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Review Article

Start a fire, kill the bug: The role of
platelets in inflammation and infection

Carsten Deppermann and Paul Kubes

Abstract

Platelets are the main players in thrombosis and hemostasis; however they also play important roles during inflammation

and infection. Through their surface receptors, platelets can directly interact with pathogens and immune cells. Platelets

form complexes with neutrophils to modulate their capacities to produce reactive oxygen species or form neutrophil

extracellular traps. Furthermore, they release microbicidal factors and cytokines that kill pathogens and influence the

immune response, respectively. Platelets also maintain the vascular integrity during inflammation by a mechanism that is

different from classical platelet activation. In this review we summarize the current knowledge about how platelets

interact with the innate immune system during inflammation and infection and highlight recent advances in the field.
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Introduction

Platelets are small anucleated cell fragments patrolling
the vasculature, and immediately respond to vessel
breaches and restore hemostasis. In recent decades it
has become clear that they play roles beyond hemosta-
sis and also contribute to (thrombo-)inflammatory pro-
cesses like those unfolding after stroke.1 Furthermore,
they also play an important role during infection by
either directly interacting with pathogens or by recruit-
ing and stimulating immune cells.2 More recently, we
have come to understand that platelets also maintain
vascular integrity in inflamed vessels in a process differ-
ent from classical hemostasis.3,4 Acknowledging their
multifaceted capabilities, platelets have lately been
described as autonomous drones for hemostatic and
immune surveillance.5

The finding that platelets form aggregates around
bacteria is not new. In fact, one of the first descriptions
of this process dates back to 19016 when Levaditi
showed that platelets aggregated upon incubation
with Vibrio cholerae; however, more systematic investi-
gations on how bacteria cause platelet aggregation were
only performed in the 1970s.7,8 Platelet surface recep-
tors enable direct platelet–bacteria or platelet–immune
cell interactions.9 Factors stored in platelet granules

that are released upon activation include cytokines,
inflammatory mediators and antimicrobial pep-
tides.10,11 In this review we discuss how platelets,
being among the first cells to respond to vessel injury,
are at the front line of antimicrobial host defense which
allows them to orchestrate the innate immune response
(Figure 1).

A lot of the findings presented here were discovered
using experimental mouse models or knockout mouse
lines. It is therefore worth to mention that there are
some distinct characteristics between murine and
human platelets such as their size, number and some
histological features. However, they also share a lot of
similarities, and mice offer an excellent model to study
various aspects of platelet biology in vivo.12
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Platelets and sepsis

Severe sepsis—defined as infection in combination with
acute organ dysfunction—is the leading cause of
in-hospital death in the United States (US).13,14

Estimations suggest there are 750,000 cases of severe
sepsis every year in the US, with most of them requiring
intensive care. Case numbers for patients with severe
sepsis admitted to a hospital have seen a significant rise
in recent years,14 with the highest incidence rates
reported for newborns younger than 12 months (5.3
per 1000) and senior patients older than 85 years
(26.2 per 1000).15 In the 1960s, some studies reported
mortality rates of up to 80% for septic shock patients.
Thanks to improvement in monitoring and therapy,
this number has decreased significantly; however, it
still remains at around 25% today.13,16 In addition,
total hospital costs for patients with severe sepsis
have seen a steady increase, and it is now a major
burden for the public health system with estimated
annual costs of more than 24 billion USD in the US.14

During severe sepsis both pro- and anti-inflamma-
tory responses occur simultaneously. The two processes
aim at eliminating the pathogen and at the same time
try to restrict the immune reaction to prevent excessive

damage. Both responses have to be delicately balanced
to provide a response that is powerful enough to clear
the pathogen and prevent secondary infections but also
to minimize collateral tissue damage.13

Severe sepsis is often accompanied by disseminated
intravascular coagulation and thrombocytopenia; how-
ever, the underlying mechanisms are incompletely
understood.13,17 It is well established, however, that
there is extensive cross-talk between the inflammatory
and coagulation pathways. Tissue factor (TF) is up-
regulated by leukocytes, platelets, endothelial and
smooth muscle cells, which triggers thrombin gener-
ation leading to a sustained pro-inflammatory and
thrombotic response while at the same time dampening
anticoagulant mechanisms and fibrinolysis.18,19

A recent study showed that thrombocytopenia led to
severely impaired survival and enhanced bacterial
growth in blood and lungs in a mouse model of pneu-
monia-derived sepsis.20 Thrombocytopenia also caused
hemorrhage at the site of infection, in line with previous
results demonstrating that inflammation induces hem-
orrhage during thrombocytopenia.20,21 A clinical study
including more than 900 sepsis patients grouped them
according to their platelet counts upon admission to the
intensive care unit. Remarkably, patients with very low
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Figure 1. Platelets interact with bacteria and cells of the innate immune system. Platelets interact with bacteria directly through

their surface receptors or indirectly through plasma proteins. Platelets orchestrate the immune reaction to inflammation and infection

by direct interactions with cells of the innate immune system (neutrophils and Kupffer cells) or through the secretion of mediators.
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or intermediate–low platelet counts showed significant
increases in both 30-day mortality as well as cytokine
levels and enhanced endothelial cell activation.17 These
results show that platelet count might be used as a
prognostic marker during sepsis.

Platelet receptors enable interactions
with bacteria

Several platelet surface receptors are also involved in
inflammation and infection in addition to thrombosis
and hemostasis. Platelet–bacteria interactions can be
either direct (bacterial surface proteins binding to a
platelet receptor) or indirect (bacteria binding to a
plasma protein, for example von Willebrand factor
(vWF) or fibrinogen, which then binds to the respective
platelet receptor).

Glycoprotein Ib (GPIb)

GPIb is exclusively expressed on the surface of platelets
and precursor megakaryocytes. The interaction with its
main ligand vWF is especially important for platelet
adhesion under high shear conditions, for example in
stenosed vessels or capillaries.22,23 GPIb can also bind
to serine-rich repeat proteins like the Streptococcus san-
guis platelet adhesin called serine-rich protein A (SrpA)
which enables binding to GPIb in a sialic acid-depen-
dent manner.24 Staphylococcus aureus protein A (Spa)
facilitates indirect interaction with platelets through
both soluble and immobilized vWF which then binds
to platelets via GPIb.25,26

Integrin �IIb�3 (GPIIb/IIIa)

The platelet-specific integrin aIIbb3 is the most abun-
dant glycoprotein on the platelet surface and binds lig-
ands that contain an arginine-glycine-aspartic acid
(RGD) sequence such as fibrinogen, vWF, fibronectin
and vitronectin. aIIbb3 enables stable platelet–platelet
interactions and adhesion to the extracellular matrix
(ECM). Firm binding only occurs after a conform-
ational change that puts aIIbb3 in an activated or
high-affinity state in which the RGD binding site is
uncovered.27 Binding of Borrelia burgdorferi to
human platelets was shown to be mediated by aIIbb3
and could be blocked by a synthetic RGD peptide.28

Another bacterial protein that contains a RGD-like
motif to interact with platelet aIIbb3 is SdrG (Fbe)
from Staphylococcus epidermis, which is present in
many clinical strains and causes platelet aggregation
which can be blocked using the aIIbb3 antagonists
abciximab or tirofiban, but also aspirin. SdrG also
mediates indirect interactions through fibrinogen
which in turn binds aIIbb3 and the IgG receptor
FcgRIIa.29,30 Another well-characterized indirect inter-
action between platelets and bacteria is through

fibrinogen and clumping factors (Clf) on S. aureus.
Like the Sdr proteins, ClfA and B both contain serine
and aspartic acid dipeptide repeats (SD repeats) and
bind fibrinogen to induce platelet aggregation via
aIIbb3.31,32

TLR2 / TLR4

TLRs recognize PAMPs, for example the bacterial cell
wall components lipoteichoic acid (LTA) and LPS.33

Platelets express TLR2 and TLR4 on their surface.34,35

Streptococcus pneumoniae triggers platelet aggregation
through TLR2, and aIIbb3, independent of pneumoly-
sin toxin, causes activation of the phosphoinositide 3-
kinase (PI3-K) pathway and provokes dense-granule
release.36 In mice, LPS injection was shown to induce
an increase in platelet binding to fibrinogen under flow.
Furthermore, LPS administration caused thrombocyto-
penia through P-Selectin-independent neutrophil-
mediated pulmonary platelet sequestration in wild
type but not in TLR4-deficient mice.37 Another study
demonstrated that human platelets responded to LPS
stimulation with release of soluble CD62p, epidermal
growth factor, TGFb, IL-8, platelet activating factor
4 (PAF4) and platelet-derived growth factor (PDGF)
a and b.37 During hemolytic-uremic syndrome (HUS)
caused by infection with enterohemorrhagic Escherichia
coli (EHEC), platelets were activated by EHEC-LPS
binding to TLR4.38 Platelet TLR4 detects TLR4 lig-
ands (LPS, but also others like high mobility group
B1 (HMGB1) and heat-shock proteins) in the blood
and causes platelets to bind to adherent neutrophils
and the formation of neutrophil extracellular traps
(NETs) in liver sinusoids and pulmonary capillaries,
which facilitate bacterial capture during sepsis39 but
can also have detrimental effects such as causing vas-
cular occlusion.40,41

(hem)ITAM receptors GPVI and CLEC-2

Platelets are activated by collagen through their main
collagen receptor GPVI, which signals through an
immunoreceptor tyrosine-based activation motif
(ITAM) in the Fc receptor (FcR) g-chain it forms a
complex with.42,43 The platelet C-type lectin receptor
2 (CLEC-2) binds podoplanin, which is highly
expressed in type 1 lung alveolar cells, lymphatic endo-
thelial cells and kidney podocytes, but absent from
endothelial cells and platelets. CLEC-2 contains a
single cytosolic YXXL motif known as a hemITAM
that becomes phosphorylated upon receptor multimer-
ization to enable signaling.44,45 GPVI and CLEC-2 play
important roles in thrombosis and hemostasis;42,46–48

however, they are also involved in maintaining
vascular integrity in inflamed vessels thus preventing
inflammatory bleeding,3,49,50 formation of cerebral
blood vessels51 and mediating blood/lymphatic vessel
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separation.52 A recent report showed that CLEC-2
mediates inflammation-triggered thrombosis after sal-
monella infection in the liver53 through platelets inter-
acting with podoplanin-expressing monocytes and
Kupffer cells. Lately, a thrombosis-independent role
for CLEC-2 during sepsis was described: Platelet
CLEC-2 interacts with podoplanin expressed on
inflammatory macrophages to regulate immune cell
recruitment as well as the cytokine/chemokine storm
following infection to limit organ damage.54 In another
study, S. aureus a-toxin bound ADAM10 on the
platelet surface to trigger platelet activation and plate-
let–neutrophil complex formation that enhanced
neutrophil activity during sepsis.55 ADAM10 is a
metalloproteinase that cleaves the ectodomain of
GPVI,56 and in fact soluble GPVI (sGPVI) was released
from platelets following incubation with S. aureus
a-toxin. Whether this demonstrates a direct interaction
of ADAM10 with S. aureus or a potential role for
sGPVI needs further investigation. Moreover, GPVI-
deficient mice showed increased bacterial growth in
lungs and distant body sites after pneumonia-derived
sepsis as well as reduced platelet activation and plate-
let–leukocyte complex formation in the bronchoalveo-
lar space.57 Interestingly, in a recent clinical study,
sGPVI was identified as a marker for platelet activation
and predictive for the occurrence of sepsis and overall
survival in patients with thermal injury.58 GPVI is also
critically involved in the formation of platelet micro-
particles—submicrometer vesicles shed from activated
platelets—that can have pro-inflammatory effects, for
example in patients with rheumatoid arthritis.59

Recently it was shown that microparticles shed from
activated platelets lose GPVI expression while main-
taining CLEC-2,60 contributing to sGPVI levels.
Indeed, sGPVI levels in plasma from patients with
rheumatoid arthritis were significantly increased com-
pared with healthy controls.

Platelet granule-derived factors and their
impact on innate immunity

Upon activation, platelets release a plethora of different
factors stored in two major types of granules: a-gran-
ules and dense granules. a-Granules are highly abun-
dant, with 50–80 granules per mouse platelet,61,62 while
dense granules are considerably less abundant with 5–6
granules per platelet. a-Granules contain more than
300 different membrane and soluble proteins, which
are recruited to the plasma membrane or secreted
upon platelet activation, respectively, and are
involved in processes such as platelet adhesion,
coagulation, thrombo-inflammation, wound healing,
tumor growth, angiogenesis and antimicrobial host
defense.61,63,64

There is increasing evidence that platelets contribute
to the onset and spread of inflammation.65 Platelets

adhere to the activated endothelium or form complexes
with immune cells to activate, attract or differentiate
other immune cells by several mechanisms. Many pla-
telet-derived factors contribute to shaping the inflam-
matory response, and one of the most important ones is
P-Selectin, which is exposed on the platelet surface
upon activation and mediates interactions of platelets
with immune cells and the endothelium. Platelet P-
Selectin binds to P-Selectin glycoprotein ligand-1
(PSGL1) on endothelial or immune cells, thereby
enabling platelets to bind to the inflamed endothelium,
to recruit circulating monocytes, neutrophils and
lymphocytes and to initiate an inflammatory response
at the site of injury. Importantly, blocking P-Selectin or
PSGL-1 using antibodies almost completely abolished
platelet tethering, rolling and adhesion on activated
endothelium.66 In a mouse model of acute lung
injury, blocking platelet P-Selectin reduced the
number of platelet–neutrophil complexes, improved
gas exchange, reduced neutrophil recruitment and per-
meability and prolonged survival of the animals.67

Upon activation, platelets secrete numerous chemo-
kines, including CXCL1, CXCL4, CXCL5, CXCL7,
CXCL8, CXCL12, CCL2, CCL3 and CCL5.10 The
most abundant platelet chemokine CXCL7 is present
in several variants: platelet basic protein, connective
tissue-activating peptide III (CTAP-III), b-thromboglo-
bulin (b-TG) and neutrophil-activating peptide-2
(NAP-2), and all of them are generated by proteolytic
cleavage from a precursor protein.10,61 However, the
only variant that possesses chemotactic activity is
NAP-2.68 It was shown that both CTAP-III and
NAP-2 induce neutrophil adhesion to human umbilical
vein endothelial cells (HUVECs); however, only NAP-2
triggered neutrophil transendothelial migration.69

Interestingly, CXCL7 is also involved in the recruit-
ment of circulating endothelial progenitor cells after
arterial injury through its receptor CXCR2, indicating
that CXCL7 secreted by platelets may contribute to
revascularization after vessel injury.70

Platelets are a major source of CCL5 (RANTES) in
the circulation, as its concentration was highly corre-
lated to platelet counts in a study of patients with
hematological malignancy undergoing chemotherapy.71

Platelet-derived CCL5 contributes to recruiting mono-
cytes to the vessel wall. In a mouse model of athero-
sclerosis, activated platelets were shown to deliver
CCL5 and CXCL4 (platelet factor 4, PF4) to the sur-
face of both monocytes and endothelial cells in athero-
sclerotic lesions in a P-Selectin-dependent manner.72 It
was further shown that CXCL4 facilitates CCL5 oligo-
merization and amplifies its effect on monocyte
recruitment.73

Platelets (and their precursors megakaryocytes) are
the exclusive source of CXCL4 (PF4). That platelets
have an abundance of CXCL4 is strikingly demon-
strated by a 1000-fold increase in the serum
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concentration after thrombin stimulation.61,74

Although CXCL4 lacks chemotactic activity,75 it
causes firm neutrophil adhesion to endothelial cells
and degranulation. While the first process is a direct
effect of Src kinase activation, the latter requires costi-
mulation, for example by TNF through p38 MAP
kinase and PI3 kinase.76 Furthermore, CXCL4 triggers
several functions in monocytes, including phagocytosis,
respiratory burst, survival and cytokine secretion.
CXCL4-initiated respiratory burst was shown to
depend on rapid activation of the PI3 kinase, Syk and
p38 MAP kinase. By contrast, monocyte differentiation
and survival is mediated by CXCL4-mediated delayed
Erk activation approximately 6 h after stimulation.77,78

CXCL4 released from platelets is also capable of indu-
cing differentiation of monocytes into macrophages and
prevents them from undergoing spontaneous apoptosis
in culture.79 In combination with IL-4, CXCL4 induces
a rapid differentiation of monocytes into specialized
APCs that stimulates lymphocyte proliferation and
lytic NK activity while inducing only moderate cyto-
kine release.80

CXCL4 also acts on other cell types such as endo-
thelial cells. Platelet-derived CXCL4 inhibited fibro-
blast growth factor-2 (FGF-2) and vascular
endothelial growth factor function by blocking the
binding to their respective receptors. Furthermore,
both CXCL4 and its variant CXCL4L1 potently inhibit
chemotaxis and proliferation of endothelial cells as well
as in vitro and in vivo angiogenesis.81,82 CXCR3-B, a
splice variant of CXCR3, was shown to be a receptor
for CXCL4 and might be involved in the angiostatic
activity of CXCL4 released by platelets83 that causes
inhibition of endothelial cell growth.

Platelets as phagocytes and platelet-
derived antimicrobial peptides

We know that platelets express TLR436 and other
receptors which enable them to detect and bind to bac-
teria, which raises the question of their capability of
phagocyting bacteria. Indeed, electron microscopic stu-
dies demonstrated that activated platelets engulf
S. aureus in vacuoles and appear to secrete granule
content into the vacuole.84 However, whether platelets
actually killed the bacteria or transferred them to pro-
fessional phagocytes was not clarified in this study.
Interestingly, in an earlier report, Yeaman and col-
leagues isolated and characterized cationic proteins
from rabbit platelets that displayed in vitro microbio-
static or microbicidal activity against S. aureus,
Escherichia coli and Candida albicans.85 In another
study, thrombin-induced platelet microbicidal protein
(tPMP-1) potently lysed S. aureus during logarithmic-
phase growth.86 Releasate from thrombin-activated
platelets reduced the number of adherent bacteria in a
rabbit model of infective endocarditis using

Streptococcus sanguis.87 Using the same model, experi-
mentally induced thrombocytopenia led to higher den-
sities of streptococci within vegetations as well as higher
total number of bacteria per valve.88 Another group of
antibacterial proteins found in platelets is called throm-
bocidins (TCs). TC-1 and TC-2 were able to kill
Bacillus subtilis, E. coli, S. aureus and Lactococcus
lactis89 using a mechanism that did not lyse the
bacterial cell wall, indicating that they act differently
than tPMP-1. Platelets were also shown to bind
Plasmodium falciparum-infected erythrocytes and
kill the parasite inside the cell.90 Treating the
platelets with aspirin or a P2Y1 antagonist rendered
them incapable of killing the parasite. Accordingly,
treating mice with antiplatelet Abs or aspirin resulted
in lower overall survival after infection with
Plasmodium chabaudi. Lately, E. coli were found to be
killed by human platelets through a process involving
CXCL4 and FcgRIIA: Anti-CXCL4/polyanion Abs
opsonized E. coli coated with platelet-derived
CXCL4. The Ab complex was then detected by platelet
FcgRIIA,91 causing platelets to cover the opsonized
bacteria and release antimicrobial factors in a concerted
way to effectively kill them.

Platelet interactions with innate immune
cells in infection and inflammation

Platelets interact with a number of key players during
infection and inflammation, namely macrophages (e.g.
Kupffer cells in the liver), neutrophils, monocytes, NK
cells, dendritic cells and components of the complement
system. Here, we focus on reviewing their interactions
with Kupffer cells, neutrophils, the complement system
and how they maintain vascular integrity during
inflammation and infection.

Kupffer cells

The liver is not only the largest internal organ with
important roles in detoxification and metabolism, it is
also the first line of defense against pathogens present
in the blood stream. It filters about a third of the body’s
total blood volume each minute and contains the lar-
gest population of phagocytes in the body.92 The liver-
resident macrophage population known as Kupffer
cells (KCs) are very large, immobile cells that reside
in the sinusoidal space where they scan for foreign
objects in the blood. More than 25 years ago, Endo
and colleagues discovered that LPS injection into
mice caused an increase in hepatic serotonin levels
which was independent of mast cells and correlated
with a drop in the number of circulating platelets.
They found that LPS application caused accumulation
of non-activated platelets in the sinusoidal space where
they frequently interacted with KCs.93 Subsequent stu-
dies showed that while aspirin or heparin did not affect
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serotonin accumulation in the liver, KC depletion using
clodronate liposomes almost completely abolished
platelet and serotonin accumulation.94 This suggested
that LPS stimulation causes platelet retention in the
liver through a process that is different from classical
platelet aggregation and that involves KCs.

We now know that KCs rapidly capture a
striking quantity of pathogens from the bloodstream
in a process that often involves platelets. KCs were
shown to bind B. burgdorferi and prevent them from
using sinusoidal endothelial cells to gain access to the
extravascular space.95 It was also demonstrated that
methicillin-resistant S. aureus (MRSA) is primarily
sequestered and killed by KCs through an interaction
of the complement receptor of the immunoglobulin
superfamily (CRIg) with LTA on the bacterial sur-
face.96 A minority of staphylococci, however, can over-
come the antimicrobial activity of the KCs to survive
and proliferate inside this intracellular niche.97

Importantly, KCs were found to collaborate with plate-
lets to eradicate blood-borne infections with Bacillus
cereus and MRSA:98 In the naı̈ve mouse liver, platelets
performed touch-and-go interactions through GPIb
with vWF constitutively expressed on KCs. Upon infec-
tion, KCs captured bacteria and platelets rapidly
adhered and formed aggregates around them in an
integrin aIIbb3-dependent way to contain the bacter-
ium. This suggested an important role for platelets in
KC-mediated bacterial clearance. Indeed, platelet
depletion or lack of GPIb resulted in severely increased
mortality in mice following infection. Importantly,
opsonization with complement factor C3 was necessary
for successful bacterial clearance, indicating a complex
interplay between KCs, platelets and the complement
system during bacterial clearance in the liver. Another
group investigating the clearance of Listeria monocyto-
genes bloodstream infections by KCs discovered a dual-
track mechanism consisting of a slow clearance of bac-
teria–platelet complexes that requires platelet GPIb,
CRIg and C3 opsonization as well as a fast clearance
of free bacteria independent of complement and plate-
lets that requires scavenger receptors.99,100 The authors
hypothesized that the slow clearance allows a small
number of platelet–bacteria complexes to remain in
the circulation long enough to be detected by splenic
CD8a+ dendritic cells to launch an antibacterial cyto-
toxic T cell response.

Neutrophils

It is well established that platelets interact with neutro-
phils during inflammation and infection. Indeed, circu-
lating platelet–neutrophil complexes (PNC) have been
found in a variety of diseases such as asthma, rheuma-
toid arthritis, inflammatory bowel disease, multiple
sclerosis, stroke and severe sepsis.101–102 The effect of
platelets binding to neutrophils includes increased

neutrophil adhesion to the endothelium, increased
reactive oxygen (ROS) production and NET formation
(Figure 2). P-Selectin, which upon activation is
recruited to the platelet surface from a-granular
stores, seems to be the most important platelet surface
receptor for platelet–neutrophil interactions. Platelet P-
Selectin binds to the high-affinity counter-ligand PSGL-
1 on neutrophils.104,105 P-Selectin-deficient mice show
severe leukocyte defects, for example abrogated leuko-
cyte rolling as well as delayed neutrophil recruitment
and reduced neutrophil extravasation.106,107 Using P-
Selectin-deficient mice or treating mice with an anti-P-
Selectin Ab and subjecting them to different models of
lung inflammation resulted in reduced neutrophil
recruitment and less lung damage.108,109 However, all
those studies looked at global P-Selectin deficiency in
which the individual contribution of endothelial and
platelet P-Selectin are difficult to isolate. In later studies
it was shown that platelet depletion significantly inhi-
bits neutrophil recruitment to the site of inflammation
in a zymosan-induced peritonitis and LPS-induced lung
inflammation model.110 In inflamed glomerular capil-
laries, platelets are essential for leukocyte adhesion
via a non-classical cascade that involves platelet P-
Selectin binding to endothelial PSGL-1 as well as b2
integrin/ICAM-1 and nonrolling interactions.111

Depletion of neutrophils and platelets reduced urinary
protein excretion induced by anti-glomerular basement
membrane Abs, underlining their importance for the
development of renal injury. In addition, it was
shown that platelet P-Selectin is important for neutro-
phil recruitment into the outer and inner medulla
during acute post-ischemic renal failure.112 In another
paper, Sreeramkumar et al. showed that in inflamed
vessels, neutrophils scan for the presence of activated
platelets using PSGL-1 clusters. Migration and NET
formation only occurred once activated platelets had
bound.113 In a mouse model of multiple sclerosis
called experimental autoimmune encephalomyelitis
(EAE), platelet depletion significantly improved the dis-
ease state and slowed its progression through reduced
recruitment of leukocytes to the inflamed central ner-
vous system and attenuated inflammation. More specif-
ically, targeting GPIb or aIIbb3 led to a pronounced
improvement of EAE outcome.114

Interestingly, platelets not only express P-Selectin,
but also its counter-receptor PSGL-1 which mediates
platelet–endothelium interaction.115,116 Furthermore,
platelet GPIb was also shown to bind to (endothelial)
P-Selectin,117 thereby allowing platelets to scan for the
activation status of the vasculature. In addition, plate-
lets can stimulate the secretion of Weibel–Palade bodies
from endothelial cells and leukocyte rolling through
P-Selectin.118 Therefore, it seems that platelets can
interact with the endothelium to pave the way for
leukocytes to bind to both platelets and the
endothelium.
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P-Selectin/PSGL-1 interactions between activated
platelets and neutrophils in the inflamed vasculature
promote further interactions through b2 integrins
(CD18), especially Mac-1 (aMb2, CD11b/CD18)
which follows a three-step process that involves
binding to fibrinogen/GPIb and outside-in-signaling
through Src family kinases.119,120 In addition, activated
platelets express intercellular adhesion molecular-2
(ICAM-2, CD102) which enables the formation
of firm and shear resistant platelet-neutrophil-com-
plexes under flow conditions by binding to b2
integrins.121,122

Neutrophil accumulation on activated platelets
under flow conditions also involves interactions of
Mac-1 with fibrinogen bound to platelet aIIbb3, as
found by using blocking Abs against the major platelet
integrin. Furthermore, platelets from patients with
Glanzmann thrombasthenia harboring genetic defects
in their ITGA2B or ITGB3 genes that cause impaired
aIIbb3 function or expression123 demonstrated

significantly reduced neutrophil adhesion to platelets
under flow compared with healthy controls.124

Platelets are a major source of CD40 ligand
(CD40L), which they express on their surface upon
activation.125 Patients with diabetes, ischemic stroke
or acute coronary syndromes often show elevated
levels of circulating soluble CD40L. Stimulation of
endothelial cells through CD40 by platelet CD40L
induces recruitment of neutrophils, likely via platelet
P-Selectin and neutrophil Mac-1 expression.
Furthermore, CD40L increased neutrophil oxidative
burst and degranulation.126,127

Indeed, neutrophils in PNCs show increased activa-
tion, CD11b expression, phagocytosis and ROS pro-
duction compared with free neutrophils.128 Upon
stimulation of platelets, the activation state of neutro-
phils in PNCs was even more pronounced.128,129

Interestingly, incubation with resting platelets was
able to restrict neutrophil activation, indicating that
there is a strong interconnection between the activation

ROS production
NET formation
adhesion
transmigration
degranulation

CXCL4, CXCL7

Chemotaxis, increased
neutrophil adhesion, degranulation
and transmigration

Microbicidal proteins
(e.g. TC1+2, t-PMP-1)

Mac-1

CD40

PSGL-1

Fibrinogen

PAMPS TLR2/4

P-Sel CD40L GPIb αIIbβ3

Figure 2. Platelets form complexes with neutrophils to potentiate their activity. Platelets interact with neutrophils through multiple

receptors: Activated platelets express P-Selectin on their surface which binds PSGL-1 on neutrophils and endothelial cells, CD40L is

expressed on the platelet surface upon activation and binds CD40, Neutrophil Mac-1 binds platelet GPIb as well as aIIbb3. Together

these interactions promote ROS production, NET formation, adhesion, transmigration and degranulation of neutrophils. Upon

activation (e.g. through PAMPS binding to TLRs), platelets release microbicidal proteins like TC1+2 which can kill bacteria. They also

secrete large quantities of CXCL4 and CXCL7 that promote neutrophil adhesion, degranulation and transmigration.
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state of platelets and neutrophils in PNCs, which is
most likely mediated through P-Selectin.129,130

Besides phagocytosis, neutrophils possess another
clever way to capture bacteria through the formation
of NETs. During NET formation, neutrophils expel
large amounts of chromatin and granular proteins
(e.g. elastase and myeloperoxidase (MPO)), thereby
forming extracellular fibers to immobilize and kill bac-
teria.131,132 Initially, it was thought that all neutrophils
die during NETosis; however, early in infection, live
neutrophils in fact release NETs to prevent bacterial
dissemination.133 While this may sound counter-intui-
tive at first, we know that red blood cells or platelets
live without a nucleus for several days and that neutro-
phils whose nucleus has been removed retain their abil-
ity to crawl, transmigrate, phagocytose and kill bacteria
at least for a short time.134

Platelets are critically involved in NET formation
through their TLR4 receptor that can detect PAMPs
in the bloodstream. Platelet activation through TLR4
causes them to bind to neutrophils adhering primarily
to liver sinusoids and pulmonary capillaries, causing
neutrophil activation and NET formation.39

Significantly, adding plasma from patients with severe
sepsis to platelets and neutrophils from healthy donors
triggered TLR4-dependent PNC formation. Moreover,
neutrophils migrate to liver sinusoids during sepsis to
release NETs and prevent bacterial dissemination to
other organs by a mechanism that requires PNC for-
mation through LFA-1 (CD11a/CD18).135 Platelets
were shown to form aggregates around S. aureus
thereby limiting their growth. In addition, human plate-
lets also release an antimicrobial peptide called human
b-defensin-1 (hBD-1) after stimulation with S. aureus a-
toxin. hBD-1 significantly impairs bacterial growth but
was also shown to induce robust NET formation.136

Interestingly, NETs can also be found under sterile
inflammation conditions in the lungs and plasma of
patients with transfusion-related acute lung injury
(TRALI). Targeting platelet activation using aspirin
or an aIIbb3 inhibitor decreased NET formation and
lung injury in a mouse model of TRALI.137 Blocking
Mac-1 but not LFA-1 during acute lung injury also
significantly reduced the amount of NET formation
and lung injury.138 Platelets are critically involved in
the propagation of deep vein thrombosis (DVT) by
promoting leukocyte accumulation and NET forma-
tion, which provides a prothrombotic surface through
its decoration with TF.40 Importantly, treating mice
with DNase significantly reduced NET formation and
DVT growth. A recent publication showed that both
mice and humans harbor endogenous DNases that help
to contain NET formation in the host.41 Serum from
mice deficient in DNase1 or DNase1L3 was able to
degrade NETs; however, deficiency in both DNases
completely abrogated NET-degrading capacity.
Double-deficient animals subjected to chronic

neutrophilia or septicemia showed a high mortality
due to vascular occlusion through ‘‘pure’’ NET clots
independent of classical hemostasis or thrombus
formation.

Platelets were recently found to be capable of
actively probing their local environment and migrating
using actomyosin-generated forces.139 While migrating
they act as cellular scavengers that collect bacteria both
in vitro and in vivo. Platelet–bacteria bundles generated
this way facilitate phagocytosis by neutrophils as well
as NET formation.

Complement

The complement system facilitates lysis of pathogens
and damaged cells by forming a pore in the target cell
membrane through the membrane attack complex.
Platelets are capable of activating both the classical
and alternative complement pathway; however, the
mechanism is still incompletely understood.140 It is
known that activated human platelets express
gC1qR—a receptor for C1q and the first factor of the
classical complement pathway141,142 which also binds
to other ligands such as SpA expressed on the surface
of S. aureus.143,144 Platelet granules store complement
C3 and C4 precursor but also C1 inhibitor, which indi-
cates that platelets might in fact regulate the comple-
ment response.61 Chondroitin sulfate released from
activated platelets causes complement activation
through interactions with C1q.145 In addition, platelet
P-Selectin can bind C3b and trigger the alternative
complement pathway.140

S. sanguis induces platelet aggregation in a comple-
ment-dependent way with a lag time that can be
explained by the time needed for the assembly of the
C5b-9 complex on the bacterial surface.146 S. aureus
ClfA exhibits an alternative route to bind platelets
that is fibrinogen-independent and involves FcgRIIa
and the assembly of complement proteins as well as a
complement receptor.147

The complement factors C1q, C4, C3, and C9 bind
TRAP (thrombin receptor-activating peptide)-activated
platelets without, however, activating the complement
cascade, indicating that under physiological conditions
there is no activation of the complement system on the
platelet surface.148 Assembly of the lytic terminal com-
plement complex C5b-9 on the platelet plasma mem-
brane can activate platelets and induce platelet
procoagulant activity.149 Patients suffering from HUS
display hemolytic anemia, acute kidney failure, comple-
ment system activation and microvascular thrombosis
leading to thrombocytopenia.150 During HUS, endo-
thelial and complement system activation lead to
vWF release from endothelial Weibel–Palade bodies
as well as P-Selectin and TF recruitment in a C3a or
C5a-dependent way that leads to platelet adhesion and
establish the prothrombotic state.150–152
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Platelets maintain vascular integrity
during inflammation

In patients with immune thrombocytopenia (ITP), the
immune system wreaks havoc on endogenous platelets
through antiplatelet Abs against major platelet recep-
tors, in most cases GPIb and aIIbb3.153 This results in a
significantly reduced number of circulating platelets
(<100� 109/L), causing varying degrees of bleeding
culminating—in some cases—in intracranial hemor-
rhages.154 Often the degree of thrombocytopenia
observed in ITP patients does not predict the severity
of bleeding,155 indicating that thrombocytopenia alone
is not sufficient to cause bleeding and that an additional
trigger—such as inflammation—is needed.

In 2008, Goerge et al. showed that inflammation
induces hemorrhage in thrombocytopenic mice.21

Using multiple models to induce local inflammation
in the skin, brain and lung, they observed no signs of
bleeding in mice with normal platelet counts. In striking

contrast, when using thrombocytopenic mice, they
observed massive hemorrhage at the site of inflamma-
tion. Remarkably, as little as 5% of the baseline platelet
count was sufficient to significantly reduce bleeding.
Interestingly, similar results were obtained in a model
of pneumonia-derived sepsis using Klebsiella pneumo-
niae: Thrombocytopenic mice displayed increased bac-
terial growth and hemorrhage in the lung.20 Later, the
importance of platelet ITAM signaling downstream of
GPVI and CLEC-2 in maintaining vascular integrity
during skin and lung inflammation was demon-
strated.49 Recent findings show that the CLEC-2
ligand podoplanin is upregulated on macrophages and
other extravascular cells during skin inflammation,
indicating that in the absence of GPVI, binding of
platelet CLEC-2 to podoplanin-expressing cells con-
tributes to limiting bleeding in the inflamed skin
(Figure 3).156,157 The study also showed that vascular
integrity during lung inflammation was partially
dependent on GPIb.

Neutrophil infiltration
and ROS production

(b)
(a)

(e)

(c)
GPVI

CLEC-2

αIIbβ3αIIbβ3

(d)

Podoplanin

Figure 3. Platelets maintain vascular integrity during inflammation. During local inflammation (e.g. in the skin), platelet GPVI plays a

dual role: On the one hand it promotes neutrophil infiltration and ROS production which causes tissue damage (a) and on the other

hand it binds to the extracellular matrix protein collagen which gets exposed and facilitates platelet adhesion to restore vascular

integrity (b). In the ischemic brain aIIbb3 facilitates platelet–platelet interactions to prevent intracranial hemorrhage (c). Platelets can

also bind to podoplanin, expressed on inflammatory macrophages via CLEC-2 (d). Factors secreted from platelet granules support

cerebral hemostasis after stroke, for example by acting on endothelial cell receptors that stabilize cellular junctions (e).
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It was suggested that platelet granule secretion fol-
lowing platelet activation through the aforementioned
pathways could be part of the mechanism that maintains
vascular integrity.21,49,50,158 However, recent findings
demonstrate that platelet a- and dense-granule contents
are dispensable for maintaining vascular integrity during
acute inflammation in the skin and lung.159 Strikingly,
when mice lacking platelet a- and dense-granule secre-
tion were subjected to transient middle cerebral artery
occlusion (tMCAO), this resulted in significantly
impaired hemostasis in the ischemic brain, causing
increased intracranial hemorrhage and 50% mortality
comparable to that observed in mice treated with
aIIbb3-blocking Abs.160 This is especially interesting,
since mice with a single deficiency in either platelet a-
or dense-granule secretion did not show signs of spon-
taneous hemorrhage during thrombosis,64,161 thrombo-
inflammation after stroke63,64 or tumor metastasis.162,163

This indicates that factors from both a- and dense gran-
ules are necessary to maintain cerebral hemostasis after
tMCAO; for example platelet-derived angiopoietin-1 or
serotonin—which were previously shown to prevent
intra-tumor hemorrhage165—might play a role in this
setting. Of note, angiopoietin-1 was also shown to be
critical for the maintenance of vascular integrity and
survival in a mouse model of cerebral malaria.165 In
addition, brain endothelial cells express the P2Y2 recep-
tor that binds nucleotides such as ADP and ATP, which
could also contribute to permeability.166 Indeed, plate-
let-derived ATP was shown to enable tumor cell trans-
endothelial migration and metastasis via P2Y2.163

During inflammatory bleeding in the skin, neutro-
phil extravasation and RBC loss colocalize,167 and
inhibiting neutrophil capturing, adhesion and crawling
on the endothelial cell layer significantly reduced hem-
orrhage. Furthermore, neutrophil diapedesis opens
endothelial junctions via dephosphorylation of VE-
cadherin during skin inflammation. Interestingly, plate-
let GPVI on the one hand enhances neutrophil infiltra-
tion and ROS production, thereby causing more
endothelial damage,50 while on the other hand it
enables platelets to adhere to binding sites exposed by
neutrophils. GPVI therefore has a Janus face in this
process: It contributes to the pro-inflammatory role of
platelets while at the same time helps to repair the
damage inflicted by neutrophils and thereby maintains
vascular integrity.168

Conclusion

The roles of platelets besides those in thrombosis and
hemostasis have long been neglected, but today we
know that they also contribute to inflammation
during sepsis, thrombo-inflammation, atherosclerosis
and stroke. In most of these cases, platelets present
themselves as a most versatile actor: They can form
complexes with neutrophils and enhance their

phagocytosis, ROS production and NET formation
capacity, encase bacteria on the surface of KCs to
assist with their destruction or confront pathogens on
their own by acting like a wannabe-phagocyte.

First reports of platelets aggregating around bacteria
are more than 100 years old; however, only recently we
have started to understand the complex interplay
between platelets and the cells of the innate immune
response during inflammation and infection. Platelets
interact with bacteria by direct interactions between
platelet receptors and proteins on the bacterial surface.
Upon activation platelets release a plethora of factors,
for example microbicidal agents but also factors that
modulate the innate immune response.

NET formation by neutrophils is a powerful tool to
capture and destroy bacteria and it has become clear
that platelets critically contribute to this process. A very
new concept is that platelets assist in bacterial clearance
in the liver through KCs and the complement system,
and we will probably see a lot of exciting new findings
in this field in the near future.

Another emerging role for platelets is in maintaining
vascular integrity during inflammation through an
organ-specific process that is independent of classical
activation and involves platelet receptors as well as
the content of a- and dense granules.
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38. Ståhl AL, Svensson M, Mörgelin M, et al. Lipopolysaccharide

from enterohemorrhagic Escherichia coli binds to platelets

through TLR4 and CD62 and is detected on circulating platelets

in patients with hemolytic uremic syndrome. Blood 2006; 108:

167–176.

39. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates

neutrophil extracellular traps to ensnare bacteria in septic blood.

Nat Med 2007; 13: 463–469.
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125. Henn V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated

platelets triggers an inflammatory reaction of endothelial cells.

Nature 1998; 391: 591–594.

126. Li G, Sanders JM, Bevard MH, et al. CD40 ligand promotes

Mac-1 expression, leukocyte recruitment, and neointima forma-

tion after vascular injury. Am J Pathol 2008; 172: 1141–1152.
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