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Abstract: A novel AgBr/Ag2MoO4@InVO4 composite photocatalyst with different heterojunction
structures was successfully constructed by compounding InVO4 with Ag2MoO4 and AgBr. According to
the degradation, antibacterial and free radical trapping data, the photocatalytic antibacterial and
antifouling activities of AgBr/Ag2MoO4@InVO4 composite were evaluated, and the corresponding
photocatalytic reaction mechanism was proposed. Adding AgBr/Ag2MoO4@InVO4 composite,
the degradation rate of ciprofloxacin (CIP) achieved 95.5% within 120 min. At the same time,
the antibacterial rates of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa
(P. aeruginosa) achieved 99.99%. The AgBr/Ag2MoO4@InVO4 composite photocatalyst showed promising
usage in photocatalytic antibacterial and purification areas.

Keywords: photocatalyst; organic pollutants; antibacterial; Z-type photocatalytic mechanism

1. Introduction

In recent years, new green photocatalysis technology based on semiconductors has developed
rapidly. It has been widely used in pollutant degradation, water separation and sterilization through
using solar energy as an energy source [1,2]. Semiconductor photocatalysis technology has attracted
more and more attention due to its energy efficiency, simple operation, low expense and high stability,
and because it is also green and non-toxic, it has no secondary pollution, among other advantages [3–5].
In order to use sunlight effectively, it is necessary to design new photocatalytic heterojunction materials
with a visible light band response. To date, a number of excellent semiconductor photocatalysts have
been developed rapidly, such as metal oxides [6–8], metal sulfides [7,9,10], metal oxynitrides [11]
and polymer materials [12]. InVO4 is a metal vanadate photocatalyst with a band gap width of
2.0 eV, and it has excellent photocatalytic performance under visible light [13,14]. InVO4 has gained
widespread attention in many fields, such as degradation, air purification, water decomposition,
organic pollutants, etc. However, the competence of the InVO4 photocatalyst is largely affected
by its size and micro-morphology, resulting in low efficiency of photogenerated carriers [15].
Use of a supporting cocatalyst on the surface of the photocatalyst is considered as one of the
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most effective methods to drive the separation of photogenerated electrons and holes and enhance
photocatalytic activity [15,16]. Ag2MoO4 has many advantages such as excellent antibacterial activity,
high conductivity, good electrochemical energy storage, suitable valence band position, generation of a
large number of hydroxyl radicals, controllable morphology, photoluminescence, etc. [17,18]. AgBr has
been extensively studied as a promoter of Ag-based semiconductors. Similar studies, such as with
Ag/AgBr/AgVO3 [19], Ag/AgBr–Bi2MoO6 [20], Ag@AgBr/CaTiO3 [21] and Ag/AgBr@InVO4 [22], have
also confirmed that AgBr is promising to prepare efficient and stable photocatalysts.

As InVO4, Ag2MoO4 and AgBr have their own advantages and disadvantages. Many researchers
combined them with other substances to learn their strengths and make up for their shortcomings,
and then they prepared photocatalysts with better performance for various studies. Chen et al. [23]
fabricated a new β-Ag2MoO4/BiVO4 heterojunction photocatalyst by a simple precipitation method at
room temperature. The degradation rates for rhodamine B (RhB) of pure β-Ag2MoO4 and BiVO4 were
not good, but the as-created β-Ag2MoO4/BiVO4 photocatalyst had about 92.6% RhB degradation rate.
The combination of Ag2MoO4 and BiVO4 increased the absorption of visible light, improved the transfer
speed of photogenerated electrons and reduced the recombination of holes and electrons, and it had
excellent photocatalytic performance. Yang et al. [24] constructed an InVO4/β-AgVO3 nanocomposite
photocatalyst by a facile hydrothermal method and subsequent in situ growth process. The as-prepared
InVO4/β-AgVO3 composite photocatalyst had an enhanced photocatalytic performance in reducing
CO2 to CO under visible light. Li et al. [25] reported a g-C3N4/graphene oxide-Ag/AgBr composite
photocatalyst used to prepare hydrogen. Due to the synergistic effect of silver bromide, with good
photosensitivity, and silver plasma, the photocatalyst improved the hydrogen evolution performance
and provided a feasible method for developing hydrogen energy.

To date, there are no reports on the composite photocatalyst of AgBr/Ag2MoO4@InVO4. In this
work, a hydrothermal method and in situ growth method were used to produce AgBr/Ag2MoO4@InVO4

photocatalytic composites with different molar ratios. X-ray diffraction (XRD), scanning electron
microscopy (SEM), energy-dispersive spectroscopy (EDS), energy-dispersive X-ray spectroscopy
(EDX) and high-resolution transmission electron microscopy (HRTEM) were used to characterize
the microstructure and composition of the prepared composite photocatalyst. Using visible light
as a light source, the photocatalytic degradation of the organic pollutant ciprofloxacin (CIP) was
tested. The degradation rates of different molar ratios of AgBr/Ag2MoO4@InVO4 photocatalyst
to CIP solution were calculated under the same test conditions. At the same time, E. coli,
S. aureus and P. aeruginosa were selected as model bacteria to carry out antibacterial experiments
on the prepared AgBr/Ag2MoO4@InVO4 photocatalytic composite materials in order to study the
bactericidal performance of the photocatalyst. In addition, the photocatalytic reaction mechanism
of AgBr/Ag2MoO4@InVO4 heterojunction was proposed based on free radical trapping experiments,
degradation and sterilization data.

2. Experimental Section

2.1. Synthesis of AgBr/Ag2MoO4@InVO4 Photocatalysts

All chemical reagents in our experiments were analytical reagent grade. In a classic order for
the preparation of InVO4 materials, 0.117 g NH4VO3(Shanghai, China) was dissolved in 50 mL water
firstly. After that, it was sonicated and stirred continuously for 20 min at normal room temperature
to get a homogeneous solution. After dissolving and stirring 0.382 g of In(NO3)3(Shanghai, China)
in 10 mL water, this liquid was added dropwise slowly to the former solution. The pH value was
controlled to 4.0 using 0.25 wt. % NH3·H2O (Shanghai, China) and 2 mol/L HNO3(Shanghai, China).
The mix solution was stirred in succession for 30 min until a yellow colloidal solution was acquired.
The mix solution was moved to a 100mL Teflon-lined stainless-steel autoclave, which had been heated
to 200 ◦C for 24 h. Having been cleaned many times using ultrapure water and absolute ethyl alcohol,
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the obtained solid composite materials were centrifuged to obtain yellow solid powders. Finally,
the composite materials were dried at 60 ◦C for 6 h.

The 0.2068 g InVO4 semiconductor material prepared above was put into 30 mL distilled
water and treated ultrasonically for 30 min. After that, 0.238 g AgNO3 (Shanghai, China) was
added into the above solution and mixed for 30 min to make them disperse evenly. Subsequently,
0.164 g of cetyltrimethylammonium bromide (CTAB, Beijing, China) and 0.109 g of Na2MoO4.2H2O
(Shanghai, China) were dissolved in 20 mL distilled water. Next, this solution was slowly added
into the above solution drop by drop. The reaction mixture was stirred continuously for 2 h in a
dark environment. The composite material gained was cleaned three times using water and ethanol
respectively. Then, the precipitates were dried for 12 h in an oven at 60 ◦C. The prepared sample was
marked as “1.0AgBr/Ag2MoO4@InVO4”. In this way, composite materials with different molar ratios
were prepared and labeled as X AgBr/Ag 2MoO4 @ InVO4 (x = 0.2, 0.6, 1.0 and 1.4).

2.2. Characterization

XRD (Rigaku D/max-3C, Tokyo, Japan) was used to characterize the crystalline structure of the
samples. The microstructure of the prepared photocatalyst was examined by SEM (Hitachi S-4800,
Tokyo, Japan), TEM (Tecnai G2F20, Oregon, USA) and HRTEM (FEI Company, Hillsboro, OR, USA).
A UV–vis spectrophotometer (U-2900, Tokyo, Japan) was used to characterize the absorption spectra,
and ultra-pure water was used as the reference.

2.3. Photocatalytic Performance

In this experiment, ciprofloxacin (CIP), an organic substance, was chosen as a model molecule to
judge the photocatalytic degradation property of the material. Before the reaction, condensed water
was acquired, and an 800W Xe lamp (XPA-7, Xujiang Electromechanical Plant, Nanjing, China)
deployed with a 420 nm cut-off filter was turned on. Then, 40 mg photocatalyst was put into 50 mL
CIP solutions, and quartz tubes were inserted into the photochemical reactor filled with condensed
water. In the photocatalytic reaction process, the solution was blended magnetically in the dark for
30 min so CIP and the synthetic materials were well-distributed. After the light shield had been
pulled up, the sample solution extracted in the same time interval was filtered through a membrane
to eliminate solid particles. The residual amount of CIP in the extracted solution was measured by
an ultraviolet–visible spectrometer (Hitachi U-2900, Hitachi, Tokyo, Japan). The amount of CIP was
determined by comparing the peak-to-peak value of the sample between the standard sample. In the
measurement experiment, ultra-pure water was used as a reference, and the scanning range was
200–700 nm.

In this experiment, S. aureus, E. coli and P. aeruginosa were selected to evaluate the antibacterial
performance of the photocatalyst. An 800W Xe lamp using a 420 nm cut-off filter was adopted as
the light source. Typically, 45 mL phosphate-buffered saline (PBS), 30 mg photocatalyst and 5 mL
bacterial suspension were added into 50mL quartz tubes. The mingled liquids were stirred for 30 min
using a magnetic stirrer in total darkness to balance the adsorption/desorption. During 800W Xe lamp
irradiation, 2 mL of mixed solution was taken out every 20 min and diluted with PBS in different
gradients. Next, LB agar plates were used for cultivating the diluted bacterial suspension at the
temperature of 37 ◦C for 24 h. Then, the number of bacteria was calculated via plate counts. In each
group, the survival rate and antibacterial rate were calculated through triplicate parallel experiments.

The survival rate was calculated by the formula [26]:

Survival rate (%) = Nt/N0 × 100, (1)
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Among them, N0 and Nt are the number of bacteria in the blank group and the number of bacteria
in the antibacterial experiment, respectively. The formula of antibacterial rate [5] is

Antimicrobial rate (%) = 100-survival rate (2)

At present, many researchers have confirmed that free radical active substances (·OH, ·O2
−, h+, etc.)

play a major role in photocatalytic reactions. In this experiment, free radical trapping experiments were
used to study the types of free radicals. In this experiment, isopropyl alcohol (IPA), p-benzoquinone
(BQ) and sodium oxalate (MSDS) were used as the ·OH capture agent, ·O2

− capture agent and h+

capture agent, respectively. The photocatalytic reaction mechanism was studied in combination with
the above experiments. The operation steps were consistent with the photocatalytic degradation
experiment. Then, the degradation rate was calculated. The active species were also analyzed.

3. Results and Discussion

3.1. Characterization of AgBr/Ag2MoO4@InVO4

The XRD patterns of InVO4 crystals and AgBr/Ag2MoO4@InVO4 photocatalytic composites are
shown in Figure 1. The characteristic peaks appeared at 18.6◦, 20.8◦, 23.0◦, 24.9◦, 27.1◦, 31.1◦, 33.1◦,
35.2◦ and 47.0◦, which verified the presence of the monoclinic InVO4 phase (JCPDS No.48−0898) for
the (1 1 0), (0 2 0), (1 1 1), (0 2 1), (2 0 0), (1 1 2), (1 3 0) and (2 2 2) planes, respectively [13,27]. The peaks
at 2θ equal to 27.4◦, 32.8◦ and 37.6◦ of AgBr/Ag2MoO4@InVO4 composites corresponded to Ag2MoO4

(JCPDS No.21–1340) for the (2 1 2), (3 1 0) and (3 2 0) planes, respectively. The diffraction peaks at 2θ
equal to 44.33◦, 55.04◦ and 73.24◦ were assigned to (2 2 0), (2 2 2) and (4 2 0) planes of AgBr [28,29].
The diffraction peaks of AgBr corresponded to the JCPDS card No.79-0149. The XRD pattern of
AgBr/Ag2MoO4@InVO4 composite materials showed strong InVO4 and Ag2MoO4 diffraction peaks.
Comparing the InVO4 pattern with AgBr/Ag2MoO4@InVO4 pattern, the intensity of the InVO4 peak
declined mildly with the addition of AgBr and Ag2MoO4, proving that AgBr/Ag2MoO4 particles were
fixed on the surface of InVO4.
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In AgBr/Ag2MoO4@InVO4 samples, no obvious change in the diffraction peak position of InVO4

was observed, which means that the introduction of AgBr/Ag2MoO4 did not destroy the crystal structure
of InVO4. In addition, AgBr/Ag2MoO4@InVO4 composite material had no other miscellaneous peaks.
Therefore, it could be proved that the AgBr/Ag2MoO4@InVO4 composite was correctly prepared.

The morphology of the composite photocatalyst was observed by SEM. SEM images of
1.0Ag2MoO4@InVO4 are shown in Figure 2a–c, showing a clear waxberry-like structure with an
average diameter of 8 µm. Some polygonal grains could also be clearly found on the surface.
The resultant SEM images (Figure 2d–f) of 1.0AgBr/Ag2MoO4@InVO4 composite indicated that the
spherical morphology of InVO4 was saved. Furthermore, AgBr and Ag2MoO4 particles were uniformly
distributed on the InVO4 surface forming AgBr/Ag2MoO4@InVO4 heterostructures. To some extent,
the AgBr/Ag2MoO4@InVO4 heterostructures could enhance the specific surface area of the material
and offer more active sites for photocatalytic reaction.
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Figure 2. SEM pictures of as-synthesized photocatalysts: (a–c) 1.0 Ag2MoO4@InVO4, (d–f) 1.0
AgBr/Ag2MoO4@InVO4.

The morphologies of 1.0AgBr/Ag2MoO4@InVO4 composite were further illustrated by TEM
and HRTEM. The amplified TEM images in Figure 3a–b distinctly display the anomalistic particles
around the microsphere circumambience, proving that the AgBr/Ag2MoO4@InVO4 particles were
tightly bound together. Figure 3c exhibits the HRTEM image of 1.0AgBr/Ag2MoO4@InVO4, in which
three sets of different crystal streaks were observed expressly. Consequently, these results further
demonstrate that a well-defined heterojunction structure had taken shape between AgBr, Ag2MoO4 and
InVO4. Moreover, EDS measurements revealed the elemental composition of AgBr/Ag2MoO4@InVO4

ternary composites, which provided direct evidence for the coexistence of AgBr, Ag2MoO4 and InVO4.
As shown in Figure 3d, the above AgBr/Ag2MoO4@InVO4 composite was composed of O, Br, Mo,
Ag, In and V, illustrating the formation of AgBr/Ag2MoO4@InVO4 composite photocatalyst including
Ag2MoO4, AgBr and InVO4. In addition, SEM elemental mapping described the composition and
distribution of the different elements. As shown in the elemental mapping images (EMIs), the five Ag,
Br, In, Mo and V elements (Figure 3e) could be observed existing homogeneously within the selected
area on the AgBr/Ag2MoO4@InVO4 photocatalyst.
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3.2. Photocatalytic Property Study

Ciprofloxacin (CIP), as an antibiotic, protects people’s health, but it also causes some environmental
pollution. Using a photocatalyst to degrade CIP has low cost and no secondary pollution.
Photocatalysts can generate photo-generated carriers under certain light illumination, and the
photo-generated carriers can react with water to generate active hydroxyl groups (·OH) and
superoxide radicals (·O2

−), which can decompose CIP into small molecular inorganic substances.
In addition, the generated holes (h+) can also oxidize CIP directly or indirectly [30]. The photocatalytic
decontamination performances of the obtained AgBr/Ag2MoO4@InVO4 samples were appraised
according to the CIP degradation rate in visible light [5]. As demonstrated in Figure 4a, under the
condition of no photocatalyst, no degradation of CIP was observed, indicating that CIP was
stabilized in visible light. In visible light irradiation, the degradation rate of InVO4 for CIP was
lower than that of composite AgBr/Ag2MoO4@InVO4. For composite materials, the degradation
efficiency of AgBr/Ag2MoO4@InVO4 for CIP was above 95.5%, and the degradation efficiency of
1.0 AgBr/Ag2MoO4@InVO4 for CIP was the highest. In Figure 4, a linear relationship between
-ln(C/C0) and reaction time (T) is displayed, which indicates that the reaction process conformed to the
pseudo-first-order reaction kinetic process [31].

−ln (C/C0) = Kapp T (3)

C is CIP concentration with reaction time T, C0 is initial CIP concentration, and Kapp is the
apparent rate constant. According to the above formula, the Kapp of InVO4, 0.2 AgBr/Ag2MoO4@InVO4,
0.4 AgBr/Ag2MoO4@InVO4, 1.0 AgBr/Ag2MoO4@InVO4 and 1.4 AgBr/Ag2MoO4@InVO4 are 0.0006,
0.024, 0.02, 0.037 and 0.029 min−1 respectively. Notably, compared with other photocatalysts, the 1.0
AgBr/Ag2MoO4@InVO4 composite photocatalyst had the strongest CIP degradation activity. In addition,
compared with other photocatalysts such as InVO4/ZnFe2O4 [32] and Ag/AgCl/BiOCOOH [30], the 1.0
AgBr/Ag2MoO4@InVO4 composite photocatalyst showed better ability to degrade organic pollutants.
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A photocatalyst can not only degrade organic pollutants, but it can also kill bacteria in sewage.
Many researchers believe that photocatalysts can produce holes (h+) and other active substances
under the action of light, which can interact with bacterial cell membranes and affect the permeability
of cell membranes, leading to disorder of bacterial physiological processes and eventually leading
to bacterial death [33]. In this paper, E. coli (9.8 × 106 cfu/mL), S. aureus (2.1 × 106 cfu/mL) and
P. aeruginosa (2.7 × 106 cfu/mL) were selected to study the photocatalytic antibacterial activity
of photocatalysts in visible light [13]. As shown in Figure 5a, it can be seen from the survival
curve of P. aeruginosa that the number of P. aeruginosa did not noticeably change in blank control
experiments. This revealed that the influence of visible light and the toxicity of the photocatalyst itself
on bacterial activity could be ignored. In addition, as can be seen from Figure 5a, for P. aeruginosa,
the 1.0AgBr/Ag2MoO4@InVO4 composite had better antibacterial activity than pure InVO4 and other
molar ratios of AgBr/Ag2MoO4@InVO4 composites. In addition, as shown in Figure 5b, under the
photocatalytic condition of 1.0AgBr/Ag2MoO4@InVO4 composite after 60 min, the sterilization rates
of E. coli, S. aureus and P. aeruginosa were 99.9999%, 99.9998% and 99.9997%, respectively, indicating
that the catalyst had higher antibacterial and antifouling activity. In addition, compared with other
reported antifouling photocatalysts such as g-C3N4@Ag/AgVO3 [34], AgBr/TiO2/graphene aerogel [35],
AgI/BiVO4 [36] and InVO4/AgVO3 [27], the 1.0 AgBr/Ag2MoO4@InVO4 composite photocatalyst in this
experiment showed quite outstanding photocatalytic antibacterial performance, revealing potential
application value in sterilization and marine antifouling.
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Based on the research of many scholars, it could be concluded that free radical active species play
a vital role in photocatalytic reactions. To further prove the influence of free radical active substance
on the photocatalytic reaction, we conducted a free radical capturing experiment. Isopropyl alcohol
(IPA), p-benzoquinone (BQ) and sodium oxalate (MSDS) served as the ·OH capture agent, ·O2

− capture
agent and h+ capture agent, respectively [16,37]. As shown in Figure 6, 94.9% of ciprofloxacin (CIP)
was degraded without the capture agent after 120 min illumination. After adding 1 mmol IPA,
the degradation rate of CIP decreased to 93.7%. Moreover, after adding 1 mmol BQ and 1 mmol MSDS,
the antibacterial rates decreased to 30.0% and 31.3%, indicating that the photocatalytic performance of
1.0AgBr/Ag2MoO4@InVO4 was significantly inhibited. Therefore, these experiment results proved that
·O2
− and h+ played a crucial role in photocatalytic degradation of CIP. To sum up, we can conclude

that the main active substances of the AgBr/Ag2MoO4@InVO4 photocatalyst for CIP degradation were
·O2
− and h+. CIP was oxidized by ·O2

− and h+ generated by the photocatalyst into a small molecular
product. The possible reaction process can be shown as follows [38]:

photocatalyst + hv→ e− + h+ (4)

O2 + e−→·O2
− (5)

CIP + h+ + ·O2
−
→ CO2 + small molecules (6)
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different capture agent.

A Z-type photocatalytic mechanism of composite AgBr/Ag2MoO4@InVO4 was proposed, based on
the analysis of experimental results. The energy band structures of AgBr, InVO4 and Ag2MoO4 as well
as the degradation of CIP and sterilization mechanism of AgBr/Ag2MoO4@InVO4 photocatalyst are
shown in Figure 7. When the photon energy was greater than the bandgap, electrons (e−) in the valence
band of AgBr (with narrow band gap) were excited to the guide band easily, and photoelectrons and
holes (h+) appeared in visible light [39]. At the same time, electrons (e−) on the AgBr conduction
band (−0.30 eV) could transfer to Ag2MoO4 (−0.18 eV) readily. At this time, the electrons (e−) on the
Ag2MoO4 conduction band quickly moved to the valence band of AgBr through the heterojunction
and newly combined with the holes (h+) on the valence band of AgBr [4,5]. In addition, holes (h+)
in the valence band of InVO4 [13] could also be transferred to the conduction band of AgBr, which
characterizes the band potential difference. A Z-type mechanism was set up. Electrons (e−) in the
conduction band (−0.57 eV) of InVO4 had very strong reduction performance [27], while holes (h+)
in the valence band (3.02 eV) of Ag2MoO4 had good oxidation capability. The Z-type structure
effectively separated electrons (e−) and holes (h+) and enhanced the photocatalytic capability of
AgBr/Ag2MoO4@InVO4 composite. InVO4 has a more negative charge conducting potential (−0.57 eV)
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than E0 (O2/·O2
−) (−0.046 eV vs. Normal Hydrogen Electrode (NHE)), which can produce the active

substance ·O2
− [40]. These free radicals can not only oxidize and degrade CIP, but they also have

bactericidal effects. The mechanism showed that photocatalytic antibacterial antifouling technology
has the advantages of high efficiency, environmental protection and no secondary pollution.
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4. Conclusions

In this paper, a new AgBr/Ag2MoO4@InVO4 photocatalytic composite with a microsphere-like
morphology was produced successfully by hydrothermal and in situ growth methods, and the
photocatalytic antibacterial activity was determined. The chemical composition and morphology of the
AgBr/Ag2MoO4@InVO4 photocatalytic composites were proved by XRD, SEM, EDS, EDX and HRTEM.
Under visible light, the photocatalytic experiments showed that the 1.0 AgBr/Ag2MoO4@InVO4

photocatalytic composite had a much higher photocatalytic performance compared to pure InVO4 and
other AgBr/Ag2MoO4@InVO4 composites. Furthermore, the antibacterial activity of this photocatalyst
was excellent. Almost all E. coli, S. aureus and P. aeruginosa could be eliminated, and the antimicrobial
performance reached 99.999%. The experiment of active free radical trapping showed that ·O2

− and h+

were the main active substances in the AgBr/Ag2MoO4@InVO4 photocatalyst. InVO4 was compounded
with Ag2MoO4 and AgBr to construct a composite photocatalyst with different heterojunction structures,
which facilitated the separation of photogenerated holes and electrons, enhanced the light capture
capability, prolonged the light absorption region, restrained recombination of holes and electrons and
further improved the photocatalytic performance. Due to its outstanding photocatalytic performance,
AgBr/Ag2MoO4@InVO4 shows good prospect in photocatalytic sterilization and environmental
pollution control areas.
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