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Graphical Abstract Schematic representation of the different global (left) and regional (right) electrical (upper panels) and mechanical
(lower panels) components that contribute to electromechanical reciprocity both in the intact heart and at the cardiac tissue level. Stretch, passive
mechanical stretching of the myocardium caused by changes in volume or pressure load; stress, load against which cells actively contract as force
per cross-sectional area; strain, passive mechanical deformation of tissue/cells normalized to their resting length. ↑, increased; AC, aftercontrac-
tion; EAD, early afterdepolarization; EGM, electrogram; EMW, electromechanical window; LVP, left ventricular pressure; MAP, monophasic ac-
tion potential; PSS, post-systolic shortening; PVC, premature ventricular contraction; TdP, torsades de pointes.
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Abstract

An abundance of literature describes physiological and pathological determinants of cardiac performance, building on the principles of exci-
tation–contraction coupling. However, the mutual influencing of excitation–contraction and mechano-electrical feedback in the beating heart,
here designated ‘electromechanical reciprocity’, remains poorly recognized clinically, despite the awareness that external and cardiac-internal
mechanical stimuli can trigger electrical responses and arrhythmia. This review focuses on electromechanical reciprocity in the long-QT syn-
drome (LQTS), historically considered a purely electrical disease, but now appreciated as paradigmatic for the understanding of mechano-
electrical contributions to arrhythmogenesis in this and other cardiac conditions. Electromechanical dispersion in LQTS is characterized
by heterogeneously prolonged ventricular repolarization, besides altered contraction duration and relaxation. Mechanical alterations may de-
viate from what would be expected from global and regional repolarization abnormalities. Pathological repolarization prolongation outlasts
mechanical systole in patients with LQTS, yielding a negative electromechanical window (EMW), which is most pronounced in symptomatic
patients. The electromechanical window is a superior and independent arrhythmia-risk predictor compared with the heart rate-corrected
QT. A negative EMW implies that the ventricle is deformed—by volume loading during the rapid filling phase—when repolarization is still
ongoing. This creates a ‘sensitized’ electromechanical substrate, in which inadvertent electrical or mechanical stimuli such as local after-
depolarizations, after-contractions, or dyssynchrony can trigger abnormal impulses. Increased sympathetic-nerve activity and pause-dependent
potentiation further exaggerate electromechanical heterogeneities, promoting arrhythmogenesis. Unraveling electromechanical reciprocity
advances the understanding of arrhythmia formation in various conditions. Real-time image integration of cardiac electrophysiology andmechanics
offers new opportunities to address challenges in arrhythmia management.
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Introduction
Cardiac homeostasis requires the co-ordinated action of billions of
cardiomyocytes while continuously adapting to beat-by-beat fluc-
tuations in haemodynamic demand. To this aim, electrical excitation
of the myocardium induces mechanical activation (excitation–
contraction coupling) in the feedforward loop and, reversely,
changes in the heart’s mechanical condition affect cardiac electrical
activity (mechano-electrical feedback).1 This mutual influencing of
excitation–contraction coupling and mechano-electrical feedback
in the beating heart, here designated ‘electromechanical reciprocity’,
constitutes a continuous process. First hints towards cardiac
mechano-electrical influences date back to 1651 when William
Harvey reported that ‘The pulse has its origin in the blood…the car-
diac auricle from which the pulsation starts, is excited by the blood’ (De
Generatione Animalium).2 Later, the relevance of critically timed ex-
ternal mechano-electric stressors was recognized for human
mechano-electrical feedback, as exemplified by commotio cordis,
e.g. by precordially applied thumps.1 Cardiac-internal mechano-electrical
triggers impact through sudden changes in cardiac pressure and/or vol-
ume to alter myocardial strain and stress, which may influence de-
polarization, repolarization, and abnormal impulse formation.3–6

Indeed, changes in ventricular action potential duration (APD) and
the generation of early after-depolarizations (EADs) were observed
in patients after pressure increases upon weaning from cardiopul-
monary bypass,7 during transient aortic occlusion,8 pulmonary bal-
loon valvuloplasty,9 and the Valsalva manoeuver.10 Although clinical
arguments for stretch-induced arrhythmias are recognized (commo-
tio cordis, infarct border zones, mitral-valve prolapse, and atrial fibril-
lation)1,11–13 and experimental evidence is accumulating,14,15 the

exact mechanisms relevant for mechano-induced arrhythmogenesis
remain largely unexplained in the beating human heart.

Proarrhythmic consequences of electromechanical reciprocity
have been predominantly recognized in the congenital long-QT
syndrome (LQTS) caused by gene mutations encoding for
ion-channel subunits and ion-channel associated proteins, and
historically deemed purely electrical in nature. Indeed, patients
with overt LQTS not only demonstrate abnormally long ventricu-
lar repolarization/QT interval and spatiotemporal repolarization
variability (Graphical Abstract, upper quadrants),16–20 but also global
and regional mechanical alterations such as (dispersion of)
contraction duration prolongation, altered relaxation and
after-contractions (Graphical Abstract, lower quadrants).21–27

Experimental data confirm and expand these observations. In se-
vere cases of LQTS, the disproportionate prolongation of electric-
al repolarization outlasts the mechanical contraction, reversing
the physiological ventricular repolarization–relaxation relation
and causing a negative electromechanical window (EMW)
(Figure 1). Now the aortic valve closes before the T wave
ends,28,29 resulting in abnormal ventricular deformation, due to
ventricular loading, when repolarization is still progressing
(Figure 1A). Although this reversed electromechanical relation
was first reported in acquired QT prolongation30 and in the sem-
inal paper by Jervell and Lange-Nielsen (Figure 1B),31 its arrhyth-
mogenic potential for patients with congenital LQTS was only
recognized decades later.28,29,32

This review first recapitulates the classical electrical understand-
ing of LQTS pathophysiology, highlighting the importance of global
electrical abnormalities, repolarization dispersion, and resultant ar-
rhythmogenesis. Thereafter, the evidence for global mechanical
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alterations and spatiotemporal mechanical dispersion in LQTS is
summarized, and clinical arguments for the contribution of electro-
mechanical reciprocity to torsadogenesis are provided. Critical
gaps in the clinical insights will be filled with data from intact-animal
experiments or in silico investigations. Mechanistic insights ob-
tained from the electromechanical interactions in LQTS are para-
digmatic for the understanding of arrhythmogenesis in other
inherited and acquired conditions such as short-QT syndrome
and acquired QT prolongation. A thorough understanding of elec-
tromechanical reciprocity will provide novel diagnostic and thera-
peutic avenues for the management of patients with cardiac
arrhythmias, even beyond the LQTS.

Electrical understanding of
long-QT syndrome
pathophysiology
The congenital LQTS is characterized by prolonged and dispersed
cardiac repolarization and is classically deemed a ‘purely electrical’ dis-
ease (Graphical Abstract, upper quadrants).33 Mutations in 17 genes en-
coding ion-channel subunits or their channel-interacting proteins have
been linked to LQTS. Of these, threemajor and fiveminor genes have

been recently classified as definitely causative,34 reducing repolarizing
outward currents, mostly via loss of function of IKs (LQT1) or IKr
(LQT2), or augmenting late INa (LQT3). Distortions of the delicate
balance of these ion currents underlie the clinically observed long
QT interval. Patients with LQTS are at increased risk of developing
life-threatening torsades-de-pointes (TdP) arrhythmias [prolonged
repolarization-dependent polymorphic ventricular tachyarrhythmia
(VT) with the characteristic, sinusoid-like twisting of the QRS axis
around the iso-electric baseline]. Torsades-de-pointes initiation is
mostly pause-dependent (+70%, short–long–short, LQT2 and
LQT3) or acceleration/non-pause induced (LQT1).35

In the classical understanding of torsadogenesis, global and re-
gional electrical perturbations promote abnormal impulse forma-
tion and reentrant excitation. Indeed, in the human congenital
LQTS, pathological prolongation of repolarization is not uniform,
but markedly dispersed in space and time (Figure 2A). There is com-
pelling clinical and experimental36–38 evidence for spatial heterogen-
eity such as the augmented whole heart (Tpeak–Tend),

39 endocardial
inter- and intraventricular,16,17,19,40 and epicardial gradients of elec-
trical recovery,20 with differences among the various LQTS geno-
types (Table 1). Whether transmural dispersion of repolarization
exists in human LQTS—similarly as observed in experimental in
vivomodels41,42—remains to be elucidated. Exaggerated beat-to-beat
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Figure 1 Global electromechanical relations in congenital long-QT syndrome. (A) Schematic representation of the temporal relation between
whole-heart electrical systole (QT, red line) and derivatives of mechanical systolic duration that underlie global electromechanical window negativity
in a hypothetical high-risk long-QT syndrome patient. Various techniques are available to assess contraction duration (CD, green line): continuous-
wave Doppler imaging (Q until aortic-valve closure), phonocardiography (S2), or invasive left ventricular pressure recordings (QAoC or QLVPend).
Of note, reversed electromechanical relations imply early ventricular filling during the nadir of the T wave. (B) Simultaneous electromechanical re-
cording in a 9-year-old boy with Jervell and Lange-Nielsen syndrome and recurrent syncopal events during quinidine treatment from the original
publication in 1957.31 The very negative electromechanical window (−220 ms) heralded the sudden cardiac death that occurred 19 days later.
Figure used with permission and modified. AoP, aortic pressure; ECG, electrocardiogram; EMW, electromechanical window; LVP, left ventricular
pressure.
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variability of repolarization, e.g. short-term QT variability,18 sudden
T(U)-wave alterations,43 and T-wave alternans16,44 underscores the im-
portance of temporal repolarization lability. Early afterdepolarizations
or delayed afterdepolarizations,45 occurring spontaneously, after sud-
den heart-rate changes, or upon swift catecholaminergic surges,17,40,46

will augment local dispersion of ventricular repolarization (from experi-
mental data47–52 and computational studies52,53) and potentially fuel re-
entry. Critically timed premature impulses may arise from steep
repolarization gradients (‘R-from-T’)53 or from remote regions,
‘R-on-T’, both propagating unidirectionally away from the repolariza-
tion gradient, around a refractory core, and towards the region(s)
with late repolarization.37,51,52,54 Perpetuation of TdP is mostly
reentry-based and depends on these gradients.52,54

Clinical arrhythmia-risk assessment, of key importance for indivi-
dualized patient management, currently relies on electrical indices
like the QTc, besides clinical (age, gender, prior syncope), genotype-
and mutation-specific determinants.55–59 Symptomatic LQTS pa-
tients have, however, also (i) a longer Tpeak–Tend interval, proposed
as a surrogate body-surface electrocardiogram (ECG) marker of

global spatial dispersion of repolarization,60,61 (ii) steeper repolariza-
tion gradients (using non-invasive electrical mapping techniques),20

and (iii) increased temporal variability of QT.18 Despite these clinical
observations, these markers of spatial repolarization dispersion are
not (yet) routinely used for risk stratification as data are mainly based
on relatively small patient cohorts.

Mechanical pertubations in the
congenital long-QT syndrome
Evidence of LQTS-associated global and regional (subclinical) ven-
tricular mechanical abnormalities is mounting, bearing mechanistic,
and prognostic importance (Graphical Abstract, lower quadrants).
Since the landmark paper by Jervell and Lange-Nielsen in 1957, vari-
ous techniques have been employed to investigate the mechanical al-
terations in the congenital LQTS, such as phonocardiography,28,31

echocardiography,21–24,26,29 cardiac magnetic resonance imaging
(MRI),27 and invasive pressure recordings (Figure 1).62
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(A) Increased dispersion of repolarization assessed by 12-lead ECG by the Tpeak–Tend interval corrected for heart rate (Tpec). Modified from
Takenaka et al.39 (B) Steep epicardial recovery-time gradients without genotype-specific patterns by ECG imaging. Modified from Vijayakumar
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Table 1 Electrical, mechanical, and electromechanical parameters important for diagnostic and risk stratification in
long-QT syndrome

Control subjects LQTS patients Asympt. LQTS Sympt. LQTS Refs

ELECTRICS

QTc (ms) 391–428
(+22–27)

Diagnostic if QTc . 99th
percentile: 470 (m); 480 (f);
suspected if QTc. 460

450–462
(+38–44)

488–490
(+43–50)

29,32

Short-term QT
variability (ms)

4.1+ 1.6 6.4+ 3.2
(in LQT1+ LQT2)

5.4+ 2.2 9.2+ 3.9 18

Tpe (ms) 86+ 20 132+ 52 (LQT1)
191+ 67 (LQT2)

Not specified 39

Repolarization (ARI)
gradient (ms/cm)

2+ 2 119+ 19
92+ 18 (LQT1)
117+ 29 (LQT2)
129+ 14 (LQT3)
137+ 17 (LQT5)

98+ 19 130+ 27 20

MECHANICS

By echocardiography

QAoC (ms) In LQT1+ LQT2+ LQT3+ LQT5+ LQT6+ JLNS 29

379+ 31 408+ 37 405+ 33 412+ 42

CD (ms)

391+ 36

In LQT1+ LQT2+ JLN 25,26

426+ 41
425+ 37 (LQT1)
418+ 41 (LQT2)

414+ 37 442+ 40

Dispersion of CD (ms)
(�mechanical dispersion)

Whole heart 25,26

21+ 7 33+ 14
31+ 13 (LQT1)
32+ 14 (LQT2)

28+ 12 40+ 15

Longitudinal

20+ 7 36+ 15 27+ 12 45+ 13

Circumferential

14+ 11 36+ 23 26+ 21 46+ 22

GLS (%) −23+ 2 −22.1+ 2.1
−22.4+ 2.3 (LQT1)
−21.4+ 1.7 (LQT2)

Not specified 26

VRT (ms) 72+ 11 83+ 14 84+ 12 82+ 16 24,26

E′ (cm/s) 9.8+ 2.3–12.5+ 2.0 10.7+ 2.7 8.8+ 2 7.9+ 2 24,26

After-contractions (also by
invasive measurements)

— −/+ ++ 36,66,70

By TPM-MRI

TTPdia velocity (ms) In LQT1+ LQT2+ LQT5 27

Longitudinal

Base: 377+ 21
Mid: 390+ 25
Apex: 387+ 21

Base: 424+ 41
Mid: 424+ 41
Apex: 410+ 45

Not specified

Radial

Base: 362+ 23
Mid: 385+ 27
Apex: 395+ 21

Base: 424+ 41
Mid: 424+ 41
Apex: 424+ 41

Not specified

Continued
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Global mechanical alterations
In 1991, using M-mode echocardiography, Nador et al.21 demon-
strated that LQTS patients harbour global cardiac mechanical abnor-
malities, characterized by ‘a more rapid early contraction’ and ‘a
slower late wall thickening’. As a result, left ventricular (LV) systolic
ejection times prolonged substantially.21 Such prolonged LV contrac-
tion duration, later also shown with tissue-Doppler imaging (TDI),24

speckle-tracking echocardiography,25 and MRI27 was associated
with a higher arrhythmic risk in various LQTS cohorts (Table 1).
Furthermore, mean isovolumic relaxation time was prolonged.26

Interesting to note, in the setting of a particularly long-QT interval
(QTc 800 ms), the onset of polymorphic VTs was preceded by glo-
bally impaired systolic and diastolic function.63 Differences in the
extent of mechanical alterations have been observed between pa-
tients (and transgenic rabbit models) with LQT1 and LQT2,64 with
less pronounced alterations in LQT1.26 LQT3 patients had a short-
er contraction duration than LQT1 and LQT2 patients despite
comparable QTc.29 Whether these phenomena are mainly due
to genotype differences in the degree of repolarization prolonga-
tion, or whether the underlying ion-channel dysfunction explains
the mechanical alterations, remains to be elucidated.

Spatiotemporal mechanical dispersion
In line with the regional heterogeneity of repolarization, the extent
to which LV contraction prolongs in patients with LQTS may vary
per ventricular-wall segment, i.e. base-to-apex and transmurally
(Figure 2C and D, Table 1). This results in an exaggerated LV regional
dispersion of contraction duration and of peak strain in LQTS patients
compared with healthy controls,25,26 which appears most pro-
nounced in symptomatic LQT2 subjects.25 With tissue-phase map-
ping MRI, the segmental time-to-diastolic peak can be assessed as
an indicator of regional contraction–relaxation delays (Figure 2D).27

In nine paediatric LQTS patients, significantly longer longitudinal con-
traction–relaxation delays were present in the basal, mid, and apico-
septal segments compared with age- and sex-matched healthy
subjects.27 Reduced peak diastolic velocities, hinting to locally dis-
persed and impaired relaxation, were found in the apex.27

Furthermore, a reversed sequence of (longitudinal) apex-to-base re-
laxation became apparent (Table 1).27 Magnetic resonance
imaging-based mechanical mapping techniques hold promise especial-
ly with regard to assessing the apical mechanical behaviour, a region
often difficult to accurately assess by speckle-tracking echocardiog-
raphy but with a proarrhythmic potential.65

Reversed repolarization–relaxation
relation
Interestingly, LQTS-associated mechanical aberrancies may deviate
from what would be expected from the concomitant global and re-
gional repolarization abnormalities, especially in severe cases of
LQTS. As a result of the disproportionate prolongation of electrical
repolarization, the aortic-valve closure precedes the T-wave ending
by tens of milliseconds (while the opposite is observed in healthy
subjects).28,29 This so-called electromechanical window (EMW) is
measured by subtracting the time from the onset of the Q to the
closure of the aortic valve recorded with phonocardiography (S2),
TDI (closure line in the continuous wave), or the indent of the aortic
pressure curve (Figure 1A), from the QT interval of the same beat.
Although already described in 1957 as the difference in ‘electrical
and mechanical systole’ (Figure 1B),31 the importance of EMW nega-
tivity for arrhythmia-risk prediction was only recognized recently
(see section ‘Electromechanical reciprocity and arrhythmogenesis’,
Table 1).29,32 The EMW remains relatively constant over time in in-
dividuals,29 but can become exaggerated during instances of electrical
instability,66 sympathetic hyperactivity (as with exercise),67 or during

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued

Control subjects LQTS patients Asympt. LQTS Sympt. LQTS Refs

Apical peak diastolic
velocity (cm/s)

Longitudinal 27

−5.4+ 1.7 −3.7+ 1.1 Not specified

Radial

−5.9+ 1.1 −4.8+ 0.9 Not specified

Base-apex dispersion of
longitudinal TTPdia velocity
(ms)

−10+ 13 +14+ 15 Not specified 27

ELECTROMECHANICS

EMW (ms)

15–22 (+19–20)

In LQT1+ LQT2+ LQT3+ LQT5+ LQT6+ JLNS

−43 to −25 (+34–46)
−43+ 47 (LQT1)
−47+ 44 (LQT2)
−37+ 47 (LQT3)

−27 to −18
(+29–41)

−67 to −52
(+38–42)

29,32

Specific values for controls and patients with long-QT syndrome, subdivided per affected status are provided. ARI denotes activation–recovery interval. CD, contraction duration;

EMW, electromechanical window; GLS, global longitudinal strain; IVRT, isovolumic ventricular relaxation time; JLNS, Jervell and Lange-Nielsen syndrome; LQTS, long-QT syndrome;

Tpe, Tpeak-end; TPM-MRI, tissue-phase mapping-magnetic resonance imaging; TTPdia, time to diastolic peak velocity; QAoC, interval from Q-onset to aortic-valve closure.
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isoproterenol infusion,66 especially in case of an intrinsically weak IKs.
On the contrary, anti-adrenergic measures near-normalize EMW:
e.g. left-cardiac sympathetic denervation by shortening the QT68

and beta-adrenergic receptor blocker treatment by prolonging ven-
tricular contraction duration.29,69 Experimentally, Ca2+-channel
blockade shortened repolarization and prolonged LV-pressure dur-
ation, closing the EMW and preventing TdP.69 Limited clinical data
using invasive pressure recordings in a genotype-negative LQTS pa-
tient confirm these observations (Figure 3B).62 Further developments
of antiarrhythmic properties of electromechanical interventions aim-
ing to restore the abnormal repolarization–relaxation sequence or
to normalize regional mechanical perturbations70 may hold promise
for future arrhythmia management.

Electromechanical reciprocity and
arrhythmogenesis
Spatiotemporal dispersion of electromechanical interactions renders
the heart vulnerable to arrhythmia formation through various
mechanisms (Graphical Abstract, Figure 3).

First, the presence of a negative EMW, as in severe LQTS, implies
that the heart is subjected to deformation, by volume loading during
the rapid filling phase, when repolarization of the ventricles is still on-
going (Figure 3C). This creates a ‘sensitized’ electromechanical sub-
strate, in which inadvertent electrical or mechanical stimuli such as
local afterdepolarizations, aftercontractions, or edging dyssynchrony
can trigger abnormal impulses. Indeed, in an experimental setup of
isolated blood-perfused canine hearts, the amplitude of stretch-
induced monophasic action potential (MAP) afterdepolarizations
correlated significantly, within limits, with the rise in LV volume.14

From that same study,14 transient clamping of the proximal aorta
of in situ hearts led to a LV-pressure rise followed by the appearance
of MAP afterdepolarizations and premature ventricular complexes
(PVCs), the latter often in a pattern of bigeminy. Depending on
the timing and magnitude of LV volume or pressure changes, result-
ant mechano-electric feedback can induce afterdepolarizations, ex-
aggerate repolarization dispersion, and generate ventricular ectopy.
Differences in response may depend on variable mechanosensitivity
among the myocardial regions. Also, acute changes in preload and
mechanical stress by intravenous bolus applications prolonged
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QTc in both control- and drug-induced LQT2 rabbits, but with larger
effects in the latter,71 implying a higher mechanosensitivity in LQTS.
How global EMW negativity correlates with regional electromechan-
ical reciprocity is currently unknown and requires further in-depth
studies. In whole-heart Langendorff experiments, the extent of dis-
persion of APD correlated with the degree of contraction/relaxation
heterogeneities, suggesting an impact of electromechanical reci-
procity on the regional level.64,72 Ultrasound-based electromechan-
ical wave imaging73 or patient-specific characterization of
electromechanical disease substrates through combined clinical and
in silicomodelling74 may hold promise for the identification of the in-
dividual components underlying electromechanical reciprocity.
Future developments facilitating non-invasive high-resolution elec-
tromechanical mapping may provide novel mechanistic insights and
improve patient-specific risk prediction. From experimental studies
on drug-induced LQTS, it has become clear that local after
contractions and mechanical dyssynchrony are strongly associated
with PVCs and TdP initiation (Figure 3A).75 Left ventricular after
contractions can occur in the absence of a direct electrical trigger
and, in fact, precede concurrent MAP after-depolarizations by
tens of milliseconds.48 Amplitudes with substantial impact, occa-
sionally exceeding 25 mmHg, have been demonstrated, and these
mounted in the final beats before TdP onset. Electrocardiogram
changes, with T1T2 or TU waves, appeared as electrical footprints
of these aftercontractions (Figure 3A and D).39 Whether after
contractions are also related to arrhythmogenesis in human con-
genital LQTS is still unclear, but based on case studies with pressure
and TDI recordings their presence prior to arrhythmia onset is sus-
pected (Figure 3B and Table 1).62,66 Moreover, echocardiographic
post-systolic shortenings, which may be related to after
contractions, have been observed in symptomatic LQTS patients
at rest (Graphical Abstract, right lower quadrant).21,24,25 Whether
the site(s) of origin of aftercontractions co-localize with regional
mechanical dyssynchrony and/or sites of afterdepolarizations/ab-
normal impulse formation is currently unknown. Our preliminary
results on patients with gene mutations in KCNJ2, however, point
in that direction.76 In theory, aftercontractions may impact directly
on adjacent myocardium or Purkinje fibres via regional stretching,
and remotely through mechanical tethering 77 (Figure 3C). Stretch
imposed on cardiac Purkinje fibres increases their conduction vel-
ocity, without affecting resting membrane potential or APD, 78

and can also induce subthreshold after-depolarizations, PVCs, and
ventricular tachycardia.1

Secondly, the mechano-electrical substrate and related triggers
may be exaggerated by pause-dependent potentiation. Short–
long–short cycle-length variations significantly increase the ven-
tricular load and contraction of post-pause beats, besides prolong-
ing repolarization. This is often associated with an increased Tpeak–
Tend interval and U-wave amplitude, and even with ventricular ec-
topy in LQTS patients79 and experimental models. In one study
on LQT2 transgenic rabbits,80 short–long variation of the rate in-
creased APD dispersion. Importantly, Sauer et al. recently demon-
strated a link between an increased Tpeak–Tend interval and diastolic
dysfunction in unselected (non-LQTS) patients referred for exer-
cise echocardiography.81 They suggested that abnormal myocardial
relaxation is mechanistically associated with increased transmural
dispersion of repolarization, indicating that the pause-dependent

increase in volume load may potentiate both electrical and mechan-
ical abnormalities in LQTS.

Finally, sudden surges in sympathetic activity, a known arrhythmic
trigger in LQTS, cause non-uniform electromechanical responses,
such as increased dispersion of repolarization in both human sub-
jects44,82,83 and experimental models,38,84,85 also owing to the het-
erogeneity of cardiac autonomic innervation. While causing
positive inotropic and lusitropic effects, adrenergic activation also in-
creases the likelihood of after-depolarizations and aftercontractions
(Figure 3), and abnormal impulse formation.

On the cellular level, cardiac mechano-electric feedback is pri-
marily carried by cation selective and non-selective stretch-
activated channels (SACNS; reviewed in Refs.

1,86,87), but also by al-
tered conductivity of voltage-dependent (mechanosensitive) ion
channels (for instance ICaL, IKs, INa, IKATP), increased myofilament
Ca2+ sensitivity, and increased sarcoplasmic-reticulum Ca2+ re-
lease through a higher open probability of ryanodine channels.1

The electrophysiological impact of mechanical stressors depends
on their magnitude and timing (with respect to the phase of the ac-
tion potential), and on the mechanosensitivity of the myocardium.
Given the reversal potential of non-selective stretch-activated
channels,88 early applied systolic stretch (until the beginning of
Phase 3 at �0 to −20 mV) usually accelerates repolarization,89

whereas later stretch applications elicit repolarization prolonga-
tion and potentially mechanically induced ‘EADs’.

The QT interval on the surface ECG is a surrogate of global ven-
tricular repolarization, but some myocardial regions have shorter
APDs and these are already re-excitable during the rapid filling
phase, e.g. by stretch due to volume loading. This may elicit mech-
anically induced ‘early afterdepolarizations’. Furthermore, EMW
negativity may accentuate regional repolarization dispersion via
the aforementioned bimodal (repolarization-shortening vs.
-prolonging) stretch effects.

Markers of altered
electromechanical reciprocity
for risk stratification in long-QT
syndrome
Based on the aforementioned, arrhythmia-risk determination in LQTS
would benefit from the assessment of alterations in electromechanical
heterogeneities and reciprocity, especially in intermediate-risk or
genotype-negative LQTS patients, for whom risk assessment is often
difficult. Electromechanical window negativity correlates significantly
with major arrhythmic events in patients with LQTS and outperforms
the QTc as an independent predictor of arrhythmia risk.29,32 Other
parameters indicative of spatiotemporal (electro)mechanical disper-
sion have also been demonstrated to outperform QTc in small single-
center clinical or experimental studies: e.g. prolongation of radial strain
in the LV apex was associated with increased arrhythmic risk in a
cohort of 47 genotyped LQTS patients.65 More extensively pro-
longed time-to-diastolic peak measured by tissue-phase mapping
MRI, which indicates contraction–relaxation delays, and a more
pronounced mechanical dispersion, was observed in transgenic
LQT2 rabbits exhibiting ventricular arrhythmias than in those
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without arrhythmia; and proved to be a better risk discriminator
than the ‘classical’ electrical QTc or APD.90

From a meta-analysis,91 the weighted mean difference of various
mechanical indices including mechanical dispersion (weighted mean
difference 14.9), prolonged contraction duration (weighted mean
difference 40.6, ≥430 ms), and EMW negativity (weighted mean dif-
ference −26.4, ,−59 ms) was put forward. All outperformed QTc
(≥460 ms) regarding (intermediate) arrhythmia-risk assessment.91

This meta-analysis suggested the superiority of LV contraction dur-
ation,91 but no direct head-to-head comparison was made.

Altered electromechanical
relations in acquired QT
prolongation
Acquired QT prolongation is more prevalent than inherited LQTS. It
can be induced by numerous cardiovascular and non-cardiovascular
drugs (www.crediblemeds.org) that share the (most-often inadvert-
ent) effect of blocking repolarizing ion currents, such as IKr or IKs, or
reduce the membrane expression of ion-channel subunits by impair-
ing trafficking from the endoplasmic reticulum to the membrane.92

Genetic predisposition may favour acquired QT prolongation.93,94

Alternatively, QT prolongation may occur by electrical remodelling,
secondary to pressure or ventricular overload as in structural heart
diseases, but also due to endurance sports participation.95 If mechan-
ical alterations and mechano-electrically induced arrhythmias occur
similarly in acquired QT prolongation as in inherited LQTS, these
mechanisms may have an even broader impact and relevance for fu-
ture mechanism-based therapies.

While systematic studies on mechanical perturbations in patients
with drug-induced QT prolongation are lacking, a recent case report
argues that EMW negativity may be similarly associated with in-
creased risk for TdP as in congenital LQTS.96 Experimental data
on drug-induced QT prolongation in the rabbit (by IKr blocker
E4031; LQT2-like),72 the dog (IKs blocker HMR1556 or JNJ-303;
LQT1-like),38,69 and the guinea pig (multiple compounds)97 indicate
that acute (drug-induced) changes in ventricular repolarization cause
acute mechanical alterations in contraction duration, diastolic func-
tion, and EMW negativity. Mechanical alterations between genetic
(chronic) and drug-induced (acute) LQT2 models, however, differ,
which suggests that additional remodelling mechanisms (e.g. in
Ca2+ handling) in chronic LQT states may additionally affect mech-
anical function.98 For example, diastolic peak velocities are more af-
fected in longitudinal than in radial direction in drug-induced LQT2
hearts,64 while in genetic LQTS longitudinal and radial strain are simi-
larly affected.72 This occurs despite a correlation of (drug-induced or
genetic) alterations of electrical function with the extent of reduction
of diastolic peak velocities in both.64,72 Moreover, while systolic func-
tion is not changed in transgenic LQT2 rabbits,72 acute drug-induced
QT prolongation increased systolic peak velocities in LQT1 rabbits.64

Electrical remodelling in chronic complete atrioventricular con-
duction block may result in secondary QT prolongation and mech-
anical alterations such as prolonged isovolumic relaxation times.99

From experimental chronic atrioventricular block models, temporal
differences in electrical and subsequent mechanical remodelling
were identified.100 Serial in vivo measurements identified increased

end-diastolic myofibre stress and increased ejection strain as pri-
mary mechanical alterations, underlying electrical remodelling at
least partly.101 In this experimental model, increased mechanosensi-
tivity was noted upon beat-to-beat preload changes imposed by
PR-interval variability.102 Streptomycin, a non-selective SAC block-
er, abolished preload-induced exaggerated temporal dispersion of
repolarization. Recent data showed that inherited hypertrophic car-
diomyopathy, which is accompanied by acquired QT prolongation,
is also paralleled by substantial EMW negativity, which appeared a
strong predictor of arrhythmic events.103

Moreover, the repolarization abnormalities resulting from strenu-
ous endurance exercise and mechanical stress in some LQTS
genotype-negative patients underscore the importance of mechano-
electric feedback mechanisms during chronic ventricular load.95

Detraining, through relieve of chronic mechanical stretch and altered
autonomic balance, may normalize QT.95 Whether detraining also
restores electromechanical alterations requires further investigation.

In addition to electrical changes causing mechanical alterations in
the context of acquired QT prolongation, mechanical changes may
feedback on electrical function, including repolarization. Indeed,
several studies that investigated ECG parameters in patients with
diseases predisposing to (subclinical) LV-diastolic dysfunction, ob-
served increased Tpeak–Tend intervals

81 and longer QTc in patients
presenting with diastolic dysfunction than those without.104

Likewise, electrical parameters such as (long) QTc and (relative
short) Tend-P have been proposed as tool for the clinical identifica-
tion of patients with diastolic dysfunction,105 hinting towards a simi-
lar link between electrical and mechanical alterations as in
congenital LQTS. Also, even in healthy individuals, a correlation
of longer (but still normal) QTc with increased mechanical disper-
sion was recently described using strain echocardiography.106 It re-
mains unclear, however, whether in these diseases electrical
alterations precede mechanical alterations or vice versa. In prelim-
inary experiments in drug-induced LQT2 rabbit models, acute
changes in pre-load that caused changes in mechanical stress pro-
longed the QTc and increased QT dispersion.71 Overall, these
data indicate that acute changes in myocardial stretch may cause
additional alterations of electrical function in acquired LQTS. If
these changes exert regionally divergent effects, they may increase
proarrhythmic APD heterogeneity and thereby precipitate ar-
rhythmia formation in acquired QT prolongation.

Electromechanical reciprocity in
short-QT syndrome
These novel mechanistic and diagnostic insights based on electro-
mechanical profiling in the LQTS are paradigmatic for the under-
standing of arrhythmogenesis in other conditions. In the context of
this review, we will focus on the short-QT syndrome (SQTS) due
to its analogy to the LQTS.

The SQTS is an inherited channelopathy, in which gain-of-function
mutations in genes encoding for repolarizing K+ channels or
loss-of-function mutations in genes encoding for depolarizing Ca2+

channels cause an accelerated cardiac repolarization and hence a
shortened QT and APD.107 Similar to LQTS, SQTS was initially con-
sidered a ‘purely electrical’ disease with normal mechanical function
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as exemplified by a normal LV ejection fraction. This concept was
challenged, when Frea et al.108 performed tissue-Doppler and
speckle-tracking echocardiography in 15 SQTS patients (seven
SQT1, three SQT2, and five without knownmutation) and identified
reduced LV contraction and increased mechanical dispersion com-
pared with healthy controls. Whereas isovolumic contraction and
relaxation appeared unaffected (as described previously),107 systolic
ejection time was shortened and global longitudinal strain was re-
duced (Figure 4A). In follow-up analyses,109 a correlation was found
between the short QT interval, mechanical dispersion, and reduced
ejection time (Figure 4B) and linked to the subclinical systolic dys-
function. A comparable interplay between shortened repolarization
and reduced contractile function was found using computational
modelling.110 Reduced intracellular Ca2+ transients and reduced
active force were observed after incorporation of the SQT1 muta-
tion KCNH2-N588K into human ventricular electromechanical
computational models. Likewise, shortening of APD reduced ven-
tricular contractile efficiency by more than 60% as compared with
normal conditions—due to decreased tension development.111

Interestingly, when incorporating the KCNQ1-S140G mutation to
mimic SQT2,112 pumping efficiency of mutant ventricles was super-
ior to healthy hearts during sinus rhythm despite shortened APD,
suggesting potential genotype differences in mechanical function
also in SQTS. In transgenic SQT1 rabbit models, we recently

identified increased diastolic peak velocities in SQT1 hearts using
tissue-phase mapping MRI (Figure 4A), indicating facilitated diastolic
relaxation in SQT1, while global systolic function, and regional sys-
tolic peak velocities were unchanged.113

Similar to LQTS, electrical and mechanical changes in SQTS are
disproportionate. Contraction duration is not shortened to a simi-
lar extent as the shortening of ventricular repolarization, leading to
dissociation between the end of ventricular repolarization and the
end of mechanical systole. In contrast to LQTS, where the EMW is
pathologically negative, in SQTS, it is pathologically positive (in the
range of +111 ms114—in contrast to +22 ms in healthy subjects)
(Figure 4C).29 This holds also for other species, such as kangaroos
with a notoriously short QT time,115 and for drug-induced116 and
transgenic SQTS rabbit models,113 as well as in in silico modelling
studies.110

Schimpf et al.114 even observed that whereas the end of mechan-
ical systole occurred after the end of the T wave—and hence after
the end of ventricular repolarization—it often coincided with a U
wave in SQTS patients, suggesting that the U wave is caused by
mechano-electric interactions (Figure 4D).

The clinical (and experimental) evidence for electromechanical
reciprocity as the driving mechanism for arrhythmia formation in
SQTS is not (yet) as strong as in LQTS. Several observations, how-
ever, suggest such mechanistic role. Two publications on SQTS
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Figure 4 Electromechanical reciprocity in short-QT syndrome. (A) Alterations in systolic and diastolic mechanical function assessed by strain
echocardiography and tissue-phase mapping magnetic resonance imaging: reduced global systolic strain and improved diastolic function (increased
diastolic velocities) in short-QT syndrome patients and SQT1 rabbits. Modified from Frea et al.108 and Odening et al.113 (B) Increased mechanical
dispersion with regional differences in contraction duration (left) and diastolic peak velocities (right) in short-QT syndrome patients and SQT1 rab-
bits. Modified from Frea et al.108 and Odening et al.113 (C ) Shortened action potential duration (left) and shortened QT (right) are accompanied by a
near-normal contraction duration (active force, left; Q-LVPend, right) resulting in an increased (positive) electromechanical window based on com-
putational modelling and experimental–animal data with drug-induced levcromakalim (0.16 mg/kg i.v.). Modified from Adeniran et al.110 and van der
Linde.75 (D) Strain echocardiography indicating a potential mechanical origin of the electrical U wave. Modified from Schimpf et al.114 (left panel).
Rate of electrical- and mechanical-induced induction of ventricular fibrillation (right panel). Data from Schimpf et al.107 and O’Rourke et al.115
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describe that the placement of electrophysiological catheters into
the right ventricle (RV) or in the epicardial space during invasive stud-
ies lead to mechanically evoked PVCs and ventricular fibrillation (VF)
induction (which could in the latter case be prevented by local ad-
ministration of the INa blocker lidocaine). While, of course, this is
no ‘physiological’ situation, it does indicate that arrhythmia can be
easily induced by endocardial and epicardial external mechanical
stimuli/alterations. In line with these case reports, Schimpf et al.107

had already described in 2005 that in 3 out of 11 SQTS patients
who underwent invasive electrophysiological studies, catheter place-
ment in the RV or LV easily caused mechanically induced VF
(Figure 4D). While this is in general a very rare event during an elec-
trophysiological study, the fact that 30% of SQTS patients showed
this phenomenon may point to an increased electrical vulnerability
to mechanical stimuli or alterations in patients with SQTS.
Interestingly, this phenomenon has also been reported in the kangar-
oo, a species with short QT intervals, which has QTc intervals in the
range of 260 ms and features of hypertrophic cardiomyopathy.
O’Rourke et al.115 described the development of VF in 10/14 anaes-
thetized kangaroos during catheter placement into the LV
(Figure 4D).

In addition to this evidence of mechanically induced arrhythmia
formation, the above-discussed hypothesis for the mechano-electric
origin of the U wave (coinciding with the end of mechanical systole)
may also suggest a potential role of intrinsic mechanical alterations/
stretch for arrhythmia initiation.114 If the end of the mechanical sys-
tole causes the electrical phenomenon of a U wave, then it can be
reasoned that in certain conditions, when mechanically induced elec-
trical changes reach a certain threshold, these may also cause abnor-
mal impulse formation and even VT. Is there any clinical evidence that
abnormal impulse formation with a similar (late) timing after the T
wave may initiate VT/VF in SQTS? In a comprehensive analysis of
VT/VF initiation in 73 SQTS patients,117 two different types of coupling
intervals that initiated the arrhythmia were identified: very short coup-
ling intervals of around 230 ms with PVCs falling into the T wave, and
longer coupling intervals of around 350 ms with PVCs that appeared
after the end of the T wave—around the time when a U wave could
be appreciated on the surface ECG of SQTS patients - suggesting
mechanically induced ectopy. Interestingly, in transgenic SQTS rabbits,
spontaneous couplets and triplets selectively emerged with a longer
coupling interval well after the end of the Twave.113 Thus far, nomech-
anical assessments were made at the time of PVC occurrence. These
would be important to elucidate a potential temporal relation between
mechanical alterations and PVCs.

Concluding remarks
• Cardiac electromechanical reciprocity denotes the mutual influen-
cing of excitation–contraction and mechano-electric coupling in
the beating heart.

• External and cardiac-internal mechanical stimuli can trigger
electrical responses and arrhythmia depending on the stimulus
timing and magnitude, and on the mechano-sensitivity of the
myocardium.

• The LQTS, historically considered a purely electrical disease, is
characterized by globally and regionally prolonged contraction
duration and altered relaxation.

• Reversely, mechanical stress (such as during competitive sports)
can cause an acquired mechano-induced QT prolongation in sus-
ceptible patients, which is amendable by detraining.

• Changes inmechanical function in LQTSmay deviate fromwhatwould
be expected from global and regional repolarization abnormalities.

• Disproportionately long repolarization can outlast mechanical sys-
tole, thus creating a negative EMW.

• Electromechanical window negativity correlates significantly with
major arrhythmic events in patients with LQTS and performs bet-
ter as an independent predictor of arrhythmia risk thanQTc alone.

• Pause-dependent increases in ventricular load, besides repolariza-
tion prolongation, can evoke regionally different electromechanic-
al responses.

• Likewise, changes in sympathetic activity cause regionally different
electromechanical responses, also owing to the heterogeneity of
autonomic innervation.

• Exaggerated spatiotemporal electromechanical dispersion, the gen-
eration of afterdepolarizations and aftercontractions can contribute
to abnormal impulse formation and reentrant excitation.

• Experimental studies indicate that local aftercontractions and local
mechanical dyssynchrony are mechano-electric stressors that pro-
mote arrhythmogenesis.

• Global and regional mechanics characterized by strain echocardi-
ography or MRI, with the potential of being combined with
high-resolution electrical mapping, can improve risk management
in patients with LQTS.

• These novel mechanistic and diagnostic insights based on electro-
mechanical profiling in the LQTS are paradigmatic for the under-
standing of arrhythmogenesis in other inherited and acquired
cardiac conditions.

• Multidisciplinary real-time image integration of cardiac electro-
physiology and mechanics offers new opportunities to resolve cur-
rent challenges in arrhythmia management.
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