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Abstract: The operational activities conducted in a shipyard are exposed to high risk associated
with human factors. To investigate human factors involved in shipyard operational accidents, a
double-nested model was proposed in the present study. The modified human factor analysis
classification system (HFACS) was applied to identify the human factors involved in the accidents,
the results of which were then converted into diverse components of a fault tree and, as a result,
a single-level nested model was established. For the development of a double-nested model, the
structured fault tree was mapped into a Bayesian network (BN), which can be simulated with the
obtained prior probabilities of parent nodes and the conditional probability table by fuzzy theory and
expert elicitation. Finally, the developed BN model is simulated for various scenarios to analyze the
identified human factors by means of structural analysis, path dependencies and sensitivity analysis.
The general interpretation of these analysis verify the effectiveness of the proposed methodology to
evaluate the human factor risks involved in operational accidents in a shipyard.

Keywords: human factors; shipyard operation; Bayesian network; fuzzy fault tree; risk assessment

1. Introduction

Increasing concern about various risks involved in shipyards, especially the risks that
are human-related, can be observed [1,2]. Many dangerous operations are carried out at
the same time and in the same space, and the risks on site in a shipyard are highly inter-
connected and harmful [3]. Therefore, industrial safety management has constantly been
explored, but it is difficult to effectively reduce occupational incidents and accidents [4] in a
shipyard. In 2018, the revised code of practice for safety and health in shipbuilding and ship
repair was adopted at the 329th session of the International Labor Organization (ILO) [5],
aiming to help governments, employers and workers address new safety and health prob-
lems and provide a reference for the promotion of work safety. Accident investigations have
received great attention in Singapore. To prevent or minimize the recurrence of accidents
and hazardous events in workplaces such as shipyards, the Attorney-General’s Chambers
(AGC) [6] passed a legislative amendment in April 2017, adding provisions on publishing
representative accident casualty reports. In addition, under the structural adjustment of the
shipbuilding industry around the world, the proportion of the shipbuilding and ship repair
industry is increasing compared to that of other sub-industries. According to the statistical
data of the China Association of the National Shipbuilding Industry (CANSI), as shown in
Figure 1, in 2019 the shares of the shipbuilding industry and ship repair industry accounted
for 72.95% and 5.39% of overall business income, respectively. Compared with the statisti-
cal results of 2015, the proportion of these two branches increased significantly. With the
opportunity of implementation of the 0.5% sulphur limit and the mandatory requirement
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for installing a ballast water management system (BWMS) on board, the shipbuilding and
repair business is expected to benefit. However, the operational risks pertaining to the
installation and refit of equipment would require much attention. Therefore, faced with
both threats and opportunities, it is important and urgent to reduce the occurrence of
occupational accidents in shipyards.

Figure 1. Comparison of shipbuilding industry structure based on the share of business income.

1.1. Related Works

A lot of studies have been undertaken to identify and evaluate various causes con-
tributing to the occurrence of accidents in shipyards. Jacinto and Silva [7] studied the causal
pathways and their consequences of the accidents that occurred at Arsenal do Alfeite (a
large shipyard in Portugal) by bow-tie diagram technique. The 115 fatalities between 2000
and 2010 that occurred in Turkish shipyards were investigated statistically by Barlas [3], and
five main causes were identified. A statistical technique is also applied by Ozkok [8] and
Romuald Iwańkowicz and Rosochacki [9] who studied the characteristic of the shipyard
accidents reported in the years 2000–2005, and the hazards involved in these accidents
were identified from technical and ergonomics aspects. Meanwhile, the ship repair yard
accidents that occurred between 1989 and 2008 in Greece were collected and analyzed sta-
tistically by Fragiadakis et al. [10] with the application of an adaptive neuro-fuzzy inference
system (ANFIS) model based on five parameters associated with these accidents. Later,
these five important parameters were also utilized by Tsoukalas and Fragiadakis [1] to
investigate 284 occupational accidents reported by the Greek Labour Inspectorate Agency
by means of integrating multivariable linear regression and genetic algorithms, and the
key risk factors involved in these shipyard accidents were mainly related to humans, such
as carelessness of workers, erroneous series of human operations, and insufficient safety
training, and they also studied the influence of working conditions on occupational injuries.
After investigating the reported fatal injuries in shipyards between 2004 and 2014 in Turkey,
Barlas and Izci [11] summarized five major causes for these accidents which are listed as
falling higher elevation to lower level, exposed to electric shock, fire and/or explosion,
being struck by or struck against objects and caught in between, and drowning. In addition,
Crispim et al. [12] summarized the potential risks involved in military shipbuilding in
Brazil which were then analyzed semi-quantitatively by a visual Delphi and Bayesian
network (BN).

Identification of critical risk events involved in the shipyard operation is an effective
way to prevent accidents in shipyards. When identifying the hazardous events or critical
risk events involved in shipyard operations, the factors to take into consideration have been
proposed by International Labor Organization (ILO) [5]. The questionnaire survey and
expert interviews were utilized by Lee et al. [13] to extract the potential critical risk events in-
volved in the shipbuilding industry in Korea, and the potential hazardous events contribut-
ing to the occurrence of shipyard accidents were also identified by Zheng et al. [14] with
the application of an energy source-based job safety analysis (JSA) technique. Njumo [15]
mapped the fault tree analysis (FTA) into formal safety assessment (FSA) to investigate
the accident scenario in shipyards. Ozkok [8] applied failure mode and effect analysis
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(FMEA) to identify the most risky activities and work stations within a shipyard, and later,
the FMEA model was also utilized by Efe [2] to determine the most three risky scenarios,
which were listed as “lack of nets on ship scaffolds”, “utilization the inappropriate ladders”
and “empty fire extinguishers”. In addition, the historical data associated with shipyard
accidents are widely used by scholars to identify risk events. Shinoda et al. [16] developed a
database containing shipyard occupational accidents and an information processing model
to identify the hazardous events; later, Shinoda et al. [17] designed a work observation
system based on this database, and similarly, the database containing various resources
aimed at risk control in shipyard was also utilized by Cebi et al. [18] to establish a web-
based decision support system to aid decision-making for risk management. Based on the
obtained historical data, the BN is often applied to identify the critical risk events in the
shipbuilding and repair industry; for instance, Lee et al. [19] developed a BN to implement
risk evaluation with the help of questionnaire approach, and then, Basuki et al. [20] used
the probabilistic-based approaches to quantify the parameters involved in BN model to
analyze the critical risks in the shipyard industry. The BN model was also applied by Costa
et al. [21] to investigate the underlying causal factors involved in shipyard accidents. To
identify the critical risk factors (CRF) involved in the shipyard operation, Seker et al. [22]
proposed a risk assessment framework integrated by decision making trial and evaluation
laboratory (DEMATEL) and grey system theory which is then applied to a case study in a
Turkish shipyard. However, much of the information involved in the shipyard operation
risk evaluation is characterized by uncertainty, which may be resolved with fuzzy set
theory [23].

The causes for accidents and critical risk events in shipyard are mainly attributed
to aspects of adverse environments and human-related and/or organizational factors.
The environmental factors generally include various conditions on site, such as weather,
atmosphere, available hardware or technical equipment in shipyards. Celebi et al. [24]
identified the adverse environmental conditions as much as possible by reviewing the oper-
ational process in shipyards, and according to the studies implemented by Krstev et al. [25]
and Barlas [3], the adverse conditions of materials being toxic, flammable and explosive,
dangerous gases, poor ergonomics, and exposure to general hazards may easily trigger
the occurrence of shipyard accidents. For instance, Barlas [3] found that the number of
fatalities is highest in working temperatures beyond average 25 ◦C according to the re-
ported shipyard accidents data in Turkey. Tsoukalas and Fragiadakis [1] mapped the
relationship between the operational conditions and the occupational risks in the shipyard
by multivariable linear regression. The housekeeping at workshops and bad weather
conditions were regarded as the two of the main risk factors for shipyard accidents by
Barlas and Izci [11]. It is noticeable that the contribution of an adverse environment to ship-
yard accidents is becoming weaker with the introduction of various advanced technologies
into the shipbuilding and repair industry, and the human-related factors are attracting
much more attention due to their variability and uncertainty. According to Seker et al. [22],
human-related factors were mainly represented in the aspects of individual competence,
sociological, psychological and physiological. Based on the investigation of shipyard ac-
cidents statistically, Barlas and Izci [11] found that human-related factors were the main
reasons for shipyard accidents, such as low education and training, being tired and sleepy,
overtime and so on, and similar conclusions were also obtained by Efe [2] who ascribed
the main reason for falling from a height accidents to the absence of a safety belt or seat
belt during operation. In addition, organizational factors are also important to embed the
precautions obtained from accidents analysis into the safety management system [26,27].
The study implemented by Crispim et al. [12] also indicated that the main factors leading
to risk events in military shipbuilding are related to humans and organization.

However, human-related factors involved in shipyard accidents have not been investi-
gated systematically. Even though the importance of human-related factors contributing
to shipyard accidents is recognized by many scholars, such as Barlas and Izci [11], Efe [2]
and Crispim et al. [12], the studies associated with influencing pathways and mechanisms
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of human-related factors on shipyard accidents are rare in the existing literature. The rea-
sons may be explained by the complexity and uncertainty involved in the human-related
operations in shipyard. There are many stakeholders involved in a shipyard operation,
especially for ship repair activities, such as the crew from the ship, workers in the shipyard,
ship surveyors, technical engineers from suppliers, all of whom are interrelated together
temporarily to implement ship repair work. In addition, it is difficult to monitor effectively
the behaviors of humans involved in the shipyard operation. Although the study for
human-related factors involved in shipyard operations is still underway, similar studies
in other industries have been well developed, such as maritime accidents analysis [28],
aviation accidents investigation [29], risk evaluation in process industry [30] and coal mine
accidents analysis (Liu et al., 2018). According to the review by Qiao et al. [31], the human-
related factor analysis models can be divided into four types, in which various technologies,
quantitative or qualitative, are involved. It is noticeable that the qualitative approaches
or models prove to be critical to provide an analysis framework, such as the human fac-
tors analysis and classification system (HFACS) [32], system theoretic process analysis
(STPA) [33], human error assessment and reduction technique (HEART) [34], cognitive
reliability and error analysis methods (CREAMs) [35], and system theoretic accident model
and process (STAMP) [36]. Based on the qualitative analysis framework, it is necessary to
apply quantitative assessment technologies to analyze human-related factors for accident
prevention. One of the popular models is the probabilistic-based Bayesian inference, which
is widely applied in various risk scenarios. In practice, the BN is frequently integrated
with other risk analysis approaches, such as fault tree analysis (FTA) [37], HFACS [31], the
success likelihood index method (SLIM) [38] and the technique for order of preference
by similarity to an ideal solution (TOPSIS) [39]. The simulation based on information
communication technology can also be referred to manage human-related factors [40]. In
addition, the technologies associated with artificial intelligence and big data are being
applied to assess the human-related factors involved in accidents, such as the artificial
neural network (ANN) [28], machine learning [41,42] and data mining [43]. In the present
study, the human-related factors involved in shipyard accidents are characterized by obvi-
ous uncertainty and ambiguity which can be reasonably handled by fuzzy theory [44]. In
addition, there is no doubt that different human-related factors are interrelated logically
and, finally, accidents may be triggered. Therefore, it is critical to analyze the relationships
among different human-related factors quantitatively, for instance, from the perspective
of probability. The principle of FTA is well suitable to represent these logic relationships,
and it is possible to determine the probability for every human-related factor (known as an
event in the fault tree) [45], which can be used in the following Bayesian inference.

1.2. Contribution of This Study

The focus of this study is to establish a double-nested accident analysis and risk
assessment framework, under which the fuzzy algorithm and information theory are
integrated to quantify and address the uncertainty of human factors and their dependency
in shipyard accidents. Moreover, an accident that occurred in a Chinese shipyard is used
as a case to verify the proposed methodology. Based on a modified framework of HFACS,
the combination of FTA and a fuzzy extent Analytic Hierarchy Process (AHP) is utilized to
systematically establish the causal relationship of accidents and address the randomness
of risk factors in this study. In addition, BN is adopted to predict the probability of risk
because of its powerful learning and reasoning capability. In particular, the introduction of
canonical probabilistic models reduces the difficulty of obtaining the conditional probability
among nodes in the Bayesian network, and it can deal with the complexity involved in
human factors analysis. The model developed in this study can help to address human-
related risks in shipbuilding and repair projects from a system perspective, and reduce
the incidence of occupational accidents and injuries. The salient features of the proposed
methodology are listed as follows:
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• A double-nested model for the assessment of human-related risks is proposed by
mapping a fuzzy fault tree into a Bayesian network based on HFACS.

• The difficulty of obtaining the conditional probability table of Bayesian network is
overcome by canonical probabilistic models.

• Mutual information is introduced to identify main paths of risk propagation.

1.3. Organization

The rest of this paper is organized as follows: Section 2 outlines an overview of the
research methodology, and the employed models and techniques. The process of establish-
ing the double-nested assessment model and applying it to a case study is presented in
Section 3. The discussion and conclusions are presented in Sections 4 and 5.

2. Methodology

A complete accident analysis should not only investigate the direct cause of an accident
but also identify the deep-seated human risk factors hidden in the system to fundamentally
eliminate the latent hazards. For this purpose, the fuzzy fault tree model, which is nested
with the hierarchical framework of the HFACS, is first proposed to thoroughly analyze
the human factors that contribute to occupational accidents in the shipbuilding and repair
industry. Then, it is mapped into BN, which is the double-nested model proposed in this
paper, to further explore the characteristics and mechanisms of human factors quantitatively
through probabilistic reasoning and uncertainty and sensitivity analysis. The specific
schematic diagram is shown in Figure 2.

Figure 2. Overview of the proposed methodology.

2.1. The Modified HFACS

HFACS was initially proposed based on the ‘Swiss cheese’ model to analyze the
human errors that led to the repeated occurrence of naval aviation accidents in a systematic
manner [32], and it has been widely used to analyze the increasing problems of human
behavior. Four layers of barriers are included in the ‘Swiss cheese’ model, and active or
latent failures lead to holes in different safety barriers, resulting in four types of failures:
unsafe acts, preconditions for unsafe acts, unsafe supervision, and organizational influences.
An accident occurs when the defense-in-depth barrier system fails. However, the model
does not clearly explain what the holes in the cheese slices represent. Accordingly, the
HFACS was developed to describe more specific causal categories at each failure layer [46],
as shown in Figure 3, to effectively identify the explicit and implicit causes of accidents,
thus becoming a comprehensive human factor analysis tool.
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Figure 3. The original framework of HFACS.

HFACS is frequently applied to investigate and analyze the causes of accidents in
various industries. Overall, most categories of the original HFACS framework are retained,
while some minor optimizations are implemented to better meet the needs of a particular
research field [47]. The modification of the HFACS is also implemented in the present
study, which is helpful to find the recurring patterns of deficiencies in the safety production
system of ship maintenance. A brief description of the improvements follows, and a more
detailed illustration of the modified HFACS framework will be discussed in Section 3.2.1.

• In the category of ‘preconditions for unsafe acts (UP)’, one of its subcategories, per-
sonnel factors, including personal readiness and crew resource management, has
been removed. The ‘crew resource management’ which refers to a series of commu-
nication and team cooperation issues that affect personal performance is considered
under ‘resource management’ because it is closer to the concept of human resource
management, and ‘personal readiness’ is integrated into the ‘conditions of operators’
for discussion.

• In the category of ‘unsafe supervision (US)’, ‘failure to correct known problems’,
is related to the situation in which vulnerabilities related to personnel, equipment,
etc., are known by supervisors and allowed to continue uncorrected. It is replaced
by ‘inadequate process supervision in emergency management’. In most cases, the
meaning of ‘failure to correct known problems’ may overlap and cross with the content
of ‘inadequate supervision’ and ‘supervision violations’ because there is no restrictive
characterization of it.

2.2. Fuzzy Fault Tree
2.2.1. Fuzzy Extent AHP

Since it is difficult to obtain quantitative and complete data on human behavior due to
its subjectivity and randomness, the quantification of human risk factors often depends
on expert judgment. The AHP proposed by Saaty [48] is widely accepted as a concise
method and is usually employed to quantify the qualitative indicators based on expert
opinions. Based on the hierarchical structure of AHP, the weight or priority of risk factors
contributing to the defined scenario can be calculated by pairwise comparison at different
levels. However, the crisp value is regarded as inaccurate due to the uncertainty and
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ambiguity of expert evaluation [49]. Therefore, it is necessary to extend the AHP under
fuzzy logic. Chang [50] improved the AHP by combining it with the fuzzy extent analysis
method, taking expert knowledge, subjective bias, and unquantifiable and incomplete
information into account in the decision-making process. Based on the established hier-
archical structure, the fuzzy AHP is able to decompose a complex problem into several
simple decision attributes, which are easier to understand and evaluate [51]. In addition,
the decision-maker does not need to specify crisp scales for each indicator [52]. Moreover,
for the results of pairwise comparison, fuzzy extent AHP can directly obtain the weight
vector of indicators at each layer without defuzzification [53]. In this study, fuzzy extent
AHP is employed to calculate the weights of human factors, and the fuzzy-valued weight
will ultimately be converted into a failure probability for further risk assessment.

2.2.2. Fault Tree Analysis

Fault Tree Analysis (FTA) is one of the classical methods for accident analysis in
complex systems. Taking the system failure (i.e., that an accident occurs) as a premise,
probable causes can be deductively determined and divided into branch or tip nodes of
the fault tree model. The nodes that cannot be decomposed further are basic events (BEs),
and the others are intermediate events (IEs). Top event (TE) in the fault tree model refers
to the specified accident scenario. Consideration of the logical correlation among events,
different logic gates are introduced to express the diverse properties of causal relationships
in accidents, and the cause–consequence relationship can be visualized as a tree graph.
According to FTA, not only will the direct causes of accidents be investigated, but all
the accident causes, including potential risks, will also be found [54]. Therefore, the risk
analysis is founded on a reliable basis.

In the qualitative part of FTA, the Boolean algebra reduction method is utilized to
determine the minimal cut sets (MCSs) and minimal path sets (MPSs). MCSs represent
accident modes, and the greater the number of MCS, the more dangerous the system is.
Conversely, MPSs reflect the safe performance of the system. For quantitative FTA, the first
step is to calculate the failure probability of BEs, and then, the failure probability of TE can
be computed for risk assessment. In the present study, FTA is developed by converting
the human factors identified under the HFACS framework into corresponding elements
of the fault tree and is mainly utilized for in-depth causality analysis of accidents and
identification of MCSs and MPSs.

2.3. Bayesian Network

The Bayesian Network (BN) is a multi-element graphical network based on probability
and uncertainty. It has been widely used in risk analysis field because of advantages in
knowledge representation, autonomous learning, inference and prediction for incomplete
information [55]. A given Bayesian network can be expressed as B = 〈G〈V, A〉, P〉, where
G represents the structure of the BN, which is a directed acyclic graph composed of nodes
and their connecting arcs; V is a set of nodes in G, which represents a group of random
discrete variables V = {V1, V2, V3, · · · , Vi}, A refers to directional connecting lines, and the
internal causality between risk factors is represented by a line pointing from a parent node
to a child node. In addition, P is a network parameter that maps the relationship types and
strength of the connections between variables with a conditional probability table (CPT).
Giving a set of nodes Z = {V1, · · · , Vi}, pa(Vi) is the set of parent nodes for Vi, the joint
probability distribution over Z is expressed as:

P(Z) =
n

∏
i=1

P(Vi|pa(Vi)) (1)

The most prominent function of a BN is diagnostic reasoning. Based on Bayes’ theorem,
the prior probabilities of a query set Q are updated to a posterior probability distribution
P(Z|E ), as represented in Equation (2), by inserting variables E, called evidence. In general,
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the query set could be a combination of variables or contain just one variable. In addition,
evidence is usually given in the form of accidents, incidents, near misses, etc. [47].

P(Z|E ) =
P(Z, E)

P(E)
=

P(Z, E)
∑ ZP(Z, E)

(2)

The main issue to implement inferences with BN is the acquisition of the CPT. The
conventional methods are observed as sample data learning and expert knowledge [56].
However, for a BN composed of binary discrete variables, the complexity of the joint
probability distribution increases exponentially with the increase of composed nodes. That
is, if a child node has n parent nodes, then the corresponding CPT of the child node
is numbered by 2n. Faced with such a large data demand, it is difficult for experts to
determine 2n probability distributions; in addition, sample data are usually not easy to
obtain. Therefore, the introduction of canonical models could be an ingenious way to make
the training of the probability model easier [57].

2.3.1. Noisy-OR Gate

The Noisy-OR gates are frequently used in BN modeling to calculate conditional
probability [58]. It is assumed that the consequence is affected by each cause independently,
Noisy-OR gates are usually used to describe the cause-consequence interaction between
variables of X1, X2, X3, · · · , Xn and their child node Y. In particular, Noisy-OR gates require
all variables to be binary, that is to say, each variable has two states, which are set as True
and False in this study. In addition, each variable Xi has a probability high enough to cause
result Y when the other variables are false. Then, the probability of Y under the condition
of Xi can be mathematically expressed as:

Pi = P
(
Y
∣∣X1, X2, · · · , Xi, · · · , Xn−1, Xn

)
(3)

where Pi denotes the probability that Y is True and Xi represents that the state of Xi is False.
The next step is to calculate the prior probability of each parent node, then the condi-

tion parameters between the parent nodes X1, X2, X3, · · · , Xn and the child node Y can be
approximately determined by:

P(Y|X ) = 1− ∏
Xi∈X

(1− Pi) (4)

2.3.2. Leaky Noisy-OR Gate

A leaky node, denoted by XL is added to the original Noisy-OR model to develop the
leaky Noisy-OR gate [59], which contains all the potential faults and measurement errors.
It is suitable for addressing the situation in which an established BN could not capture
all the contributing factors of Y [56]. With the assumption that all the parent nodes are
functioning normally, the child nodes may also be in the False state due to the existence of
leaky nodes. The leaky probability l is defined as the probability that Y is True but all of its
causes are False. In addition, the probability that the state of Y is True can be obtained by:

P(Y|X ) = 1−
[
(1− l) ∏

Xi∈X
(1− Pi)

]
(5)

3. Application of the Methodology
3.1. Case Study: A Suffocation Accident in Shipbuilding

The selected accident case occurred at 3:06 p.m. on 25 May 2019. A cargo ship
Jinhaixiang was in the dock for maintenance. The third officer opened the valve of the
carbon dioxide cylinder negligently, resulting in carbon dioxide in the cylinder entering the
collecting pipeline. In the process of emergency response, he grasped the pressure handle
on the booster valve by mistake, which caused the carbon dioxide in the collection pipeline
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to enter the drive pipeline. The cylinder head valve for 84 carbon dioxide cylinders and the
main valve leading to the engine room were opened, and a large amount of carbon dioxide
was discharged into the engine room in an instant. Due to the lack of unified command and
coordination on site, the rescue was chaotic, and the deck ladder was blocked many times,
which prolonged the time, as a result, the maintenance personnel and rescue personnel
were trapped in the engine room. In addition, most of the personnel did not wear effective
protective equipment for rescue, which expanded the number of people who died or were
injured due to suffocation. As a result, there were a total of 10 deaths and 19 injuries of
on-site maintenance personnel and crew in this suffocation accident.

3.2. Human Factor Identification and Classification Based on HFACS
3.2.1. Categorization of Failure Causes

Within the framework of modified HFACS, human risk factors are identified and
divided into four layers and 11 categories; in addition, there are five subcategories under
‘Unsafe acts’ and four subcategories within ‘Preconditions for unsafe acts’, as shown in
Figure 4. The four levels are continuous in nature, and at each level, a failure or defect
can either be explicit, directly affecting the accident, or it can be implicit, temporally
removed from the accident but showing no direct impact [60]. Explicit and implicit causes
of accidents can be distinguished under the HFACS framework according to Heinrich’s
domino theory [61]. It is noticeable that the potential risks at each level may also result in
an accident.

Figure 4. The hierarchy and categories involved in the modified HFACS.

‘Unsafe acts (UA)’ are at the bottom of the HFACS framework, which are the active
factors and the most direct causes of accidents. According to ‘The Classification Standard
for Casualty Accidents of Enterprise Employees’ [62], these include a series of danger-
ous practices called errors during the process of workers’ professional activities, such as
underestimation of situations, misoperation, and ignorance of warnings. In addition, it
also includes abnormal behaviors contrary to the purpose of behavior or the rules of the
organization, which are called violations.

The second layer is ‘Preconditions for unsafe acts (UP)’ containing two categories:
conditions of operators and environmental factors. According to the domino theory, unsafe
acts of human and unsafe states of machinery are the direct causes of accidents [61]. The
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environmental factors are derived from the expansion of unsafe states of machinery in the
modified HFACS, so they are also considered as a direct cause [63]. While the conditions
of operators always lead to the unsafe acts mentioned above, they are considered to be
indirect causes. As shown in Figure 4, this category consists of inherent defects, such as
recklessness, stubbornness, and overreaction, and acquired defects, such as lacking the
knowledge and skills of safe production, as well as physical deficiencies [64].

‘Unsafe supervision (US)’ is the indirect cause of accidents at the management level,
which consists of inadequate supervision, planned inappropriate operation, inadequate
process supervision in emergency response, and supervisory violations. Inadequate su-
pervision reflects the extent to which supervisors perform safety management responsi-
bilities, including the supervision and management of personnel and resources. Planned
inappropriate operation refers to the management and assignment of work, including
risk management, operator matching, and setting work schedules. Inadequate process
supervision in emergency response is especially concerned with the timely prevention
and correction of unsafe behaviors in the process of emergency response. In addition,
supervisory violations are generally focused on the on-site management.

‘Organizational influences (OI)’ are also the hidden causes that lead to accidents.
Such defects may not have a direct impact, but they are likely to cause hazards under the
combined effect of other factors. This category consists of three types: resource manage-
ment, the organizational climate, and the organizational process. In this study, resource
management takes the perspective of human resource management. The organizational
climate is an invisible risk factor that has a subtle impact on human actions. In addition, the
organizational process is the response to the operation of the safety management system,
and it can test the stability of the system.

3.2.2. Human Factor Identification and Classification

In this section, the proposed HFACS is used to analyze the explicit and implicit causes
leading to the occurrence of the example accident used by identifying human factors at
each layer and in each category. To identify all human factors in the accident scenario
described, expert experience, a literature review, accident investigation and case analysis
are combined and applied. After safety meetings, a questionnaire survey, and literature
review, the risk elements associated with human factors are summarized in Table 1. The
detailed identification and classification process is shown in Figure 5.

Table 1. Source of human factors and their corresponding designation.

Source Item Designation Item Designation

Accident
investigation and

case analysis

HF1 Operating errors HF2 Distracting behavior
during work

HF3 Emergency
response failure HF4 Long duration of work in

confined space

HF5
Improper use of personal

protective equipment (PPE)
and protective clothing

HF6 Dangerous situation not
reported in time

HF7 Poor risk perception
prior to work HF8 Poor ventilation system

HF9 Rescue without plan HF10 Defective device

HF11
Entering into

confined space without
assessing the air

HF12 Improper pipeline
interconnection

HF13
Fail to observe entry

permit associated with
risky confined space

HF14 Failure of safety equipment

HF15 Poor teamwork
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Table 1. Cont.

Source Item Designation Item Designation

Literature review

HF16 Underestimation of
hazardous situations HF17 Multiple hazard sources

HF18 Risk-seeking with weak
security awareness HF19 Limitations of the

operating environment

HF20 Poor competence HF21
Fail to implement a safety
management system and

operation procedures

HF22 Lack of working experience HF23 Unreasonable ship
repair planning

Expert experience

HF24 Delay in
emergency response HF25 Inadequate safety briefing

and training

HF26
Lax daily safety

management
and inspection

HF27
Lack of team

communication
and cooperation

HF28 Inadequate guidelines in
emergency rescue HF29 No positive safety culture

and atmosphere

HF30 Inadequate on-site control HF31 Safety management system
needs to be modified

Figure 5. Process for human factor identification and classification.

As proposed in Section 2.1, we have developed a human factor identification and
classification framework characterized by a hierarchical structure. Under this framework,
the contributory factors mentioned in the accident investigation report are initially extracted
as the initial risk database. Then, a literature analysis is used to handle the incomplete and
unclear information in the report.
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In addition, expert knowledge is introduced as an important supplement. One way is
to supplement and adjust human factors by obtaining this knowledge through question-
naire surveys and interviews to improve the comprehensiveness and representativeness of
the identified elements. Furthermore, by organizing symposiums, the scientific and rational
classification of risk factors will be unanimously recognized by experts. 31 human factors
were ultimately identified and divided into four groups: unsafe acts (n = 13), preconditions
for unsafe acts (n = 9), unsafe supervision (n = 5) and organizational influences (n = 4). All
human-related risk factors and their symbols and descriptions are shown in Table 2.

Table 2. (A) Identification and description of the human factors under HFACS-Unsafe acts;
(B) Identification and description of the human factors under HFACS-Preconditions for unsafe
acts; (C) Identification and description of the human factors under HFACS-Unsafe supervision;
(D) Identification and description of the human factors under HFACS-Organizational influences.

(A)

Risk Factor Description Source

HF16→UA1
Unaware of the possibility of occurrence and
the adverse impact of accidents, so that risks

are often underestimated and ignored.
[10,65]

HF24→UA2

No immediate measures are taken to deal with
the emergency, such as closing the leakage

pipeline valve, blocking the leakage point of
equipment, or stopping the delivery of gas;

therefore, the hazard is not
effectively controlled.

Expert experience

HF1→UA3
Misoperation of buttons, valves, wrenches, and

handles, or abnormal opening of dangerous
devices, resulting in toxic gas leakage.

Accident investigation
and case analysis

HF3→UA4

Making mistakes when taking emergency
disposal measures, such as improper use of

equipment or incorrectly turning the device on
or off, resulting in safety device failure.

Accident investigation
and case analysis

HF5→UA5

Not applying PPE such as respirators and
breathing apparatus, or not properly wearing
protective clothing according to regulations,
thus operating without protective measures.

Accident investigation
and case analysis

HF7→UA6

No prior understanding of the hazards and
control countermeasures of operations, and
beginning work without an explanation of

safety measures.

Accident investigation
and case analysis

HF9→UA7

The rescue action lacks unified organization
and command and the order is chaotic, for
example, because the rescuers do not wear

effective protective equipment or the escape
route is blocked.

Accident investigation
and case analysis

HF11→UA8

The ventilation and diffusion of toxic and
harmful gases are not considered and oxygen
measurements are not taken before entering

confined spaces, which violates the safety
operation rules.

Accident investigation
and case analysis

HF13→UA9
Risky entry of dangerous environments and

confined spaces for operation without
permission and approval from a superior.

Accident investigation
and case analysis
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HF15→UA10

Failure to notify the on-duty personnel of the
entry plan, thus performing a separate

operation without monitoring measures and
having no reliable communication with

external parties.

Accident investigation
and case analysis

HF2→UA11

Attention is not completely focused on the
work during operations; in other words, there

are distracting behaviors such as making
phone calls or talking with others.

Accident investigation
and case analysis

HF4→UA12
Working in confined spaces with no air

circulation for a long time, failing to breathe
fresh air outside at intervals.

Accident investigation
and case analysis

HF6→UA13 Failure to initially report dangerous situations
to managers accurately and concretely.

Accident investigation
and case analysis

(B)

Risk Factor Description Source

HF18→UP1

There is insufficient awareness of the
importance of safety or risk vigilance, and

indifference to hidden hazards
and emergencies.

[24,65]

HF20→UP2
The educational level, professional

competence, and the ability of self-rescue and
mutual rescue of operators are lacking.

[10,11]

HF22→UP3

Operators are unfamiliar with specific
workplace and equipment operating

procedures. They cannot think and act calmly
in the face of emergencies.

[1,10,11]

HF17→UP4
The site conditions are complex, or the storage
and transportation of toxic and harmful gases
are improper, which can easily cause danger.

[1,24]

HF19→UP5
The ventilation conditions in the confined

space are relatively poor and there are no safety
placards or warning signs in the operation site.

[24,65]

HF8→UP6

The natural ventilation device fails to provide
indoor air circulation and discharge of toxic

and harmful gases, and the strong ventilation
device is defective.

Accident investigation
and case analysis

HF10→UP7
The safety valve of the device is not firm or
activates accidentally; the connection of the

pipeline is not tight.

Accident investigation
and case analysis

HF12→UP8
The toxic and harmful gas pipelines are
accidentally interconnected, leading to a

sudden increase of local dangerous gases.

Accident investigation
and case analysis

HF14→UP9

Safety devices such as sound and light alarms
of various gas cylinders and pressure vessels

are invalid, and personal protective equipment
is lacking or defective.

Accident investigation
and case analysis
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(C)

Risk Factor Description Source

HF26→US1

In the daily effort to address hidden dangers,
there is a lack of lean-oriented management of

key components of equipment and facilities
and regular detection of the concentration of

toxic and harmful gas, thus failure to find
hidden dangers in time.

Expert experience

HF21→US2

Safety systems and procedures such as work
certification, operation approval, and safety

confirmation are not strictly implemented; and
management personnel, especially on-site
management personnel, fail to effectively

implement supervision and
management responsibilities.

[10,11,65]

HF23→US3
Lacking or improper coordination of key
operation links, unreasonable operation

personnel scheduling and teamwork, etc.
[1,11]

HF28→US4
Poor emergency response, thus failure to

effectively organize escape and
rescue operations.

Expert experience

HF30→US5
Improper storage of toxic and harmful gases,

and complex and unsafe conditions of
the workplace.

Expert experience

(D)

Risk Factor Description Source

HF25→OI1

Insufficient briefing and training related to
safety production, especially for new

employees, and a lack of targeted first aid
training on suffocation prevention.

Expert experience

HF27→OI2
There are language barriers in communicating

with team members; and the awareness of
teamwork and mutual assistance is poor.

Expert experience

HF29→OI3
The ‘people-oriented’ belief of safe production
and the safety of organization members is not

given enough attention.
Expert experience

HF31→OI4

The planning, operation, and supervision of
ship repair systems are defective, especially in

terms of procedures of daily safety
management and emergency response.

Expert experience

3.3. Fuzzy Fault Tree Modeling

In this section, all identified human factors will be transformed into elements of the
fault tree model. As mentioned, the direct causes of accidents are aggregated into two
categories, namely, ‘Unsafe acts’ and ‘Environmental factors’ in the modified HFACS,
which are illustrated as BEs in the fault tree. In addition, indirect causes are transferred
to corresponding IEs, which connect the TE and BEs in the fault tree. The process for
converting the HFACS to a fault tree is presented in Figure 6. UA1–UA13, UP4–UP9,
UP1–UP3, US1–US5, and OI1–OI4 in HFACS correspond to X1–X13, X14–X19, M1–M3,
M4–M8, and M9–M10, respectively.
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Figure 6. The procedure of fault tree modeling based on HFACS.

3.3.1. Causality Analysis of the Accident Scenario

Figure 6 shows the process of fault tree modeling based on the HFACS architecture.
The static fault tree model is built starting with the determination of the TE ‘suffocation
accident’.

As the first step, the vertical relationship between IEs and BEs is determined according
to causal analysis. Deductive analysis is carried out from the TE to BEs, and the causes of
the accident are separated layer by layer. It should be noted that in response to the hierar-
chical progression principle of the HFACS (represented by the directed lines in Figure 4),
‘Organizational influences’ are converted to primary intermediate events directed to the
top event in the fault tree. In other words, the primary intermediate events can be further
decomposed into multiple child intermediate events. Subsequently, ‘Unsafe supervision’
and ‘Conditions of operators’ are inserted as child IEs through cause-effect analysis.

In the second step, logic gates are selected to connect events at different levels to
complete the cause-consequence fault tree modeling. Logical AND and OR gates are the
most common Boolean connectors; AND indicates that multiple events fail at the same time
to cause the system failure, and OR means that any event may lead to an accident. Through
causality analysis of the accident, ‘Resource management’ (RM), ‘Organizational climate’
(OC) and ‘Organizational process’ (OP) all have the possibility of leading to the TE, so OR
gates are set between the TE and the three primary IEs. By analogy to BEs with the same
method, a causality diagram of the fault tree is constructed, as shown in Figure 7, which
includes 13 IEs, 19 BEs, 10 OR gates, and 4 AND gates. The meanings of the corresponding
symbols are given in Figure 6.
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Figure 7. Cause-effect diagram of the fault tree for the suffocation accident.

3.3.2. Probability Calculation of BEs Using the Fuzzy Extent AHP

The quantitative analysis of the FTA would be conducted in the present section. The
fuzzy extended AHP is introduced to compute the failure possibilities of BEs. Five non-
homogenous experts are firstly invited to make independent judgments on the contribution
of risk factors, and triangular fuzzy numbers are used to make judgments intuitively.
The basic information for these five experts can be found in Table 1. The definition and
operational principles of triangular fuzzy numbers are as follows [50]:

Let Ñ be a triangular fuzzy number defined on R such that its membership function
µN(x) : R→ [0, 1] is equal to:

µN(x) =


x

m−l −
l

m−l , x ∈ [l, m]
0 , otherwise

x
m−u −

u
m−u , x ∈ [m, u]

(6)

where l ≤ m ≤ u, m is the modal value of the fuzzy number, and l and u stand for the
lower and upper bounds of Ñ, respectively. The triangular fuzzy number is denoted as
Ñ = (l, m, u), and when u− l = 0, the judgment is not ambiguous.

Consider two triangular fuzzy numbers Ñ1 = (l1, m1, u1) and Ñ2 = (l2, m2, u2); their
extent operational laws are defined as follows:

Ñ1 ⊕ Ñ2 = (l1 + l2, m1 + m2, u1 + u2) (7)

Ñ1 ⊗ Ñ2 = (l1l2, m1m2, u1u2) (8)

λÑ = (λl, λm, λu) (9)

Ñ−1 = (
1
u

,
1
m

,
1
l
) (10)

Then, the fuzzy extent AHP is introduced to obtain the failure rate of human factors.
Expert credibility has been added to the process to reduce both empirical limitations and
subjective bias. In practice, because of the comprehensive effect of the personal knowledge
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background, work experience and so on, the reference weights of expert opinions on a
certain issue are not equal. Nevertheless, whether the expert evaluation is scientific or not,
it has a direct impact on the results of the study. Professional position, length of service,
education level and job title [54].

As shown in Table 3, the authority of each expert in a professional academic or
practical field is considered according to their knowledge and skills, which are accumulated
through different work experiences. In addition, each aspect is divided into diverse scoring
standards. According to Equations (11) and (12), expert credibility can be calculated.

Table 3. Criteria for calculating expert credibility.

Indicator Classification Score

Professional position

Senior academic/research fellow 5
Junior academic/research fellow 4

Engineer 3
Technician 2

Worker 1

Length of service (years)

≥30 5
20–29 4
10–19 3

6–9 2
≤5 1

Education level

Ph.D. 5
Master’s degree 4

B.S. or B.E. 3
Junior college 2
School level 1

Job title

Senior Captain Or Senior Chief Engineer 5
Director/Captain Or Chief Engineer 4

Department Manager or Chief Officer 3
Manufacturing Supervisor 2

Ratings 1

Let E = {e1, e2, · · · , en} be the expert reliability set; the expert comprehensive reliabil-
ity value ek is expressed as:

ek = ePPk + eLEk + eELk + eJTk (11)

With n experts, the credibility of each expert λe is defined as:

λe =
ek

n
∑

k=1
ek

, λk > 0, k = 1, 2, · · · , n and
n

∑
k=1

λk = 1 (12)

The algorithm of the fuzzy extent AHP is as follows:
Step 1: Development of fuzzy reciprocal judgment matrix. Set ÑK(K = 1, 2, . . . , k) as

the judgment opinion of expert K. Through a pairwise contribution comparison of factors
at each level, the triangular fuzzy judgment matrix NK is developed as:

NK =
[

ÑK
ij

]
=


1 ÑK

12 · · · ÑK
1n

1/ÑK
12 1 · · · ÑK

2n
...

...
. . .

...
1/ÑK

1n 1/ÑK
2n 1

∀i, j = 1, 2, . . . , n (13)

where i is the number of rows of the indicators, j is the number of columns, and ÑK
ij is the

comparison value given by Expert K, which is a triangular fuzzy number.
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Step 2: Determination of the fuzzy synthetic extent value. Applying the extent analysis
method, the comprehensive fuzzy value Di of the ith row element relative to the other row
elements, i.e., the initial weight, is calculated as follows:

Di =
n

∑
j=1

Ñij ⊗
[

n

∑
i=1

n

∑
j=1

Ñij

]−1

(14)

To obtain
n
∑

j=1
Ñij, perform the ⊗ operation on n extent analysis values for a specific

matrix such that,
n

∑
j=1

Ñij =

(
n

∑
j=1

lij,
n

∑
j=1

mij,
n

∑
j=1

uij

)
(15)

n

∑
i=1

n

∑
j=1

Ñij =

(
n

∑
i=1

n

∑
j=1

lij,
n

∑
i=1

n

∑
j=1

mij,
n

∑
i=1

n

∑
j=1

uij

)
(16)

Step 3: Apply the fuzzy number comparison rule, and calculate the degree of possibil-
ity of Ñ1 = (l1, m1, u1) ≥ Ñ2 = (l2, m2, u2), which is found as:

V
(

Ñ1 ≥ Ñ2

)
= supx≥y

[
min

(
µN1(x), µN2(y)

)]
(17)

V
(

Ñ1 ≥ Ñ2

)
= hgt

(
Ñ1 ∩ Ñ2

)
=


1 , m1 ≥ m2

l1−u2
(m2−u2)−(m1−l1)

, m1 ≤ m2, u1 ≥ l2
1 , otherwise

(18)

To compare Ñ1 ≥ Ñ2, the values V
(

Ñ1 ≥ Ñ2

)
and V

(
Ñ2 ≥ Ñ1

)
are required. The

degree of possibility for a convex triangular fuzzy number being greater than k convex
triangular fuzzy numbers Ñi(i = 1, 2, . . . , k) can be defined as:

V
(

Ñ ≥ Ñ1, Ñ2, . . . , Ñi

)
= minV

(
Ñ ≥ Ñi

)
i = 1, 2, . . . , k (19)

Step 4: By standardizing the above weights, the standard values SV of each indicator
can be obtained as:

SV =
(

minV
(

Ñ1 ≥ Ñk

)
, minV

(
Ñ2 ≥ Ñk

)
, . . . , V

(
Ñn ≥ Ñk

))T
k = 1, 2, . . . , n (20)

Step 5: Calculate the integrated values IV of each indicator. The integrated value of
the ith indicator in the K layer is obtained by:

IVi =
K

∏
K−n

SVK
i K = 1, 2, · · · , n (21)

3.4. Mapping the Fuzzy Fault Tree into the Bayesian Network

To map the fuzzy fault tree into BN, the transformation relationship between the
corresponding components needs to be established. According to the logical relationship
expressed by fuzzy fault tree and its representation in BN, the transformation from fuzzy
fault tree to BN is presented as follows:

• All BEs in the fuzzy fault tree are considered as parent nodes in the BN, and all IEs are
regarded as child nodes.

• The nodes in the BN are connected according to the relationship between various
layers of events in the fuzzy fault tree, and the direction of edges is consistent with the
cause–consequence relationship in the fuzzy fault tree.
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• The failure probability of each BE is directly assigned to the corresponding parent
node in the BN as its prior probability distribution.

• The conditional probabilities of each variable, i.e., the CPT, provide the functional
extension of logic gates in the fuzzy fault tree.

3.4.1. Prior Probabilities for Nodes without Parents

As mentioned before, the prior probability distribution for nodes without parents
also corresponds to the failure probability of BEs. The fuzzy extent AHP in Section 3.3.2 is
carried out as the first step. Five experts are employed to evaluate the contributing factors
of the accident. Their backgrounds are illustrated in Table 4. According to the scoring
standard in Table 3, expert credibility is calculated as shown in Table 4. The credibility of
the experts are unequal in the heterogeneous decision-making group.

Table 4. The calculation results of expert reliability.

Expert Professional Position Length of
Service

Education
Level Job Title Weight

E1 Senior research fellow ≥30 Ph.D. Director 0.2375
E2 Engineer 20–29 Master’s Chief Officer 0.1750
E3 Junior academic 10–19 Master’s Captain 0.1875
E4 Senior academic 20–29 Ph.D. Senior Chief Engineer 0.2375
E5 Engineer 10–19 Master’s Department Manager 0.1625

Then, by filling out the questionnaire of indicator evaluation, five experts made their
pairwise judgment results on the failure possibility of human factors at different levels.
Fuzzy evaluation given by the expert group is shown in Appendix A (Tables A1–A4).
Each risk factor that may lead to the occurrence of accidents is compared in pairs utilizing
Equations (13)–(21). In addition, the triangular fuzzy scale is applied in the present study
as a reference for converting expert fuzzy judgment terms to values [66]. To illustrate the
calculation process more specifically, the indicators of ‘Errors’ (X1–X4) are taken as an
example. A fuzzy judgment matrix is developed on the basis of the five experts’ judgments.
Then, the possibilities of the human factors related to the accident are compared using
triangular fuzzy numbers by:

d(X1) = minV
(

DX1 ≥ DX2 , DX3 , DX4

)
= min(1, 0.9277, 1

)
= 0.9277

d(X2) = minV
(

DX2 ≥ DX1 , DX3 , DX4

)
= min(0.9327, 0.8661, 1

)
= 0.8661

d(X3) = minV
(

DX3 ≥ DX1 , DX2 , DX4

)
= min(1, 1, 1) = 1

d(X4) = minV
(

DX4 ≥ DX1 , DX2 , DX3

)
= min(0.8967, 0.9701, 0.8228

)
= 0.8228

The above values are standardized and integrated with the influence degree of the
upper-level indicators, and the calculation results are as follows:

SV = ( 0.9277, 0.8661, 1, 0.8228)T = (0.2565, 0.2395, 0.2765, 0.2275)

IV = 0.3324⊗ (0.2565, 0.2395, 0.2765, 0.2275) = (0.0853, 0.0796, 0.0919, 0.0756)

Ultimately, the probability of each identified human factor is calculated. To convert
the impact weight of human factors (crisp failure possibility) into failure probability, the
approach proposed by Onisawa [67] is employed to develop a functional relationship
between the failure possibility P and the failure probability FP. The conversion algorithm
is expressed in Equation (22). The complete arithmetic results are shown in Table 5.

FP =

{ 1
10K , P 6= 0
0 , P = 0

, K = 2.301×
[(

1
P
− 1
)]1/3

(22)
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Table 5. Weight assignment of the identified human factors.

Indicator SV IV FP Indicator SV IV FP

Errors 0.3324 — — 1.25 × 10−3 X9 0.1129 0.0390 2.01 × 10−7

Violations 0.3456 — — 1.42 × 10−3 X10 0.1085 0.0375 1.63 × 10−7

Environmental
factors 0.3220 — — 1.12 × 10−3 X11 0.1163 0.0402 2.37 × 10−7

X1 0.2565 0.0853 8.41 × 10−6 X12 0.1122 0.0388 1.96 × 10−7

X2 0.2395 0.0796 6.27 × 10−6 X13 0.1000 0.0346 1.05 × 10−7

X3 0.2765 0.0919 1.15 × 10−5 X14 0.1619 0.0521 8.87 × 10−7

X4 0.2275 0.0756 5.01 × 10−6 X15 0.1665 0.0536 1.02 × 10−6

X5 0.1147 0.0396 2.19 × 10−7 X16 0.1648 0.0531 9.74 × 10−7

X6 0.1106 0.0382 1.80 × 10−7 X17 0.1748 0.0563 1.29 × 10−6

X7 0.1095 0.0378 1.70 × 10−7 X18 0.1724 0.0555 1.21 × 10−6

X8 0.1154 0.0399 2.28 × 10−7 X19 0.1596 0.0514 8.30 × 10−7

3.4.2. Equivalent CPT for Nodes with Multiple Parents

For nodes with parent nodes (i.e., child nodes), prior probabilities can be acquired
through the forward reasoning function of the BN, in which the calculation of the condi-
tional probability is critical. As mentioned in Section 2.3, the Noisy-OR gate and leaky
Noisy-OR gate are the canonical probabilistic models applied in this study. First, a Noisy-
OR gate is used to calculate the conditional probability distribution of different node state
combinations. According to the conditional function shown in Figure 8, when all parent
nodes fail at the same time and the probability of their child nodes being False is 100%, the
result of the Noisy-OR gate is considered to meet the scientific criteria of the study, and the
leaky Noisy-OR gate is no longer used. Meanwhile, the leaky probability l = 0. In addition,
if the opposite is true, the functional algorithm leaky gate is executed.

Figure 8. Operational flow chart of the calculation of the equivalent CPT.

The failure probability of each human factor calculated in Section 3.4.1 is assigned
to the prior probability of parent nodes in the BN. According to the operation shown in
Figure 8, the equivalent CPT is obtained. The node ‘Risk-seeking with weak security aware-
ness’ (M1) with three parent nodes (X1, X5, X11) is taken as an example. As calculated
in Section 3.4.1, PX1 = 0.0853, PX5 = 0.0396, PX11 = 0.0402; then, the Noisy-OR gate is
utilized to compute the probability distribution under eight different conditions, where
P
(

M1
∣∣X1, X5, X11

)
= 0.1568 6= 1. Therefore, the leaky Noisy-OR gate is used to recalculate
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the conditional probability distribution of this group of nodes. After all conditional proba-
bilities are elicited and entered into Netica, the prior probability of child nodes in the BN
could be generated through automatic reasoning, as shown in Figure 9.

Figure 9. The prior probability distribution of nodes in the developed Bayesian network (BN).

4. Results and Discussion
4.1. Structural Analysis under Different States of the System

The purpose of structural analysis of static fault tree is to explore the rules of system
failure due to common causes. As mentioned in Section 2.2.2, each MCS represents a
possible situation in which one or more risk factors cause an accident, while each MPS
indicates a condition in which the accident does not occur. By simplifying the fault tree
model shown in Figure 7 based on Boolean algebra, MCSs can be obtained; then, its dual
success tree is established to calculate the MPSs. Here, FreeFta is used for the determination
of MCSs and MPSs, and the results are listed in Table 6. Without considering the failure
possibility of risk factors, structural analysis under different states of the system, that is the
state of the top event is True or False, respectively, shows that:

• There are 33 MCSs, approximately twice as many as MPSs. Each MCS contains a small
number of BEs. Since the MCS with fewer events is more likely to cause the system
failure than the MCS with more events, the state of this system is unstable and the
probability of accident occurrence is higher.

• Regarding the MCSs that contain only one BE, it can be found that the BEs all belong
to the category of ‘Violations’. In addition, ‘Environmental factors’ only appear
in the MCSs composed of multiple BEs, that is to say, they cannot lead to system
failure independently. Therefore, ‘Violations’ are more likely to cause accidents than
‘Environmental factors’. That is, comparison of the unsafe behavior of humans and the
unsafe state of machinery and materials, the former contributes more to accidents.

• There are 17 MPSs, among which four MPSs contain 13 BEs (the largest number of
BEs). Generally, the more BEs contained in an MPS, the more complex the technical
problems in the system, and more resources are required to ensure the TE does not
occur. Therefore, the MPSs consisting of a larger number of BEs are considered to be
weak links that easily cause system failure.
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Table 6. Structural analysis under different states of the system.

Failure MCS Analysis

MCS1–MCS33

{X1};{X10*X13*X14*X15*X16};{X10*X13*X14*X15*X17};{X10*X13*X14*X15
*X18};{X10*X13*X14*X15*X19};{X11};{X12};{X2};{X3*X4};{X4*X10*X14*X15

*X16};{X4*X10*X14*X15*X17};{X4*X10*X14*X15*X18};{X4*X10*X14*X15
*X19};{X4*X6*X14*X15*X16};{X4*X6*X14*X15*X17};{X4*X6*X14*X15*X18};
{X4*X6*X14*X15*X19};{X5};{X6*X13*X14*X15*X16};{X6*X13*X14*X15*X17};
{X6*X13*X14*X15*X18};{X6*X13*X14*X15*X19};{X6*X7*X14*X15*X16};{X6
*X7*X14*X15*X17};{X6*X7*X14*X15*X18};{X6*X7*X14*X15*X19};{X7*X10

*X14*X15*X1};{X7*X10*X14*X15*X17};{X7*X10*X14*X15*X18};
{X7*X10*X14*X15*X19};{X7*X13};{X8};{X9}

Safe MPS analysis

MPS1–MPS17

{X1*X2*X3*X5*X6*X7*X8*X9*X10*X11*X12};{X1*X2*X3*X5*X6*X8*X9*X10
*X11*X12*X13};{X1*X2*X3*X5*X7*X8*X9*X11*X12*X14};{X1*X2*X3*X5*X7

*X8*X9*X11*X12*X15};{X1*X2*X3*X5*X7*X8*X9*X11*X12*X16*X17*X18
*X19};{X1*X2*X3*X5*X8*X9*X11*X12*X13*X14};{X1*X2*X3*X5*X8*X9*X11

*X12*X13*X15};{X1*X2*X3*X5*X8*X9*X11*X12*X13*X16*X17*X18*X19};
{X1*X2*X4*X5*X6*X7*X8*X9*X10*X11*X12};{X1*X2*X4*X5*X6*X8*X9

*X10*X11*X12*X13};{X1*X2*X4*X5*X7*X8*X9*X11*X12*X13};{X1*X2*X4
*X5*X7*X8*X9*X11*X12*X14};{X1*X2*X4*X5*X7*X8*X9*X11*X12*X15};
{X1*X2*X4*X5*X7*X8*X9*X11*X12*X16*X17*X18*X19};{X1*X2*X4*X5
*X8*X9*X11*X12*X13*X14};{X1*X2*X4*X5*X8*X9*X11*X12*X13*X15};

{X1*X2*X4*X5*X8*X9*X11*X12*X13*X16*X17*X18*X19}

4.2. Uncertainty Analysis for Path Dependence

Bidirectional reasoning and probabilistic prediction can be realized in a BN by infor-
mation updates on evidence, which is called evidence propagation [68]. The observed
evidence is entered into the model developed in Figure 9 as causes, and updates the proba-
bility of all non-evidence nodes, including target variables. Herein, information theory [69]
is applied to deal with the uncertainty of random variables, which allows us to model the
conditional dependence of child nodes on parent nodes. As a result, the most possible
path of the domino effect [70] can be predicted such that the deterioration of dangerous
situations may be controlled by cutting off the path dependence of risk propagation.

Considering a discrete random variable X = {x1, x2, · · · , xn}, when its value is equal
to x, its probability is expressed as the probability mass function P(x). The amount of
uncertainty of X with multiple states can be measured using the definition of information
entropy as follows:

H(X) = −
n

∑
i=1

p(xi) logb(p(xi)) (23)

where ∑
x∈X

P(x) = 1, and the base of logarithm is usually 2 or e. In the present study, it is

set to e. The higher the information entropy is, the more statistical information is needed to
eliminate the uncertainty of variables.

Considering two random variables X and Y, to measure their dependence, we need to
introduce the concept of mutual information, which is expressed as follows:

I(X, Y) = H(X)− H(X|Y ) (24)
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where H(X|Y ) is the conditional entropy of X when Y is known, and it can be calculated
as follows:

H(X|Y ) = −∑
y

p(y)H(X|Y = y )

= −∑
y

p(y)∑
x

p(x|y ) log p(x|y )

= −∑
y

∑
x

p(y)∗p(x|y ) log p(x|y )

= −∑
y

∑
x

p(x, y) log p(x|y )

= −∑
x,y

p(x, y) log p(x|y )

(25)

Since conditional entropy measures the uncertainty contained in X when Y is known,
mutual information quantifies how much uncertainty of the target variable X is reduced
under given evidence conditions. In this study, an important assumption is put forward
that under a given condition Y, if the target variable X in non-evidence nodes has the
minimum entropy, the dependent path between X and Y is considered to play a leading
role in risk propagation. In other words, if mutual information I(X, Y) is the largest, the
dependence between the two is the strongest among many factors that affect X. Thus, the
primary dependent path in risk chains can be determined using Bayesian reasoning and
information theory.

In this accident scenario, M1 is selected as the target variable, and X1, X5, X11 as
the known evidence variables respectively. The corresponding value of entropy and de-
pendence is shown in Figure 10. Similarly, the degree of dependence for the path of all
risk propagation can be calculated using Equations (23)–(25), and the results are shown in
Figure 11. It is evident that the components in a risk chain related to ‘Resource Management’
(RM) are highly dependent, among which ‘X3→M2→M9→RM→Accident’ is the most
significant risk propagation path. The continuous failure of these factors can easily lead
to the occurrence of accidents. From the other two aspects of ‘Organizational influences’,
the typical risk paths dependence on domino effect are ‘X4→M7→OP→Accident’ and
‘X1→M1→OC→Accident’ respectively. Take the former path as an example, if the oper-
ator makes mistakes when taking emergency actions, it would increase the difficulty of
emergency response and likely lead to the failure of emergency rescue. At this point, the
dangerous situation is irreversible. According to the path of risk dependence, whether the
hazard can be mitigated mainly depends on the guidelines in an emergency rescue. The
better the emergency management, the less damage it causes and the less likely it is to
develop into a serious accident. Therefore, it can provide a reference for taking effective
risk mitigation strategies from the perspective of risk transmission, so as to prevent the
further expansion of the losses.

Figure 10. Uncertainty to the target variable under different conditions.
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Figure 11. Degree of dependence among risks in different propagation paths.

4.3. Sensitivity to Evidence to Identify Key Factors

The key factors influencing the occurrence of accidents can be inferred through back-
ward propagation of BN with the Pareto principle, which is helpful for the precision
management of risk sources. In this study, the sensitivity analysis is incorporated to achieve
this purpose. Under specified conditions, the relative importance of the independent
variable to the specific dependent variable is calculated by Equation (26). A risk factor with
a higher ratio of change (RoC) is considered to be more important [30].

RoC(Xi) =
ξ(Xi)− ζ(Xi)

ζ(Xi)
(26)

In the developed BN, the failure probabilities of all identified human factors are
updated to posterior probabilities by setting the state of ‘Accident’ to False. Then, the
sensitivity of factors can be quantified according to Equation (26), and the results are shown
in Figure 12. The three human factors with the highest sensitivity are ‘Organizational
process (OP)’, ‘Resource management (RM)’, and ‘Organizational climate (OC)’, all of
which belong to the category of ‘Organizational influences’, and their RoC are 1.2266, 1.1882
and 1.1111, respectively. They are considered the main causes of the accident, and OP has
the largest contribution among them. Additionally, we set the states of ‘Accident’ and ‘OP’
to False and observe the change of their parent nodes, i.e., ‘Lax daily safety management
and inspection (M4)’, ‘Unreasonable ship repair plan (M6)’, ‘Inadequate guidelines in
emergency rescue (M7)’, and ‘Inadequate on-site control (M8)’. Then, the values of RoC for
these nodes are calculated as 0.5520, 0.5259, 0.3520, and 0.5350, which reflects the fact that
daily safety inspection and supervision are particularly important for accident prevention.
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Figure 12. Sensitivity analysis of human factors.

The three factors with sensitivity slightly less than ‘Organizational influences’ are
‘Lack of team communication and cooperation (M10)’, ‘Operating errors (X3)’, and ‘Rescue
without plan (X7)’. This indicates that personnel involved in shipyard operations, such
as the operators of engines, electricians, dock repair workers, comprehensive workshop
operators, and production supervisors, should pay attention to coordination and coopera-
tion with the members of the organization, and workers should always be careful to avoid
mistakes during operation. In addition, we calculate the cumulative percentage of the
causes of accidents other than ‘Organizational influence’. As shown in Figure 13, the top
20% of human factors are considered as the key factors leading to the accident according to
the Pareto principle [71]. In addition to the three factors (M10, X3, X7) analyzed previously,
there are still two key human factors, i.e., ‘Inadequate guidelines in emergency rescue (M7)’
and ‘Entering confined space without assessing air (X8)’. It indicates that the organiza-
tional and supervisory ability of managers in the process of emergency management plays
an important role in controlling the occurrence of accidents and reducing the number of
occupational injuries.

Figure 13. Identification of key human factors involved in accidents.

5. Conclusions

In this study, a double-nested model that integrates the superiorities of HFACS, fuzzy
fault tree and BN is proposed for comprehensive risk assessment and path dependence
analysis. The hierarchical characteristic of the HFACS is firstly utilized for potential
risk identification and classification. In particular, not only is the classification of risks
implemented at different levels of the HFACS but also the risks are divided into direct and
indirect causes of accidents. Then, the elements of HFACS are transformed to corresponding
BEs and IEs in the fault tree to systematically represent causal associations under specific
accident scenarios. A fuzzy fault tree is developed with the application of fuzzy extent
AHP to calculate the probabilities of BEs, which is further mapped into a BN to expand the
bidirectional propagation function and uncertainty and sensitivity analysis. In addition,
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an equivalent CPT of nodes with multiple parents in the BN is generated by introducing
canonical probabilistic models, namely, the Noisy-OR gate and leaky Noisy-OR gate. Finally,
the methodology was applied to a suffocation accident that occurred in a shipyard.

In general, the double-nested model developed in this paper has the functions of
perception, inference, and prediction. Through the empirical application of the aforemen-
tioned model for a case accident, the safe or failure state of the production system under
different combinations of human factors is discussed. It vividly reflects the significant
distinction between the combination of risk factors and the sequence of risk failures, which
is also one of the functional differences between FFT and BN. After that, the dependence
paths between risk factors are analyzed by combining the information theory with the
forward propagation function of the BN to demonstrate the regular pattern of risk propaga-
tion. In these path dependencies, organizations that are experiencing failure are prone to
further failure and the threat of potential occupational accidents. In addition, backward
propagation combined with sensitivity analysis is performed to identify key human factors.
The output of the model is consistent with the actual situation, and risk factors not investi-
gated in the accident report are also identified and discussed. The research results could
provide a reference for further improvement in industrial accident prevention and safety
management from two aspects: one is to eliminate the hidden dangers of accidents, and
the other is to control the adverse evolution of accidents.
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Appendix A

Table A1. Pairwise comparison of the elements in level 2 of the direct causes that lead to the accident.

Errors Violations Environmental Factors

Errors

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(2/3,1,2)
(1/2,2/3,1)

(2/3,1,2)
(1,1,1)
(1,1,1)

(1,1,1)
(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)

Violations

(1/2,1,3/2)
(1,3/2,2)

(1/2,1,3/2)
(1,1,1)
(1,1,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)
(1,1,1)
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Table A1. Cont.

Errors Violations Environmental Factors

Environmental factors

(1,1,1)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)

(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)
(1,1,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

Table A2. Pairwise comparison of the elements in the category of ‘Errors’.

X1 X2 X3 X4

X1

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1 3/2 2)
(1,1,1)
(1,1,1)

(1/2 1 3/2)
(1 3/2 2)

(2/3,1,2)
(2/3,1,2)

(1/2,2/3,1)
(1/2,2/3,1)
(1/2,1,3/2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1,1,1)

(1/2,2/3,1)

X2

(1/2,2/3,1)
(1,1,1)
(1,1,1)

(2/3,1,2)
(1/2,2/3,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)

X3

(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)
(1,3/2,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1,3/2,2)
(3/2,2,5/2)

(1,3/2,2)
(3/2,2,5/2)

(1,1,1)

X4

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1,1,1)

(1,3/2,2)

(1,1,1)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)

(1/2,2/3,1)
(2/5,1/2,2/3)

(1/2,2/3,1)
(2/5,1/2,2/3)

(1,1,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

Table A3. Pairwise comparison of the elements in the category of ‘Violations’.

X5 X6 X7 X8 X9 X10 X11 X12 X13

X5

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1,1,1)
(2/3,1,2)

(1/2,2/3,1)
(1/2,1,3/2)

(1,3/2,2)

(1,3/2,2)
(1/2,2/3,1)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)

(3/2,2,5/2)

(2/5,1/2,2/3)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)

(1/2,2/3,1)
(1/2,2/3,1)

(2/3,1,2)
(2/3,1,2)

(2/5,1/2,2/3)

(1/2,1,3/2)
(1/2,2/3,1)
(1/2,2/3,1)

(1,3/2,2)
(1,3/2,2)

(3/2,2,5/2)
(1,3/2,2)

(3/2,2,5/2)
(1,3/2,2)

(3/2,2,5/2)

X6

(1,1,1)
(1/2,1,3/2)

(1,3/2,2)
(2/3,1,2)

(1/2,2/3,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1/2,1,3/2)
(1/2,1,3/2)
(3/2,2,5/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)

(1/2,1,3/2)
(1,1,1)
(1,1,1)

(1/2,2/3,1)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1/2,2/3,1)
(1/3,2/5,1/2)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/5,1/2,2/3)

(1/2,1,3/2)
(1/2,1,3/2)
(3/2,2,5/2)
(1/2,1,3/2)

(1,3/2,2)

X7

(1/2,2/3,1)
(1,3/2,2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)

(2/3,1,2)
(2/3,1,2)

(2/5,1/2,2/3)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(2/3,1,2)
(1,3/2,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,2/3,1)
(1/2,1,3/2)

(2/3,1,2)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1,1,1)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(2/3,1,2)
(2/3,1,2)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)

X8

(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)

(2/5,1/2,2/3)

(2/3,1,2)
(2/3,1,2)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1/2,1,3/2)
(1/2,2/3,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1,3/2,2)
(1/2,1,3/2)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1,3/2,2)
(1,3/2,2)
(2/3,1,2)

(3/2,2,5/2)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1/2,1,3/2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)
(1,3/2,2)
(1,3/2,2)
(1,3/2,2)
(1,3/2,2)
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Table A3. Cont.

X5 X6 X7 X8 X9 X10 X11 X12 X13

X9

(3/2,2,5/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1,1,1)
(1,1,1)

(1,3/2,2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)
(1,3/2,2)
(2/3,1,2)

(1/2,1,3/2)

(1/2,2/3,1)
(2/3,1,2)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1/2,1,3/2)
(1,3/2,2)
(1,3/2,2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1/2,1,3/2)
(1/2,2/3,1)
(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)

(2/3,1,2)

X10

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)

(1/2,1,3/2)
(1/2,2/3,1)
(1/2,2/3,1)
(1/2,1,3/2)

(2/5,1/2,2/3)

(2/3,1,2)
(1/2,2/3,1)
(1/2,2/3,1)

(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1/2,2/3,1)
(2/3,1,2)

(1/2,1,3/2)
(1,1,1)
(1,1,1)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(3/2,2,5/2)

(1,3/2,2)
(1/2,1,3/2)

X11

(1,3/2,2)
(1,3/2,2)

(1/2,1,3/2)
(1/2,1,3/2)
(3/2,2,5/2)

(1,3/2,2)
(2,5/2,3)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1/2,1,3/2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1,1,1)

(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1/2,1,3/2)
(1/2,1,3/2)

X12

(2/3,1,2)
(1,3/2,2)
(1,3/2,2)

(1/2,2/3,1)
(1/2,2/3,1)

(1,1,1)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(3/2,2,5/2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(2/3,1,2)
(1,3/2,2)
(2/3,1,2)
(2/3,1,2)

(1/2,2/3,1)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(1,1,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

X13

(2/5,1/2,2/3)
(1/2,2/3,1)

(2/5,1/2,2/3)
(1/2,2/3,1)

(2/5,1/2,2/3)

(2/3,1,2)
(2/3,1,2)

(2/5,1/2,2/3)
(2/3,1,2)

(1/2,2/3,1)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1,1,1)

(1/2,2/3,1)
(1/2,2/3,1)
(1/2,2/3,1)
(1/2,2/3,1)
(1/2,2/3,1)

(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)

(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(2/5,1/2,2/3)
(1/2,2/3,1)

(2/3,1,2)

(2/3,1,2)
(2/3,1,2)

(1,1,1)
(2/3,1,2)
(2/3,1,2)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

Table A4. Pairwise comparison of the elements in the category of ‘Environmental factors’.

X14 X15 X16 X17 X18 X19

X14

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(2/3,1,2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1,1,1)
(2/3,1,2)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(2/5,1/2,2/3)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,2/3,1)
(2/3,1,2)

(1/2,1,3/2)
(1,1,1)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)

X15

(1/2,1,3/2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(2/3,1,2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(2/3,1,2)
(1/2,2/3,1)
(1/2,2/3,1)

(2/3,1,2)
(2/3,1,2)

(2/3,1,2)
(1,1,1)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1,3/2,2)
(1,3/2,2)

(1/2,1,3/2)
(2/3,1,2)

X16

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1/2,1,3/2)

(1/2,1,3/2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(2/3,1,2)
(2/3,1,2)

(1/2,2/3,1)
(2/3,1,2)

(1,1,1)

(2/3,1,2)
(1/2,2/3,1)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

X17

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(3/2,2,5/2)

(1/2,1,3/2)
(1,3/2,2)
(1,3/2,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)
(1/2,1,3/2)

(1,1,1)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1,3/2,2)
(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)
(1/2,1,3/2)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)

X18

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1,3/2,2)
(1/2,1,3/2)

(1/2,1,3/2)
(1,1,1)

(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)

(1/2,1,3/2)
(1,3/2,2)

(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)

(2/3,1,2)
(1/2,1,3/2)
(1/2,1,3/2)

(2/3,1,2)
(2/3,1,2)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

(1,3/2,2)
(1/2,1,3/2)
(1/2,1,3/2)
(1/2,1,3/2)
(3/2,2,5/2)

X19

(2/3,1,2)
(1,1,1)

(2/3,1,2)
(2/3,1,2)

(1/2,1,3/2)

(2/3,1,2)
(1/2,2/3,1)
(1/2,2/3,1)

(2/3,1,2)
(1/2,1,3/2)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(2/3,1,2)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(1/2,2/3,1)

(1/2,2/3,1)
(2/3,1,2)
(2/3,1,2)
(2/3,1,2)

(2/5,1/2,2/3)

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
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