analysis. An
interim analysis based on the primary outcome (e.g. mor-
tality) would obviously implicate unblinding. This would
then necessitate an adjustment of the type I error rate.
Until now, to the best of our knowledge, there is

little research regarding adaptive designs for RCTs in
diagnostic research. A regulatory guidance on adaptive
designs for medical device clinical studies became effec-
tive quite recently [33]. We found a few clinical examples
using adaptive designs in biomarker research. Heckman-
Stoddard and Smith (2014) [35] discussed two adaptive
clinical trials programs (I-SPY and BATTLE on breast and
lung cancer, respectively) which comprised several inno-
vative randomized studies designed to evaluate multiple
targeted therapies in biomarker-defined subsets of indi-
viduals. Allison [36] remarked the potential of biomarker-
led adaptive trials in breast cancer. Corey et al. [37]
reviewed narratively the status of human immunodefi-
ciency virus (HIV) vaccines and discussed the potential
role of adaptive clinical trial designs in accelerating vac-
cine development; as the lack of a predictive animal
model and undefined biomarkers of immune protection
against HIV necessitate testing of potentially promising
vaccines directly in clinical trials. Zhang et al. [38] investi-
gated optimal biomarker-integrated adaptive trial designs,
described the performance of the optimal design in dif-
ferent scenarios, and compared it to Bayesian adaptive
randomization. Finally, Antoniou et al. [39] performed
a methodological review on biomarker-guided adaptive

trial designs in phase II and phase III over one decade.
They identified eight distinct biomarker-guided adaptive
designs and nine variations from 107 studies, and they
observed substantial variability in description and termi-
nology. Placzek and Friede [40] considered designs with
multiple nested subgroups and a continuous endpoint and
developed methods for the analysis and sample size deter-
mination, including a blinded sample size re-estimation
procedure in an internal pilot study. Gao et al. (2016) [41]
proposed a two-stage adaptive design that provides flex-
ibility in a single biomarker performance-based sample
size adaption for targeted trials, in which biomarker-
positive patients are randomized to a novel treatment of
interest or control. Future work is needed to integrate
adaptive design procedures in diagnostic RCTs comparing
test-treatment strategies with a stronger focus than before
on sample size calculation and re-estimation based on a
nuisance parameter.

Discussion and conclusions
Patient health should be the primary concern in evalu-
ating diagnostic tests after sufficient accuracy has been
proven. In clinical practice, there are often multiple tests
which have the aim to determine the disease status of a
patient. When two competing diagnostic tests are com-
pared, randomized test-treatment studies are needed to
evaluate the clinical utility of the tests as part of a broader
management regimen. In instances where no reference
standard is available at all or the reference standard is
assumed to be imperfect, diagnostic RCTs may be even
the only way to assess the clinical value of a diagnostic
test. Several designs of randomized test-treatment stud-
ies have been suggested earlier. Depending on its clinical
research question, the feasibility and its advantages and
limitations, one design can be preferred over the other.
The main difference of the designs is the timepoint of ran-
domization, hence leading to slightly different research
questions. In the classical diagnostic RCT, fewer tests are,
on average, performed than in the remaining designs,
as each patient receives only one test. This leads to a
less cost-intensive and time-consuming design in case of
expensive and laborious testing procedures [9]. Further-
more, in cases where one of the tests under investigation
involves a high burden with direct side effects for the
patient, such as severe bleeding or a high radiation expo-
sure, the classical strategy design should be preferred over
the remaining designs, since it is ethically not justified to
perform both tests in all patients. An example for a sce-
nario where the test has a direct positive effect on patients
is the study by Dreyer et al. (2017) [42] demonstrating a
benefit of an oil-based rather than water-based contrast
for tubal patency testing in infertile women. However,
this design tends to be less efficient, as in many patients
tests would yield the same test results, consequently
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leading to an identical patient management. Hence, if fea-
sible and ethically justifiable, designs evaluating both tests
in each patient might be more favorable. Especially, the
discordance design, where randomization is restricted to
a subgroup of patients with discordant test results, might
achieve higher statistical power than the classical RCT
design [9, 10]. The design with the random disclosure
principle combines the advantages of both, as it can be
analyzed like the classical RCT and, additionally, allows
subsequent analyses in discordant pairs.
In each design it is assumed that an already existing test

B is to be replaced by a new test A to guide better treat-
ment decisions. Hence, the focus is on the comparison
of test-treatment strategies. This requires a well-defined
study protocol that describes the specific link between
the tests, their results and subsequent management deci-
sions [3]. This may be a direct link such that test-positive
patients receive treatment I and test-negative treatment
II. However, if in clinical practice decisions are based on
more complex processes (including shared decision mak-
ing in multi-disciplinary clinical teams), the link has to be
defined in a less strict manner with obvious challenges for
generalizability and replicability of study findings [2, 9]. In
case of negative study results, it remains unclear whether
it is due to incorrect management decisions, insufficient
accuracy of diagnostic testing or ineffective treatments
[2, 9]. Unblinding of the clinician and patients included
in the trial regarding test results and treatment allocation
is an important issue in randomized diagnostic trials, but
difficult to implement. Patients’ willingness to undergo
testing procedures, especially in case of multiple test-
ing, has to be assured. Knowledge about their test results
can influence patients’ further motivation to adhere to
treatment and attend follow-up and thus future health
outcome is affected [2]. In the context of this work, one
primary endpoint is considered to reflect the patient ben-
efit from the test-treatment strategies. In clinical practice,
however, there are situations in which the examination of
one primary endpoint is not sufficient. In particular, it is
important to consider what impact FP and FN test find-
ings may have on the clinical outcome of the patient. One
example scenario would be the choice between a curative
and a palliative treatment strategy in cancer patients. The
consequences of FP or FN test results may be quite dif-
ferent and therefore may not be measurable in the same
outcome. A correct decision for curative treatment can
lead to improved patient survival, while a correct deci-
sion for palliative treatment ideally improves quality of
life. From a statistical and technical point of view, there
are ways to include more than one primary endpoint in
the final analysis. One possibility is to construct a compos-
ite endpoint that combines, for example, an improvement
in quality of life with an increased survival probabil-
ity. Other alternatives would be to order the endpoints

hierarchically or to consider them with appropriate
adjustment of the type I error due to multiple testing. Fur-
ther possibilities may arise if a reference standard has also
been measured in the trial. From an ethical point of view,
however, the challenge remains that the potential benefits
from increasing the number of TP and TN tested patients
cannot be maximized at the same time, especially when
tests show a high FP or FN rate. In the planning stage of
the study the sample size should be adequately planned to
avoid misleading conclusions from the study results. Due
to uncertain assumptions regarding involved parameters
the calculated sample size may be too small or too large.
An adaptation regarding the initial sample size by means
of predetermined interim analyses would be desirable to
achieve more reliable study results. It would provide infor-
mation whether to stop recruitment for futility or efficacy
or to adjust the sample size. Since research on adap-
tive designs within randomized test-treatment studies is
limited so far, further research is recommended.
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