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Abstract: The emergence of drug resistance in cancer poses the greatest hurdle for successful thera-
peutic results and is associated with most cancer deaths. In triple negative breast cancer (TNBC), due
to the lack of specific therapeutic targets, systemic chemotherapy is at the forefront of treatments,
but it only benefits a fraction of patients because of the development of resistance. Cancer cells may
possess an innate resistance to chemotherapeutic agents or develop new mechanisms of acquired
resistance after long-term drug exposure. Such mechanisms involve an interplay between genetic,
epigenetic and metabolic alterations that enable cancer cells to evade therapy. In this work, we
generated and characterized a chemoresistant TNBC cell line to be used for the investigation of
mechanisms that drive resistance to paclitaxel. Transcriptomic analysis highlighted the important
role of metabolic-associated pathways in the resistant cells, prompting us to employ 1H-NMR to
explore the metabolome and lipidome of these cells. We identified and described herein numerous
metabolites and lipids that were significantly altered in the resistant cells. Integrated analysis of
our omics data revealed MSMO1, an intermediate enzyme of cholesterol biosynthesis, as a novel
mediator of chemoresistance in TNBC. Overall, our data provide a critical insight into the metabolic
adaptations that accompany acquired resistance in TNBC and pinpoint potential new targets.

Keywords: triple negative breast cancer; drug resistance; transcriptomics; metabolomics; lipidomics;
MSMO1; myo-inositol; cholesterol biosynthesis

1. Introduction

One in eight women will develop breast cancer during her lifetime turning it into
the most frequent tumor type in both sexes with >2.2 million new cases diagnosed in
2020 worldwide [1]; this number is expected to climb to >3 million per year by 2040
(https://gco.iarc.fr/tomorrow) (accessed on 1 July 2022). Despite significant advances in
diagnosis and treatment, the death toll from breast cancer reached ~0.7 million in 2020 [1]
and is predicted to rise to ~1 million per year by 2040 (https://gco.iarc.fr/tomorrow)
(accessed on 1 July 2022). Even though novel promising therapeutic modalities have been
introduced into clinical practice, conventional chemotherapy, including anthracyclines,
alkylating agents and/or taxanes, remains the frontline treatment, especially for patients
with triple negative breast cancer (TNBC), who lack therapeutic targets [2]. Most TNBC
patients initially show a good response to chemotherapy, but the majority will present with
relapse and metastasis 3–5 years after diagnosis as they become drug-resistant, and they
will eventually die of the disease [3].

Metabolic reprogramming describes the alterations in the metabolic pathways of tumor
cells, compared to their healthy counterparts, and is now considered one of the hallmarks of
cancer [4], as it is essential for the support of the neoplastic state. Rapid production of ATP
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and intermediate biomolecules is necessary for the intense macromolecule biosynthesis
occurring in the continuously dividing tumor cells and is ensured via their switching to a
more glycolytic phenotype [4]. This metabolic reprogramming is believed to be triggered
by mutations in oncogenes that affect the expression and activity of key metabolic enzymes,
leading to dysregulation of the associated pathways [4].

Interestingly, further metabolic rewiring occurs in certain cancer cells upon drug
exposure, as they adapt to the cytotoxic stress and develop mechanisms to evade it. For
example, chemoresistant cancer cells exhibit higher glucose and glutamine uptake and
increased catabolic rate of these nutrients, increased fatty acid oxidation and preference for
certain amino acids, when compared to their drug-sensitive counterparts (reviewed in [5]).
Analysis of the metabolomes of these two tumor populations may lead to the identification
of metabolic traits in the resistant cells that could be potentially targeted and can resensitize
these cells to drugs.

In the present work, we have developed and characterized a paclitaxel-resistant TNBC
cell line to be used as an in vitro model for target identification and verification. Analysis of
the transcriptomes of parental and drug-resistant cells revealed that the most significantly
upregulated genes in the latter were the ones associated with metabolic pathways and espe-
cially with lipid metabolism. We, therefore, proceeded with the metabolomic and lipidomic
profiling of the parental and paclitaxel-resistant cells. We identified numerous metabolites
and lipids that were significantly altered. Among them, myo-inositol, a component of
membrane lipids that is known to suppress tumor growth in vitro and in vivo, showed
a marked decrease in the resistant cells. Furthermore, integrated analysis of our omics
data led to the identification of MSMO1, a gene encoding for an intermediate enzyme of
cholesterol biosynthesis, as a novel mediator of chemoresistance in TNBC. Thus, our work
provides an important insight into the metabolic reprogramming that occurs in acquired
resistance of cancer cells to paclitaxel and highlights potential targets for the development
of new drugs that may be more effective against breast cancer.

2. Materials and Methods
2.1. Cell Culture and Generation of Paclitaxel-Resistant Cell Line

The SUM159 human TNBC cell line that belongs to the aggressive mesenchymal-like
subtype [6] was a generous gift from Dr. Weinberg (Whitehead Institute, Boston, MA,
USA). It was cultured in Ham’s F12 (LM-H1235/500, Biosera), supplemented with 5% fetal
bovine serum (Ref 10437-028, Gibco), 1% penicillin/streptomycin (XC-A4122/100, Biosera),
5µg/mL insulin (I9278, Sigma, St. Louis, MO, USA) and 1µg/mL hydrocortisone (H0888,
Sigma) in a humidified atmosphere of 5% CO2 at 37 ◦C. Cells were routinely passaged every
2 or 3 days and tested for mycoplasma. Paclitaxel-resistant SUM159 cells were generated
by exposure to 25 cycles of a 2-day treatment with escalating doses (0.005 µM–1 µM) of
paclitaxel (PATAXEL, Vianex S.A., Athens, Greece), followed by a recovery period in a
drug-free medium.

2.2. Cell Proliferation Assay

Cell proliferation assay was performed using the Incucyte Zoom system (Essen Bio-
Science, Hertfordshire, United Kingdom) and software, as per the manufacturer’s protocol.
Briefly, the SUM159 parental and paclitaxel-resistant cells were seeded in triplicate into
96 well plates at low confluency, and the Incucyte Zoom live-cell imaging system was used
to obtain phase contrast images of the cells every 6 h for a total of 72 h. Confluency was
determined using the associated software and the increase in cell number per well was
determined using the confluence readings at the beginning and end of the experiment. To
evaluate the effect of paclitaxel, serial dilutions of the drug (0.001–5 µM) were added to the
cells for 48 h, cell proliferation was estimated as described above and the GraphPad Prism
8.01 (San Diego, CA, USA) software was used to calculate the IC50 values.
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2.3. MSMO1 Knock-Down

Two small interfering RNAs (siRNAs) (siMSMO1-1: 5′-GAACAGACUCUCAGUAUA
AdTdT-3′ and siMSMO1-2: 5′-GCUGUGGAAUAUGUAGAUUdTdT-3′) previously pub-
lished [7] were used for transient MSMO1 knock-down and were transfected into cells
using Lipofectamine™ RNAiMAX Transfection Reagent (ThermoFisher Scientific, Waltham,
MA, USA), according to manufacturer’s instructions. A scrambled siRNA was used as a
negative control.

2.4. Immunofluorescence Analysis

SUM159 parental and paclitaxel-resistant breast cancer cells were seeded on coverslips
and the next morning they were treated with 0.5 µM of paclitaxel for 48 h. Subsequently,
the cells were washed with PBS, fixed with 4% PFA and incubated with a primary antibody
against tubulin (1:500) (Developmental Studies Hybridoma Bank (DSHB)-E7) for 1 h at
room temperature (RT), followed by a secondary antibody (Goat anti-Mouse IgG Alexa
Fluor 488, 1:400, cat. No. A-1100, ThermoFisher Scientific, Waltham, MA, USA) for 45 min
at RT. TOPRO-3 (cat. No. T3605, Invitrogen, ThermoFisher Scientific, Waltham, MA, USA)
and was used for DNA staining. A Leica SP5 confocal microscope was used to image the
specimens. All images were obtained using the same parameters (PMTs and offset) and
were processed in the same manner.

2.5. Quantification of Intracellular Doxorubicin by Fluorescence-Activated Cell Sorting (FACS)

SUM159 parental and paclitaxel-resistant cells were seeded in 12 well plates and the
next day they were treated with different concentrations of doxorubicin (Adriblastina,
Hydrochloride 10 mg/5 mL VIAL, Pfizer) for 6 h. Subsequently, cells were collected,
centrifuged (1500 RPM, 5 min, RT), resuspended in 100 µL PBS and analyzed using flow
cytometry on a BD FACS Aria II instrument (BD Biosciences, San Jose, CA, USA). Cells
were monitored based on the intrinsic fluorescence emitted by doxorubicin using the
phycoerythrin filter.

2.6. RNA Extraction, cDNA Synthesis and q-RT-PCR

For total RNA extraction the RNeasy Kit (Qiagen, Germantown, MD, USA) was
used. Total RNA concentration and purity was measured using the NanoDropTM 2000
(ThermoFisher Scientific, Waltham, MA, USA). For cDNA preparation and q-RT-PCR
experiments the PrimeScript 1st strand cDNA Synthesis Kit (TAKARA, Kusatsu, Shiga,
Japan) and the KAPA SYBR® FAST qPCR Kit Master Mix (2x) (cat. No. KK4602, KAPA
BIOSYSTEMS) were used, respectively.

2.7. RNA-Sequencing (RNA-seq) and Bioinformatic Analysis

RNA-seq libraries were prepared using the TruSeq RNA v2 kit (Illumina, San Diego,
CA, USA) from 1 µg of total RNA. The libraries were checked with the Agilent bioanalyzer
(DNA1000 chip) (Agilent, Santa Clara, CA, USA), quantitated with the qubit HS spec-
trophotometric method and pooled in equimolar amounts for sequencing. Approximately
25 million, 75-bp long, single-end reads were generated for each sample on an Illumina
NextSeq500 sequencer. For each sample, two biologically independent replicates were
sequenced yielding highly similar results.

Quality Control was performed with the fastq raw data file using the “FASTQC”
software (GPL v.3, Babraham Institute, Cambridge, UK). Normalization was performed
with the estimate size factor function followed by Differentially Expressed Genes Analysis.
The count files were used as input for DESeq2 (Bioconductor version: Release (3.13) [8]) for
the identification of DEGs between paclitaxel-resistant and parental cells with a statistically
significant cut-off value of p-adjust < 0.01. Additional cut-off criteria were set as fold-
change ≥ 2 and number of reads > 10. Gene ontology (GO) analysis for the DEGs was
performed using the Database for Annotation, Visualization and Integrated Discovery
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(David) (https://david.ncifcrf.gov/) (accessed in March 2022). Only categories with a
p-value < 0.05 were further analyzed.

2.8. Metabolite and Lipid Extraction

The SUM159 parental and paclitaxel-resistant cells were cultured as described above.
Cells were routinely passaged every 2 or 3 days. For the extraction of metabolites and lipids
of passage 3 cells, a modified protocol described by Teng Q et al. was used [9]. Briefly, a
mixture of methanol, chloroform and water in a ratio of 1:1:0.33 (v/v/v) was used for the
generation of a dual-phase procedure. Approximately 15 million cells of each cell line
were rinsed once using warm PBS and subsequently, cells were quenched using 6 mL of
cold HPLC-grade methanol (−80 ◦C) and were detached using a cell scraper. Cells were
collected in a glass tube and 3 mL of cold chloroform (−80 ◦C) were added to the tube.
Cells were vigorously vortexed, incubated on ice for 15 min and sonicated 3 times for 30 s
each round using a sonication probe in 30% amplitude. Addition of 3 mL of chloroform and
vigorous vortex followed. Finally, 2 mL of water were added in the tubes and cells were
vortexed and centrifuged at 1000× g for 15 min at 4 ◦C. After centrifugation, two phases
were generated. The methanol/water phase contained the polar metabolites, while the
chloroform phase contained non-polar lipid molecules. Proteins and other macromolecules
were trapped in the interphase. After collecting each phase separately, solvents were
evaporated under gentle N2 flow. Metabolites and lipids were stored at −80 ◦C until
NMR analysis.

2.9. 1H NMR Spectroscopy

All 1H NMR experiments were carried out on a Bruker Avance DRX NMR spectrometer
(NMR Center, University of Ioannina) operating at 500 MHz (proton resonance frequency).

Intracellular metabolites of breast cancer cells: A Bruker standard 1D Nuclear Over-
hauser Enhancement Spectroscopy (NOESY) presaturation pulse sequence (RD-90◦-t1-90◦-
tm-90◦-FID), with a relaxation delay of 4 s and a mixing time of 0.01 s was used for all
NMR experiments to suppress the water signal at 300 K. For each sample, the 1H NMR
spectrum was collected with 128 scans into 64 K computer data points with a spectral width
of 10,000 Hz and an acquisition time of 3.28 s. The free induction decays (FIDs) were multi-
plied with an exponential line-broadening factor of 0.3 Hz prior to Fourier transformation.
The phase and baseline of NMR spectra were manually corrected by applying a simple
polynomial curve fit with the TopSpin software package version 4.0.6 (Bruker Biospin,
Rheinstetten, Germany) and the chemical shifts were referenced to TSP (δ = 0.00 ppm).

Lipids of breast cancer cells: The dried lipid extracts of parental and chemoresistant
breast cancer cells were redissolved in a 500-microliter mixture of deuterated methanol/
chloroform (2:1, v/v). A “zgpr” Bruker pulse program was applied with the parameters as
follows: 64 scans, a 90◦ pulse, a relaxation delay of 4 s and a 5000-Hertz spectral width at
298 K. All FIDs were multiplied by an exponential weighting function corresponding to
0.3 Hz line-broadening factor and Fourier transformed into 32 K data points. The acquired
1H NMR spectra were manually corrected for phase and baseline distortions using TopSpin
software package version 4.0.6 (Bruker Biospin, Rheinstetten, Germany). Quantification of
the lipids was based on the integration of selected signals in the proton NMR spectrum,
corrected for the number of protons and then normalized with respect to the signal area
from the cholesterol C18 methyl group. The lipid composition was expressed as percentages
of the total lipids of breast cancer cells.

2.10. Targeted Metabolomic Profiling and Metabolomic Data Analysis

The Chenomx NMR Suite 8.4 profiler (Chenomx, Edmonton, AB, Canada) and the
Human Metabolome Database (http://www.hmdb.ca) (accessed January–May 2022) were
used for the identification of metabolites. The 500-Megahertz reference library of the
Chenomx NMR Suite software was used for the quantification of metabolites, and the
values of the metabolite concentration were presented in µM.

https://david.ncifcrf.gov/
http://www.hmdb.ca
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One-factor statistical analysis, enrichment pathway and joint-pathway analysis were
performed using MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) (accessed
January–June 2022).

The multivariate supervised method Partial-Least-Squares-Discriminant Analysis
(PLS-DA) [10] was used to construct a pattern recognition model for the parental and
resistant cells based on the 23 metabolites identified and quantified. Data were normalized
by median, while the data scaling was set at mean-centered and divided by the standard de-
viation of each variable prior to analysis. The PLS-DA analysis eliminated the uncorrelated
systematic variation and described the maximum separation between different groups. The
most important metabolites for the separation between the two groups were ranked using
the variable importance in projection (VIP) score. A 10-fold cross-validation (10-fold CV)
with Q2 as measure performance was used to select the optimum number of components
for classification. The Q2 value depicts a prediction error having 1 as the optimal value,
while a negative value of Q2 reflects an unreliable predictive model. For further validation
of the model, a permutation test was performed. Finally, a two-sample t-test was used to
examine the statistically significant difference for each metabolite separately between the
two groups.

Quantitative enrichment analysis was performed using the small molecule pathway
database (SMPDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
Data were normalized before the analysis as described above.

For joint-pathway analysis, all quantified metabolites and only the upregulated DEGs
in the paclitaxel-resistant cells were assessed, using the following parameters: metabolic
pathways (integrated), enrichment analysis-hypergeometric test, topology measure-degree
centrality and integration method-combined p-values (unweighted)”.

2.11. Statistical Analysis of Lipidomic Data

Univariate analysis: All data were expressed as mean value ± SD. Group comparisons
were performed with t-test for normally distributed data using the SPPS software v.22.0
(IBM, Armonk, NY, USA). A p-value < 0.05 was considered to indicate statistical significance.

Multivariate analysis: Unsupervised (principal component analysis, PCA) and super-
vised (orthogonal projections to latent structures discriminant analysis, OPLS-DA) multi-
variate techniques were used to construct a statistical model to extract specific lipidomic
signatures of breast cancer cells associated with chemoresistance.

Prior to analysis, NMR spectra were divided into buckets using the AMIX 3.9 software
(Bruker Biospin Corporation, Billerica, MA, USA). All data were normalized to the total
spectrum area and mean-centered prior to multivariate data analysis, carried out with the
SIMCA-P+ 14 software (Umetrics, Umea, Sweden). Initial exploration of the lipidomic
data was performed with PCA to identify possible groupings, trends and potential outliers
before supervised multivariate analysis using OPLS-DA. The OPLS-DA analysis eliminated
the uncorrelated systematic variation and described the maximum separation based on
class membership. The OPLS-DA scores plot was used to show observations lying outside
the 0.95 Hotteling’s T2 ellipse and to detect any grouping trend or separation, whereas
the OPLS-DA loading coefficient plot was used to show the contributions of all NMR
spectral regions or variables (corresponding to lipid components) to the grouping trend
or separation seen in the OPLS-DA scores plot. The performance of the OPLS-DA model
was assessed by goodness-of-fit parameters R2 (R2X and R2Y) and Q2, related, respectively,
to the explained and predicted variance calculated through 7-fold CV. Cross-validated
analysis of variance (CV-ANOVA) was also used to assess the significance of the OPLS-DA
model. When CV-ANOVA p-value was < 0.5, the OPLS-DA model was considered reliable.

3. Results
3.1. Establishment and Characterization of a Paclitaxel-Resistant TNBC Cell Line

To identify distinct traits of paclitaxel-resistant TNBC that can be used as potential
targets, we sought to develop an in vitro model by repeatedly exposing the SUM159 breast

https://www.metaboanalyst.ca/
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cancer cells to escalating doses of the drug (0.005–1 µM). The cytotoxic effect of paclitaxel
was monitored by employing real-time imaging using the Incucyte ZOOM system. The
chemoresistance of the cells under treatment was examined periodically by comparing
their IC50 value with that of the parental cells after 48 h of drug exposure. Eventually, the
generated cell line was >100-fold resistant to paclitaxel compared to the parental one, with
their IC50 values being 772 nM and 7 nM, respectively (Figure 1A). The morphology of the
paclitaxel-resistant (called PTX-res hereafter) cells was different than that of the parental
ones (Figure 1B) with the former presenting a more mesenchymal phenotype, a common
feature of chemoresistant cells [11,12]. Cell growth assays showed that the PTX-res cells
also had a significantly slower proliferation rate compared to the parental ones (p < 0.05)
(Figure 1C), an adaptation frequently developed by cancer cells to evade the cytotoxicity of
chemotherapeutic drugs targeting the rapidly proliferating cells [13].

It is well-established that paclitaxel binds to the β-tubulin subunit of microtubules
causing excessive stabilization, thus preventing normal formation of the mitotic spindle
during cell division and eventually leading to mitotic arrest and cell death [14]. Immunos-
taining with an antibody against β-tubulin showed a normal distribution of microtubules in
the cytoplasm both of the untreated parental and PTX-res cells (Figure 1D). Administration
of paclitaxel led to the rearrangement of microtubules and formation of bundle-shaped,
static structures in the cytoplasm of the parental cells, as well as to the appearance of
micronuclei (Figure 1D), which is one of the outcomes of abnormal mitosis (reviewed
in [15]). In contrast, the drug did not induce any changes in the microtubule organization
of the PTX-res cells (Figure 1D), confirming that they had developed mechanisms that
allowed them to evade its deleterious effects.

A common mechanism of acquired chemoresistance is the overexpression of ABC
membrane transporters that mediate an increased drug efflux, thus restricting cell exposure
to cytotoxic agents [16]. To investigate whether such a mechanism contributes to the
paclitaxel resistance of our cell line, we took advantage of its cross-resistance to doxorubicin
(Supplementary Figure S1A); this drug possesses intrinsic fluorescence that can be used in
fluorescence-activated cell sorting (FACS) experiments to monitor its intracellular levels [17].
Parental and PTX-res cells were subjected to FACS analysis after exposure to increasing
doses of doxorubicin and the results are presented in Figure 1E. Upon administration of
0.05 µM, 0.25 µM and 0.5 µM doxorubicin, almost all the PTX-res cells appeared negative
for drug intake, while there was a dose-dependent increase in the percentage of the parental
cells that stained positive (25.13%, 98.07% and 99.97%, respectively) (Figure 1F). Even at
the highest drug concentration (1.5 µM), only ~18% of the resistant cells were positive
for doxorubicin, while all the parental cells showed high intracellular levels of the drug
(Figure 1F). Consequently, it is safe to assume that one of the mechanisms that the PTX-res
cells had developed to survive the toxic levels of paclitaxel was the increased expression of
multidrug efflux pumps. This assumption was verified by transcriptome analysis, as it is
described in the next section.

Overall, we have established and characterized a new paclitaxel-resistant TNBC
cell line that displays several of the “classic” characteristics of acquired chemoresistance,
including a mesenchymal phenotype, a slower proliferation rate and an improved capacity
for drug outflow from the cells. Therefore, this cell line can be used as a valid in vitro
model to discover and study novel mechanisms that can be potentially targeted to alleviate
resistance to paclitaxel in TNBC.
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Figure 1. Establishment and characterization of SUM159 paclitaxel-resistant (PTX-res) cells. (A) The
generated cell line (PTX-res) demonstrates > 100-fold resistance, compared to the parental cells, when
treated with paclitaxel, as shown by their IC50 values. (B) The establishment of the drug-resistant
phenotype in SUM159 cells is associated with alterations in cellular morphology. (C) Growth kinetics
assay for SUM159 parental and PTX-res cells grown in culture for three days. (D) Immunofluorescence
staining for SUM159 parental and PTX-res cells with an antibody against tubulin (green) or TORPO3
(blue). (E) FACS analysis in SUM159 parental and PTX-res cells for intracellular uptake of doxorubicin
(red fluorescence) after a 6-hour incubation with different drug concentrations. (F) Quantification of
FACS analysis presented in (E). Error bars indicate the SEM of biological replicates (n = 3). *: p < 0.05,
**: p < 0.01, ****: p < 0.0001.
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3.2. Transcriptomic Analysis of the SUM159 Parental and PTX-Res Cells
3.2.1. Identification of Differentially Expressed Genes (DEGs)

To gain some insight into the gene networks involved in paclitaxel resistance in
TNBC, total RNA from SUM159 parental and PTX-res cells was isolated and analyzed by
RNA-seq. In total, we analyzed 27,967 genes that mostly exhibited a similar expression
pattern between the two cell lines (Pearson correlation coefficient r = 0.8697), as expected
(Figure 2A). Significant differences in the transcriptomic profiles of the two cell lines were
determined by bioinformatic analysis using DESeq2 that yielded a total of 3184 DEGs (see
Supplementary Table S1); 1802 DEGs were upregulated and 1382 were downregulated in
the PTX-res cell line (Figure 2B).
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A close inspection of our data revealed that several very highly expressed genes, such
as ABCB1, ABCB4, CROT, TP53TG1, DBF4, SLC25A40 and SRI (Supplementary Table S1),
were located at the same region in chromosome 7. According to previously published
studies, the amplification of the chromosome 7q21 region in tumors and cell lines after
multiple rounds of drug treatment is a frequent event that leads to overexpression of the
resident genes, including the aforementioned ones (reviewed in [18]). Notably, all these
genes have been linked before to drug-resistance and/or tumorigenesis (reviewed in [18]).

Other DEGs that were upregulated in the PTX-res cells (Supplementary Table S1)
included the β-tubulin encoding gene TUBB3, which has been associated with paclitaxel
resistance [19] and FZD2, a member of the Wnt receptor Frizzled family, which has been
shown to endow breast cancer cells with drug resistance [20]. On the other hand, the
downregulated genes in the PTX-res cell line (Supplementary Table S1) included genes of
which high expression levels are associated with a milder phenotype, such as GATA3 and
CADM1. The transcription factor GATA3 is overexpressed in lower grade breast tumors
with a better prognosis, while its low levels are correlated with larger tumors [21,22].
Similarly, a lack of expression of the cell adhesion molecule CADM1 is associated with
an advanced tumor stage, suggesting that inactivation of CADM1 promotes breast cancer
development [23,24].

The above data, taken together, validate our transcriptomic analysis and further
support the SUM159 PTX-res cell line as a sound model for extracting novel information
for targeting chemoresistance in TNBC.

3.2.2. Gene Ontology (GO) Analysis Reveals Cholesterol Biosynthesis as an Important
Process in SUM159 PTX-Res Cells

To further investigate the biological significance of our data and uncover pathways
that are involved in paclitaxel resistance, we performed GO analysis for the DEGs using
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the DAVID Functional Annotation Bioinformatics Microarray Analysis. We focused on
the upregulated DEGs, since our main goal was to identify genes whose protein products
could be potentially blocked or inhibited yielding a less resistant phenotype.

Figure 3A illustrates the most significantly enriched biological processes in the SUM159
PTX-res cells. Notably, “cholesterol biosynthesis” is the process that tops the list. Choles-
terol is an important component of the cell membrane and the precursor molecule of
steroids. Recent studies have highlighted the accumulation of cholesterol in malignant
tissues as a feature of cancer cells [25] and the involvement of cholesterol metabolic path-
ways in cancer cell resistance [26]. The other significantly enriched biological processes
have also been associated with drug resistance before. It has been reported that redox
homeostasis is involved in drug resistance in breast [27,28] and lung cancer [29]. As it was
noted in the previous section, the overexpression of ATP-dependent efflux pumps, such as
ABCB1, ABCB4 and ABCG2, is a common phenomenon in drug-resistant cancers [30–32]
and these genes were included in the “response to drug” process in our data (Figure 3A).
Overexpression of hypoxia-related genes has been associated with poorer prognosis and
drug resistance in breast cancer [33]. Increased expression levels of different classes of
tubulin have been described as a mechanism of paclitaxel resistance in breast, ovarian
and lung cancer [34–36]; such genes were identified in the “microtubule-based” process
(Figure 3A), suggesting that this is one of the resistance mechanisms developed in our
cell line. Several studies have demonstrated that drug treatment triggers the migration
of cancer cells and that chemoresistant cells display a higher migration potential [37–39]
explaining the appearance of the “cell migration” process in the upregulated DGEs in
the PTX-res cells. Deregulation of the “Wnt signaling pathway” has been linked before
to the development of resistance to anti-cancer agents leading to poor overall survival
in TNBC [40]. Finally, the enriched process of “Doxorubicin metabolism” confirms the
cross-resistance of PTX-res cells to doxorubicin, which we experimentally documented
(Supplementary Figure S1A).
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Figure 3. Gene Ontology (GO) analysis of SUM159 paclitaxel-resistant (PTX-res) cells (A). The
most significantly enriched biological processes for the upregulated DEGs resulting from David
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from David analysis.

In summary, the biological processes found enriched in the upregulated DEGs in the
PTX-res cells are in accordance with previous studies reporting on properties of chemore-
sistant cells and further support the validity of our paclitaxel-resistant model.

We also performed KEGG pathway analysis for the upregulated DEGs and the results
revealed fourteen significantly enriched pathways in the PTX-res cells with the top five
presented in Figure 3B. This analysis confirmed “cholesterol/steroid biosynthesis” as
the most significantly enriched process and also revealed other metabolism-associated
pathways, in agreement with the prevailing concept that altered metabolism is one of the
hallmarks of drug resistance in cancer [41].

The above data led us to study further the SUM159 parental and PTX-res cells seeking
to verify that the transcriptomic discrepancies are also reflected on the metabolomic and
lipidomic profiles of the cells.
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3.3. Metabolomic Analysis of the SUM159 Parental and PTX-Res Cells
3.3.1. Metabolite Quantification

NMR spectra from SUM159 parental and PTX-res cells were processed using the
Chenomx software. Metabolites that showed great variation among independent exper-
iments or overlapped with other peaks in the spectra, making their identification and
quantification questionable, were excluded from further analysis. In total, twenty-three
metabolites were identified with high confidence and were quantified in both cell lines
(Figure 4). The concentration of the 23 metabolites ranged widely from 2.8 ± 0.38 to
495 ± 67 µM in the parental (Figure 4A) and from 3.6 ± 0.78 to 485 ± 63 µM in the PTX-res
cell line (Figure 4B). Several amino acids were detected in both cell lines, including arginine,
glutamine, proline and threonine, ranging between 40–95 µM in the parental and between
33–85 µM in the PTX-res cells. Lactate, the main product of glycolysis, appeared to be the
most abundant metabolite in both cell lines, while glucose, the main energy fuel of the cells,
was detected in similar levels (208 ± 27 µM for parental and 198 ± 11 µM for PTX-res cells).
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to 485 ± 63 µM. Error bars indicate the SEM of biological replicates (n = 6).

Nonetheless, several metabolites (arginine, creatine phosphate, myo-inositol and phospho-
choline) appeared to vary considerably between the two cell lines (Supplementary Figure S2),
which prompted us to proceed with a more systematic analysis and comparison of their overall
metabolic profiles.

3.3.2. Metabolic Profile Analysis Reveals Significant Differences between the SUM159
Parental and PTX-Res Cells

The supervised multivariable quantitative PLS-DA of the overall metabolic profiles of
the SUM159 parental and the PTX-res cells was carried out to determine whether the two
cell lines were metabolically distinct. This analysis revealed a sharp separation between
their metabolic profiles, as shown in Figure 5. The pairwise score plot of the first three
components and the 2D score plots of component 1 vs. 2 and component 1 vs. 3 are
presented in Figure 5A,B, respectively. The 15 most important metabolites accounting
for the separation of the metabolic profiles of the two cell lines were ranked using the
Variable Importance in Projection (VIP) score. Metabolites with higher VIP scores are
considered more relevant in group separation (Figure 5C). As shown in Figure 5C, myo-
inositol, a component of membrane phospholipids that mediates cell signal transduction
and participates in osmoregulation [42], is the most significant metabolite having a VIP
score ≥2 in all three components. Phosphocholine, creatine phosphate, threonate, pyruvate,
arginine, formate, 2-hydroxyisobutyrate and 2-phosphoglycerate also contributed strongly
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to the separation of the two metabolic profiles with a VIP score ≥1 in all three components
(Figure 5C).

Figure 5. Partial Least Squares-Discriminate Analysis (PLS-DA) using MetaboAnalyst for SUM159
parental and PTX-res cells. (A) Pairwise score plot for the top three components. (B) Two-dimensional
score plots for components 1 and 2 (left) and for components 1 and 3 (right), clearly showing
the separation for the overall metabolic profiles of the two cell lines. (C) The 15 most important
metabolites for group separation ranked by the variable importance in projection (VIP) score for each
of the three components. The colored boxes indicate the relative concentrations of the corresponding
metabolite in each group under study, with red indicating high and blue indicating low concentrations.
Myo-inositol exhibits the highest VIP score. (D) A 10-fold cross-validation (10-fold CV) with Q2 as
measure performance for the estimation of the predictive ability of the model. The R2 and Q2 values
are presented in the table. (E) Permutation test showing a p-value < 0.05 for further validation of the
model. The number of permutations was set at 20. (F) t-test using a p-value threshold of 0.05 was used
for finding the statistically significant metabolites, with myo-inositol being the most significant one.
*: p < 0.05.
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The validity and accuracy of the predicted model were assessed using a 10-fold cross-
validation (CV) for the three components. In our data, the three components delivered a
valid prediction model with Q2 being 0.64 and R2 being 0.97 (Figure 5D). Employment of
the permutation test further validated the above predictive model. The histogram presented
in Figure 5E shows the distribution of 20 sets of permutated samples with a p-value < 0.05.
The bar on the right of the diagram represents the original sample, while the bars on the
left represent the permutated samples. This test also confirms that there is a significant
separation of the metabolic profiles of the two cell lines.

A two-sample t-test identified six metabolites with significantly different levels
(p-value ≤ 0.05) between the two cell lines (Figure 5F). Myo-inositol exhibited reduced
levels in the PTX-res cells, as did creatine phosphate, threonate and arginine. On the
other hand, phosphocholine and pyruvate were increased in the resistant cells (see also
next section).

It is noteworthy that most of these metabolites have been associated with cancer,
where they seem to play complex roles [43–46]. Myo-inositol, which emerged as the most
important compound in the separation of the two cell lines on the metabolic level, is
described as a strong inhibitor of tumor initiation and progression [47]. Our data suggest
that its reduced levels may be a marker of resistance to paclitaxel in TNBC.

3.3.3. Metabolite Set Enrichment Analysis

Next, we performed metabolite enrichment analysis to determine whether there
were biologically important sets of functionally related metabolites that were significantly
enriched in our data. All the quantified metabolites were included in this analysis and the
reference databases used were KEGG [48] as well as the small molecule pathway database
(SMPDB) [49].

Several KEGG metabolism-related pathways were found enriched in the PTX-res cells
and the top 25 are presented as dot plots in Figure 6A. Eleven metabolite sets were found
significantly enriched (p < 0.05 and FDR < 0.1) (Figure 6A,B). Figure 6C illustrates the con-
centration levels of the metabolites included in each set in the two cell lines. Myo-inositol,
which was decreased in the resistant cells, was present in the top four sets (Figure 6B,C).
Phosphocholine, which was more abundant in the PTX-res cells (Figure 6C), was the only
metabolite in our data associated with the “phosphonate and phosphinate metabolism” set
(Figure 6B). The “arginine and proline metabolism” set was represented by five metabolites
in our data (arginine, creatinine, proline, phosphocreatine and pyruvate) with arginine and
phosphocreatine showing significantly lower and pyruvate showing significantly higher
levels in the PTX-res cells (Figure 6C). Two metabolites, choline and phosphocholine, were
associated with “glycerophospholipid metabolism” with the latter being significantly more
abundant in the PTX-res cells (Figure 6C). Finally, out of the four metabolites associated
with the metabolic set “glyoxylate and dicarboxylate metabolism”, only pyruvate showed
significantly higher levels in the PTX-res cells (Figure 6C). Similar metabolite sets were
significantly enriched (p < 0.05) in the resistant cells, when the analysis was conducted
using the SMPDB (Supplementary Figure S3).

Overall, the above analysis revealed several pathways that contributed to the dis-
tinction between the metabolic profiles of the two cell lines. Next, we proceeded with an
integrated analysis of the transcriptomic and metabolomic data to identify DEGs that play
an important role in the altered metabolism of the PTX-res cells.

3.3.4. Joint-Pathway Analysis

Joint-pathway analysis was conducted using MetaboAnalyst [50] to find genes that
are associated with the metabolic pathways that were found enriched in our data. All the
quantified metabolites and the upregulated DEGs in the PTX-res cells were included in the
analysis. An overview of the matched pathways from this analysis is shown in Figure 7A.
There were five statistically significant enriched pathways, which were represented both
by quantified metabolites and DEGs from our data, as shown in Figure 7B. “Arginine and
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proline metabolism” was the pathway that included the highest number of metabolites
(five) and a high number of DEGs (seven). This prompted us to further explore the clinical
significance of our findings using the GEPIA database (http://gepia.cancer-pku.cn/index.
html) (accessed in April 2022). As shown in Figure 7C, four out of the seven upregulated
DEGs in this metabolic set are significantly overexpressed in breast tumors compared to
normal samples.
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Figure 7. Joint-Pathway Analysis using MetaboAnalyst. (A) Overview of the matched pathways ac-
cording to the p-values resulted from joint-pathway analysis of the upregulated DEGs and quantified
metabolites. Dots illustrate all the pathways that were found enriched represented by upregulated
DEGs and/or quantified metabolites. (B) The statistically significant enriched pathways (p < 0.05)
represented by both upregulated DEGs and metabolites. Numbers indicated the respective dots
in (A). Upregulated DEGs and quantified metabolites matching with each pathway are presented.
(C) Genes associated with the “Arginine and proline M” and found statistically significant different
between breast cancer tumors and normal samples in GEPIA database. M; metabolism/metabolites,
G; genes. *: p < 0.05.

Hence, the joint analysis of our transcriptomics and metabolomics data pinpointed
several metabolism-associated genes that are overexpressed in the PTX-res cells. Among
them, the ones involved in the arginine–proline metabolism may be clinically significant in
breast cancer.
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3.4. Lipidomic Profile Analysis

3.4.1. 1H NMR Spectra Analysis of the Lipid Extracts

Representative 1H NMR spectra of the lipid extracts from the parental and PTX-res
cells are presented in Supplementary Figure S3. For visual comparison of the cell lipid
composition, spectral intensity was normalized for the Tetramethylsilane (TMS) peak at
0.00 ppm. The lipid fraction of the PTX-res cells appeared to be enriched in free cholesterol
(FC), choline phospholipids (PLs) [phosphatidylcholine (PC) and sphingomyelin (SM)] and
total sphingolipids (SLs) and depleted of cholesterol esters (CE), lysophosphatidylcholine
(LysoPC), plasmalogens, total ether glycerolipids (GLs), unsaturated fatty acids (UFA) and
polyunsaturated fatty acids (PUFA) compared to that of the parental cells. Visual inspection
did not reveal any marked differences between the two cell lines for signals attributed to
phosphatidylethanolamine (PE), diacylglycerophospholipids (DAGPLs), triglycerides (TG),
linoleic acid (LA) and fatty acid constituents such, as docosahexaenoic acid (DHA) and the
sum of eicosapentaenoic and arachidonic acid (EPA + AA) (Supplementary Figure S4).

3.4.2. Lipidomic Profiles of SUM159 Parental and PTX-Res Cells

We applied an untargeted and targeted lipidomic approach for the identification
of differences in the lipid profiles of parental and PTX-res cells and for the quantitative
alterations in the individual lipid classes.

For the untargeted analysis, the buckets resulting from the division of the NMR spectra
were initially examined by the unsupervised PCA to check the consistency and the quality
of the data. The corresponding PCA scores plot (data not shown) revealed a separation
trend between the PTX-res and parental cells and no distinct outliers were observed. In the
OPLS-DA analysis, the score plot for the parental vs. PTX-res model (Figure 8A) showed a
clear separation between the two groups with good goodness-of-fit and predictive power
(R2X = 0.873, R2Y = 0.868, Q2 = 0.775 and p < 0.05). The analysis of the relative significance
of each constituent in the groups’ separation, as illustrated in the loading coefficient plot
(Figure 8B), revealed that the determining factors were the higher levels of PC, PLs and
FC in the PTX-res cells, as well as SM, TG, SLs and plasmalogens, albeit with a lower
significance, and the lower levels of CE. Furthermore, in the PTX-res cells, lipids were
preferably esterified with saturated fatty acids (SFA) rather than UFA.

Thereafter, a quantitative targeted analysis of individual major and minor lipid con-
stituents (Figure 9) and fatty acid pattern (Table 1) was performed. We quantified well-
resolved signals in the NMR fingerprint attributed to protons of cholesterol in its free and
esterified form, the headgroups and backbones of phospholipids and sphingolipids, the
glycerol backbone, and fatty acids—All of them being esterified. It is worth noting that the
results in the targeted analysis are totally consistent with those found in the untargeted
multivariate analysis.

Table 1. Fatty acid profile of the lipid extracts from PTX-res and parental cells. Values are expressed
in percentages of total lipids (mol/100 mol of Total Fatty Acids) and are means ± SD.

Parental Chemoresistant p-value

% Saturated 52.95 ± 0.60 55.69 ± 0.60 <0.05
% Unsaturated 47.05 ± 0.60 44.31 ± 2.17 <0.05

% Monounsaturated 4.19 ± 0.38 4.86 ± 0.51 NS
% Polyunsaturated 42.87 ± 0.80 39.45 ± 2.05 <0.05

Linoleic Acid
Eicosapentaenoic + Arachidonic Acid

Docosahexaenoic Acid

4.72 ± 0.11
15.58 ± 0.25
2.76 ± 0.06

3.93 ± 0.21
13.51 ± 1.14
2.29 ± 0.10

<0.001
<0.05
<0.001

Ratio

Saturated/Unsaturated 1.13 ± 0.03 1.26 ± 0.11 NS
Saturated/Polyunsaturated 1.24 ± 0.04 1.42 ± 0.13 <0.05



Cells 2022, 11, 2719 16 of 23Cells 2022, 11, x  16 of 24 
 

 

 
Figure 8. OPLS-DA score plot of the lipidomic data from (Α) SUM159 PTX-res cells (red circles) and 
SUM159 parental cells (black circles); (B) the corresponding regression coefficient plot colored ac-
cording to the correlation between the NMR lipidomic data and the group studied. 

Thereafter, a quantitative targeted analysis of individual major and minor lipid con-
stituents (Figure 9) and fatty acid pattern (Table 1) was performed. We quantified well-
resolved signals in the NMR fingerprint attributed to protons of cholesterol in its free and 
esterified form, the headgroups and backbones of phospholipids and sphingolipids, the 
glycerol backbone, and fatty acids—All of them being esterified. It is worth noting that 
the results in the targeted analysis are totally consistent with those found in the untargeted 
multivariate analysis. 

Table 1. Fatty acid profile of the lipid extracts from PTX-res and parental cells. Values are expressed 
in percentages of total lipids (mol/100 mol of Total Fatty Acids) and are means ± SD. 

 Parental Chemoresistant p-value 
% Saturated 52.95 ± 0.60 55.69 ± 0.60 <0.05 

% Unsaturated 47.05 ± 0.60 44.31 ± 2.17 <0.05 
% Monounsaturated 4.19 ± 0.38 4.86 ± 0.51 NS 
% Polyunsaturated 42.87 ± 0.80 39.45 ± 2.05 <0.05 

Linoleic Acid 
Eicosapentaenoic + Arachidonic Acid 

Docosahexaenoic Acid 

4.72 ± 0.11 
15.58 ± 0.25 
2.76 ± 0.06 

3.93 ± 0.21 
13.51 ± 1.14 
2.29 ± 0.10 

<0.001 
<0.05 

<0.001 
Ratio    

Saturated/Unsaturated 1.13 ± 0.03 1.26 ± 0.11 NS 
Saturated/Polyunsaturated 1.24 ± 0.04 1.42 ± 0.13 <0.05 

Figure 8. OPLS-DA score plot of the lipidomic data from (A) SUM159 PTX-res cells (red circles)
and SUM159 parental cells (black circles); (B) the corresponding regression coefficient plot colored
according to the correlation between the NMR lipidomic data and the group studied.

Cells 2022, 11, x  17 of 24 
 

 

 
Figure 9. NMR-based compositional characteristics of (A) the major cellular membrane lipid classes 
and (B) phospholipids in PTX-res cells and parental cells. Values are expressed in percentages of 
total lipids (mol/100 mol of Total Lipid Content) and are means ± SD. Abbreviations: CE, Cholesterol 
Esters; DHA, Docosahexaenoic acid; EPA + AA, Eicosapentaenoic and Arachidonic acid; FA acyl 
chain, Fatty acid acyl chain, FC, Free cholesterol; LA, Linoleic acid; LysoPC, Lysophosphatidylcho-
line; PC, Phosphatidylcholine; PLs, Phospholipids; PUFA, Polyunsaturated fatty acids; SFA, Satu-
rated fatty acids; SLs, Sphingolipids; SM, Sphingomyelin; TG, Triglycerides; UFA, Unsaturated fatty 
acids. 

The percentage of total cholesterol (TC) was significantly lower in chemoresistant 
cells compared to parental due to the lower percentage of CE, whereas FC was signifi-
cantly higher, resulting in a significant decrease in the CE/FC ratio (Figure 9). The signifi-
cantly higher percentages of total glycerophospholipids (GPLs) and total SLs observed in 
PTX-res cells compared to parental have mainly caused the higher percentage of total PLs, 
while total ether GLs were significantly lower (Figure 9). PC, PE and PI presented a sig-
nificant increase in PTX-res cells compared to parental, whereas LysoPC and the rest of 
GPLs were significantly lower. For the ether GLs, the percentages of the total content, 
plasmalogens and the rest ether GLs were significantly lower in PTX-res cells compared 
to parental. Finally, as seen in Figure 9B, the percentage of total SLs was higher in PTX-
res cells compared to parental, mainly due to a significant increase in SM, while the per-
centage of the rest of SLs was significantly lower. The aforementioned alterations resulted 
in significantly higher molar ratios of PC/LysoPC and SM/LysoPC and lower ratios of 
TC/PLs, PC/SM, TC/PC and TC/SM in the PTX-res cells compared to parental. Thus, this 
analysis showed that PTX-res cells presented statistically significant differences in the per-
centages of all lipid classes (triglycerides, phospholipids and cholesterol in both free and 
esterified form) compared to parental. 

Table 1 shows a comparison of the fatty acid composition of the lipid fraction from 
the two cell lines. The percentage of SFA was significantly higher in PTX-res cells com-
pared to parental, whereas that of UFA was lower mainly due to individual PUFA such 
as LA, the sum of EPA + AA and DHA. Monounsaturated fatty acid content was not al-
tered. These changes in the fatty acid pattern led subsequently to significantly higher ra-
tios of saturated to polyunsaturated fatty acids in the PTX-res cells (Table 1) and thus, to 
a shift from the unsaturation toward saturation state that potentially affects the properties 
of cell membrane. 

  

Figure 9. NMR-based compositional characteristics of (A) the major cellular membrane lipid classes
and (B) phospholipids in PTX-res cells and parental cells. Values are expressed in percentages of total
lipids (mol/100 mol of Total Lipid Content) and are means ± SD. Abbreviations: CE, Cholesterol
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The percentage of total cholesterol (TC) was significantly lower in chemoresistant cells
compared to parental due to the lower percentage of CE, whereas FC was significantly
higher, resulting in a significant decrease in the CE/FC ratio (Figure 9). The significantly
higher percentages of total glycerophospholipids (GPLs) and total SLs observed in PTX-res
cells compared to parental have mainly caused the higher percentage of total PLs, while
total ether GLs were significantly lower (Figure 9). PC, PE and PI presented a significant
increase in PTX-res cells compared to parental, whereas LysoPC and the rest of GPLs were
significantly lower. For the ether GLs, the percentages of the total content, plasmalogens and
the rest ether GLs were significantly lower in PTX-res cells compared to parental. Finally,
as seen in Figure 9B, the percentage of total SLs was higher in PTX-res cells compared
to parental, mainly due to a significant increase in SM, while the percentage of the rest
of SLs was significantly lower. The aforementioned alterations resulted in significantly
higher molar ratios of PC/LysoPC and SM/LysoPC and lower ratios of TC/PLs, PC/SM,
TC/PC and TC/SM in the PTX-res cells compared to parental. Thus, this analysis showed
that PTX-res cells presented statistically significant differences in the percentages of all
lipid classes (triglycerides, phospholipids and cholesterol in both free and esterified form)
compared to parental.

Table 1 shows a comparison of the fatty acid composition of the lipid fraction from the
two cell lines. The percentage of SFA was significantly higher in PTX-res cells compared
to parental, whereas that of UFA was lower mainly due to individual PUFA such as LA,
the sum of EPA + AA and DHA. Monounsaturated fatty acid content was not altered.
These changes in the fatty acid pattern led subsequently to significantly higher ratios of
saturated to polyunsaturated fatty acids in the PTX-res cells (Table 1) and thus, to a shift
from the unsaturation toward saturation state that potentially affects the properties of
cell membrane.

3.5. The Methylsterol Monooxygenase 1 (MSMO1) Gene Is Upregulated in the SUM159 PTX-Res
Cells and Mediates Resistance to Paclitaxel

The fact that the analysis of the transcriptomics and lipidomics data converged to
cholesterol and cholesterol biosynthesis (Figures 3A and 9A) being upregulated in the
PTX-res cells urged us to look into the associated genes more carefully. Notably, all genes
encoding for the intermediate enzymes in the cholesterol biosynthesis pathway (shown in
Supplementary Figure S5) were upregulated in the PTX-res cells (see Table S1) with the ex-
ception of SC5DL. The second most highly expressed gene was MSMO1, which is involved
in several steps of cholesterol biosynthesis (shown in blue in Supplementary Figure S5) [51].

Our RNA-seq data indicated that MSMO1 mRNA expression levels were ~9-fold
higher in the PTX-res cells compared to the parental ones, a finding that was also confirmed
by RT-qPCR (Figure 10A). To determine whether MSMO1 was clinically significant, we
searched gene expression data from breast tumors using GEPIA and the results are pre-
sented in Figure 10B. The MSMO1 mRNA levels are significantly increased in specimens
from patients with breast cancer compared to normal breast tissue samples (Figure 10B).

To investigate the involvement of MSMO1 in paclitaxel resistance, we knocked it down
in SUM159 PTX-res cells (Figure 10C) and examined the effects by employing real-time
imaging using the Incucyte ZOOM system (Figure 10D). The results showed that MSMO1
knock-down significantly decreased the resistance of SUM159 PTX-res cells to paclitaxel
with the IC50 value for the drug dropping from 627.1 nM to 281.4 nM (Figure 10D). These
data strongly suggest that overexpression of MSMO1 contributes to the acquired resistance
to paclitaxel in the SUM159 PTX-res cells.
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Figure 10. MSMO1 is overexpressed and mediates paclitaxel resistance in SUM159 PTX-res cells.
(A) MSMO1 mRNA levels in SUM159 parental and PTX-res cells as determined by RNA-seq and
RT-qPCR. (B) Box plot shows that MSMO1 is overexpressed in breast tumors vs. normal tissue
(data from GEPIA). (C) RT-PCR for MSMO1 mRNA levels in SUM159 PTX-res cells after knock-
down. (D) SUM159 PTX-res cells were knocked-down for MSMO1 and then treated with different
concentrations of paclitaxel. Cell confluency was measured using the Incucyte Zoom live-cell analysis
system. The paclitaxel IC50 values of SUM159 PTX-res mock and SUM159 PTX-res MSMO1 knock-
down cells were calculated using Graphpad Prism version 8.01. Data from three independent
experiments performed in triplicate are shown. Error bars represent the SEM of biological replicates.
*: p < 0.05, *****: p < 0.00001.

4. Discussion

Metabolic reprogramming is considered one of the hallmarks of cancer [4], and the
analysis of the metabolic profile of cancer cells has recently gained attention as a diagnostic
tool for cancer development and progression [52,53]. Metabolic adaptations can affect not
only tumor growth and patient survival but can also mediate drug resistance [41] through
mechanisms that have not been yet fully elucidated. Metabolomic and lipidomic analysis
of chemoresistant cancer cells could lead to the identification of potential targets and the
development of novel therapeutic approaches for cancer elimination. However, very few
studies have investigated the metabolic profile of chemoresistant breast cancer cells [54].
In this work, we generated and characterized a paclitaxel-resistant TNBC cell line and
investigated its transcriptome, metabolome and lipidome; integrated analysis of the omics
data pinpointed several significant alterations compared to the parental cell line, suggesting
that they may be exploited to target the resistant cells.

Metabolomic profiling using NMR is a wide-spread methodology, albeit with several
limitations, especially concerning its sensitivity, which may result in lower concentrations
of important metabolites or their masking by larger peaks [55]. Careful metabolite quantifi-
cation of our spectra from the SUM159 parental and PTX-res cells yielded 23 metabolites
with high confidence. We performed an untargeted analysis of all detected metabolites,
which is especially useful when there is no a priori hypothesis for the determination of
significantly perturbed metabolites [56]. This analysis revealed a clear separation of the



Cells 2022, 11, 2719 19 of 23

metabolomic profiles between the two cell lines, which was mainly attributed to myo-
inositol, but also to phosphocholine, creatine phosphate, threonate, pyruvate, arginine,
formate, 2-hydroxyisobutyrate and 2-phosphoglycerate. Metabolite set enrichment analysis
revealed that the most significantly enriched pathways in the PTX-res cells were “ascorbate
and aldarate metabolism”, “inositol phosphate metabolism” and “phosphatidylinositol
signaling system”; all three of these sets included myo-inositol, a carbocyclic sugar that is a
precursor of inositol phospholipids and other derivatives.

Dysregulation of inositol metabolism has been associated with cancer [57], and myo-
inositol has been found to exert multiple anti-cancer effects, including pro-apoptotic and
anti-proliferative ones in various cancer types (reviewed in [47]). In a colorectal adenocarci-
noma cell line, the inositol 3-phosphate synthase (ISYNA1) enzyme, which is essential for
myo-inositol biosynthesis, was found to be a direct target of p53 [58]. It was suggested that
p53 suppressed tumorigenesis by inducing myo-inositol biosynthesis. ISYNA1 knock-down
resulted in resistance to adriamycin treatment, proposing a role for myo-inositol biosyn-
thesis in p53-mediated growth suppression [58]. However, there are some reports arguing
against the involvement of p53 in the anti-cancer activity of myo-inositol (reviewed in [47]),
hence, more conclusive studies are needed. Other groups have shown that myo-inositol
inhibits the epithelial-to-mesenchymal program [59] and inflammatory factors [47] in breast
cancer cells and that it induces the regression of different types of cancer (reviewed in [47]).
Notably, in a prospective, randomized study, inositol hexakisphosphate and myo-inositol
improved the responsiveness to adjuvant therapy in breast cancer patients and markedly
increased their quality of life [60]. Therefore, mounting evidence suggests that myo-inositol
exerts pleiotropic anti-cancer effects and, according to our data, its reduced levels could be a
marker of paclitaxel resistance in TNBC. It is tempting to speculate that this metabolite me-
diates chemosensitivity, however, further mechanistic studies are needed to unequivocally
establish such a property for myo-inositol and uncover the underlying cellular pathways.

The lipid composition of cancer cells is different from that of healthy cells, but it
also varies between tumor types [61]. Furthermore, changes in the lipid metabolism of
malignant cells have been recently reported to be associated with resistance to conven-
tional chemotherapies (reviewed in [62]). We performed an NMR-based analysis of the
lipidome of the PTX-res cells that revealed several aberrations in lipid-associated pathways,
compared to the parental cells, including cholesterol and fatty acid biosynthesis, glyc-
erophospholipid and sphingolipid metabolism. Both our transcriptomics and lipidomics
data highlighted cholesterol biosynthesis as the main upregulated pathway in the PTX-res
cells. These findings prompted us to look more closely to the genes associated with this
pathway and we focused on MSMO1 that encodes for an intermediate enzyme in choles-
terol biosynthesis [51]. We confirmed that MSMO1 was overexpressed in the PTX-res cells
compared to the parental cells, while a GEPIA search revealed that its expression was sig-
nificantly increased in breast cancer tissues compared to normal. During the course of the
present study, a different group performed extracellular vesicle long RNA-sequencing in
plasma from breast cancer patients and found that exMSMO1 mRNA level was a predictive
biomarker for neoadjuvant chemotherapy of breast cancer [7]. Moreover, the silencing of
MSMO1 could enhance the sensitivity of breast cancer cells to paclitaxel and doxorubicin,
presumably via the mTORC1 signaling pathway [7]. Along the same lines, we also found
that knock-down of MSMO1 significantly decreased the resistance of the PTX-res cells to
paclitaxel, strongly suggesting that it could be used as a new potential therapeutic target
for treating chemoresistant TNBC. Our omics data suggest that MSMO1 overexpression
leads to increased FC levels in the PTX-res cells. FC is located mainly in the cell membrane
and is considered a major lipid modulator of its properties; due to the steroid ring system,
increased levels of membrane cholesterol lead to decreased fluidity and increased rigid-
ity. Cell membrane rigidity and permeability are strong determinants for the uptake and
efficacy of chemotherapeutic agents and changes in these properties could contribute to
cancer cells’ chemoresistance. Indeed, studies have shown that cells with higher membrane
FC content tend to exhibit greater chemotherapy resistance compared to those with lower
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FC [61]. Consequently, our data are in agreement with an important role for high choles-
terol levels in chemoresistance and suggest that MSMO1 may be targeted to reduce the
metabolite’s levels and improve response to chemotherapy. Future studies should aim to
confirm a direct link between MSMO1 overexpression, increased cholesterol levels and
paclitaxel resistance.

Our results also demonstrated significant enrichment of the PTX-res cells with GPLs
and SM, all of them being major lipid components of the cell membrane. Increased levels
of PC and PE also lead to decreased membrane fluidity, resulting in increased resistance
to drug influx [63]. Lysophospholipids mediate chemoresistance mainly through plasma
membrane-independent mechanisms. It has been demonstrated that LysoPC mediates
chemoresistance by protecting tumor cells from DNA damaging agents [64]. Finally, SM
induces an increase in resistance to chemotherapy by promoting trafficking of the efflux
pump MDR1 to plasma membrane lipid rafts [65].

The fatty acid pattern of lipids also regulates the physicochemical properties of the
cell membrane. The shift of fatty acids from an unsaturated toward a saturated state that is
observed in the PTX-res cells may promote a less flexible and more rigid membrane with
the outcomes described above. Apart from their structural role, saturated and unsaturated
lipids differ dramatically in terms of their susceptibility to peroxidation. Lipid peroxidation
can lead to a form of oxidative stress-related cell death [66]. As saturated lipids are less
susceptible to lipid peroxidation, PTX-res cells may be protected from such a death.

In conclusion, we used RNA-seq and NMR-based approaches to thoroughly charac-
terize the transcriptome and metabolome of a new TNBC cell line resistant to paclitaxel.
As our data underlined significant changes in lipid metabolism in the resistant cells, we
undertook a lipidomics analysis that painted a completely different lipid profile for these
cells compared to the parental ones. To our knowledge, this is the first report that integrates
transcriptomics, metabolomics and lipidomics analysis for TNBC cells resistant to paclitaxel.
The generated data should be valuable in the design of new therapeutic approaches that
target the metabolome of these cells. As proof of concept, we have provided preliminary
data that the cholesterol biosynthetic pathway may constitute a metabolic vulnerability
of these cells that can be modulated by targeting MSMO1, which leads to significantly
reduced drug resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11172719/s1, Figure S1: PTX-res cell line presents cross-resistance to Doxorubicin;
Figure S2: bar graph showing the significantly different metabolites quantified from SUM 159 parental
and PTX-res cells. Figure S3: Metabolite enrichment analysis using MetaboAnalyst; Figure S4: typ-
ical 1H NMR 500 MHz spectra of lipid extracts from SUM159 PTX-res cells and SUM159 parental
cells; Figure S5: schematic representation of the cholesterol biosynthesis pathway; Table S1: the
3184 differentially expressed genes (DEGs) between SUM159 parental and PTX-resistant cells identi-
fied by RNA-sequencing.
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