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Background: Ebola virus disease (EVD) plagues low-resource and difficult-to-access settings. Machine learning
prognostic models and mHealth tools could improve the understanding and use of evidence-based care guide-
lines in such settings. However, data incompleteness and lack of interoperability limit model generalizability.
This study harmonizes diverse datasets from the 2014–16 EVD epidemic and generates several prognostic
models incorporated into the novel Ebola Care Guidelines app that provides informed access to recommended
evidence-based guidelines.
Methods: Multivariate logistic regression was applied to investigate survival outcomes in 470 patients admitted
to five Ebola treatment units in Liberia and Sierra Leone at various timepoints during 2014–16. We generated a
parsimonious model (viral load, age, temperature, bleeding, jaundice, dyspnea, dysphagia, and time-to-
presentation) and several fallbackmodels for when these variables are unavailable. All were externally validated
against two independent datasets and compared to further models including expert observational wellness as-
sessments. Models were incorporated into an app highlighting the signs/symptomswith the largest contribution
to prognosis.
Findings: The parsimonious model approached the predictive power of observational assessments by experi-
enced clinicians (Area-Under-the-Curve, AUC = 0.70–0.79, accuracy = 0.64–0.74) and maintained its perfor-
mance across subcohorts with different healthcare seeking behaviors. Age and viral load contributed N5-fold
the weighting of other features and including them in a minimal model had a similar AUC, albeit at the cost of
specificity.
Interpretation: Clinically guidedprognosticmodels can recapitulate clinical expertise and be usefulwhen such ex-
pertise is unavailable. Incorporating these models into mHealth tools may facilitate their interpretation and pro-
vide informed access to comprehensive clinical guidelines.
Funding:Howard HughesMedical Institute, US National Institutes of Health, Bill &Melinda Gates Foundation, In-
ternational Medical Corps, UK Department for International Development, and GOAL Global.
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1. Introduction

The 2014–2016 outbreak of EVD caused a worldwide health crisis
with more than 28,000 cases and 11,000 deaths, the vast majority of
ense (http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study

The recent Ebola virus disease (EVD) outbreaks have
highlighted the need for field-deployable patient management
tools adaptable to its heterogeneous spectrumof pathology across
widely varying environments and resources. In 2015, a WHO-led
assessment of shortcomings in the initial response to the
unfolding epidemic noted that “better information was needed
to understand best practices in clinical management” and “inno-
vations in data collection should be introduced, including
mHealth communications”. Despite the availability of numerous
clinical guidelines, their digital accessibility is poorly adapted to
field conditions and difficult to navigate or readonmobile phones.
Further, information is distributed across various guidelines,
quickly outdated, and undirected reading is often overly detailed
or too generic for the patient at hand. On the Google Play store,
the search term “Ebola” returned just three EVD-specific applica-
tions directed at clinicians, only one of which assimilated guide-
lines from 2014 within their current structure. Machine learning
prognostic models could improve understanding and personal-
ized use of evidence-based guidelines by helping to prioritize rec-
ommended interventions according to the prognostic importance
of each clinical feature present in the individual patient. We
searched PubMed without date limits for various permutations
of terms representing “prognostic”, “machine learning”,
“mHealth”, “guidelines” and “Ebola”. Less than ten EVD symptom-
atic prognostic models were found, with most constructed on
single-site cohorts without external validation. While one pro-
vided a paper scorecard, none were integrated in an mHealth
tool or made use of machine learning.

Added value of this study

This study is based on the largest andmost diverse clinical EVD
dataset available to date, comprising 470 confirmed EVD cases
from five different locations in Sierra Leone and Liberia, and a fur-
ther 264 cases from two independent datasets for external valida-
tion. It demonstrates how interoperability between diverse
datasets can be achieved through data harmonization approaches
and constructs a family of flexible externally validated prognostic
models that are able to approximate observational wellness as-
sessments made by experienced clinicians. We further integrate
these models in the first field-deployable mobile app for EVD
prognostication, which enables informed access to recommended
guidelines.

Implications of all the available evidence

The Ebola Care Guidelines app benchmarks an approach to gen-
erating evidence-based mobile clinical management tools to im-
prove training and informed adherence to protocol, where a
personalized predictive support system organizes clinical proce-
dures more effectively around patient data.

Table 1
Wellness scale. Interpretation of the 0-to-5 observational scale of patient wellness at the
Sierra Leonean ETUs.

Wellness scale Interpretation

0 Cured
1 Well: no symptoms: drinks and eats okay
2 Few symptoms: drinks and eats okay
3 Moderate symptoms: can walk, sit, and feed independently
4 Sick: needs help to be fed, drink, and take medications
5 Very sick: needs IV fluids and medications, lots of assistance
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which occurred in the West African countries of Liberia, Sierra Leone,
and Guinea. The recent ongoing outbreak in the Democratic Republic
of the Congo [1] is evidence of the threat posed by EVD, even with the
availability of experimental vaccines. Of particular concern, is the pres-
ence of outbreaks in regions with limited medical coverage such as the
active conflict zone affected by the current outbreak [2]. Despite its no-
toriety as a deadly disease, the pathology of EVD includes a range of
outcomes, spanning from asymptomatic infection to complex organ
failure. On the few cases treated in high-income countries, case fatality
ratios (CFRs) of under 20% were achievable, revealing the importance
of resources in determining prognosis [3]. Prioritizing time andmaterial
resources for high-risk patients in remote and low-resource settings is
one approach to decrease overall mortality when subject to such con-
straints [4]. A complementary approach is to use tools providing clinical
instructions for management, training, and improved protocol adher-
ence [5,6].

We previously introduced the use of prognostic models that can be
deployed as mobile apps for the purpose of risk stratification in EVD
[7]. Our original models were developed on the single publicly available
dataset at that time by Schieffelin et al. [8], which includes 106 Ebola-
positive patients admitted at Kenema Government Hospital (KGH).
These models outperformed simpler risk scores and allowed users to
choose from various sets of predictors depending on the available clin-
ical data. While this study showed the potential for such an approach,
the models were limited by the narrow geographical and temporal
scope of the relatively small and incomplete dataset. Further, the proto-
type app in which the models were packaged displayed only the sever-
ity score of the patient without further guidance. We thus sought to
create models with greatly expanded geographic relevance packaged
in a new app that could provide risk-based guidance to health workers
particularly in limited-resource settings. The models are derived from
the largest and most diverse EVD dataset published to date, comprised
of 470 confirmed cases from five treatment centers spread across
Sierra Leone and Liberia at various timepoints during the 2014–16 epi-
demic (provided by International Medical Corps, IMC) and further ex-
ternally validated on two datasets of 264 cases (comprising the 106
KGH dataset and an additional 158 provided by GOAL Global).

Despite the availability of numerous clinical guidelines for EVD, their
digital accessibility is poorly adapted to field conditions where their
book-like formatting makes for awkward navigation and reading on
mobile devices. Further, the static nature of these documents makes
them quickly outdated, especially in the rapidly evolving context of an
epidemicwhere new recommendations are often fragmented across re-
search papers and field reports that are challenging and sometimes im-
possible for health workers to access. Our goal is not only to provide an
updatable platform on which care guidelines could be centralized, but
also to personalize the prioritization of recommendations based on
the severity score of the individual patient, as predicted by validated
prognostic models. Such tailored guidance can be achieved by objec-
tively highlighting the symptom-based interventions that are most rel-
evant given all the available information about the patient during triage.

2. Methods

2.1. IMC Patient Cohort and Data Collection

Prognosticmodelswere based on data collected from470 patients at
five ETUs operated by IMC in Liberia (n= 178, 38%) and Sierra Leone (n
=292, 62%) between September 15, 2014 and September 15, 2015. The
ETUs were located at Lunsar (Port Loko District), Kambia (Kambia Dis-
trict), and Makeni (Bombali District) in Sierra Leone, and at Suakoko
(Bong County) and Kakata (Margibi County) in Liberia. The majority of
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the patients presented directly to these centers without secondary re-
ferrals from holding units. The overall Case Fatality Ratio (CFR) across
the 5 ETUs was 58%.

Trained health workers recorded patient demographic, clinical, and
support data at least daily from admission to discharge on standardized
paper forms. Collection and archival protocols are detailed in Roshania
et al. [9]. The clinical and lab protocols were mostly consistent across
the five ETUs, making it possible to aggregate individuals into a single
cohort. Notable exceptionswere wellness scale (WS) and body temper-
ature, both of which were only recorded in Sierra Leonean ETUs. WS is
an observational assessment assigned by experienced clinicians on a
scale ranging from 0 (cured) to 5 (very sick) as seen in Table 1. WS
was recorded for 223 of the 292 patients treated at the three ETUs in
Sierra Leone and was imputed for the 89 Sierra Leonean patients with-
out it. The categorical variable fever, available for all ETUs, was used to
guide imputation of body temperatures.

The cycle threshold (CT) value is an inversely proportional proxy of
viral load, with a cut-off of 40 cycles considered as negative. These
values were calculated from PCRs performed on admission or from the
second PCR when the first was missing, performed no later than two
days after admission and affecting a total of 28 patients. The mean CT
value of these patients [25] was not significantly different from the
rest of the cohort [24] in crude analyses or when stratified by outcome.
PCR data was normalized across sites to adjust for analytical bias be-
tween laboratories (described below).

2.2. External Validation Cohorts

External validation was performed on two independently collected
datasets from Sierra Leone. The KGH dataset described by Schieffelin
et al. [8] is the only such database to be made publicly available at the
time of this study (https://dataverse.harvard.edu/dataverse/ebola). It
includes 106 EVD-positive cases treated at KGH between 25 May and
18 June 2014, where CFR was 73%. Signs and symptoms at triage were
available for 44 patients and viral load was determined in 58 cases.
Missingness across the dataset was 78%. The GOAL dataset described
by Hartley et al. [10,11] includes 158 EVD-positive cases treated at the
GOAL-Mathaska ETU in Port Loko between December 2014 and June
2015, where the CFR was 60%. RT-PCR results and detailed sign and
symptom data were available for all 158 patients. Missingness across
the dataset was 1%.

2.3. Acquisition, Transformation and Normalization of Cycle Threshold
Values

Further details on the assays and processingmethodologies are pro-
vided in the supplementary materials (PCR Lab Notes section). RT-PCR
data were obtained from four laboratories. Liberian ETUs were served
by the United States Naval Medical Research Center (NMRC) Mobile
Laboratory in Bong County. In Sierra Leone, the Lunsar, Makeni and
GOAL ETU's were served by Public Health England (PHE), while a
Nigerian Lab handled samples from the Kambia ETU. KGH had on-site
laboratory support. Inconsistent with other sites, the KGH PCR data
was reported as viral load (VL, in copies/ml) only. To harmonize mea-
sures, VL was transformed to CT according to the standard qPCR curve
log(VL) =m × CT + c0, such that the minimum VL in the KGH dataset
corresponded to the maximum CT in the aggregated IMC dataset, and
vice versa. The accuracy of the transformationwas supported by the ob-
servations that its limit of detection aligned to the IMC dataset, [12–14]
and also that the curve corresponded to its expected form, where a
≈ 10-fold increase in Ebola VL corresponded to a 3-point decrease in
CT [15]. Based on this relationship, −3/m in our formula should be
close to 1, which is indeed the case (−3/m = 0.976 using the m and
c0 constants derived from the KGH and IMC data). Transformation re-
sults were not dependent on the geographical origin of the IMC data.
Geographical origin did, however, have a significant (P b 0.0001) im-
pact on CT distribution across sites (Suppl. Fig. S1),where IMC ETU's had
a mean of 21.82 ± 5.16 in Sierra Leone and 27.67 ± 5.45 in Liberia. In
the KGH and GOAL external validation cohorts, these values were
26.05 ± 6.00 and 22.20 ± 4.31, respectively. A possible reason for this
discrepancy is the differing methods of RT-PCR in each site (TaqMan
in the Liberian ETUs, commercial Altona and in-house “Trombley” in
the Sierra Leonean ETUs). To correct for such analytical bias, and ensure
the results were internally consistent at each site and thus comparable
between sites, we normalized the CT values from each site/group of
sites by feature-scaling (subtracting the mean and dividing by the stan-
dard deviation). As the differences in CT could also arise from differ-
ences in care-seeking behaviors, the normalization of CT values within
sites would also work towards reducing the effect of this potential
confounder.

2.4. Ethical Approval

The Sierra Leone Ethics and Scientific Review Committee, the Uni-
versity of Liberia – Pacific Institute for Research & Evaluation Institu-
tional Review Board, the Lifespan (Rhode Island Hospital) Institutional
Review Board, and the Harvard Committee on the Use of Human Sub-
jects provided ethical approval for this study and exemption from in-
formed consent. A data sharing agreement was approved by IMC and
the Broad Institute, following IMC's Research Review Committee Guide-
lines (https://internationalmedicalcorps.org/document.doc?id=800).

2.5. Exploratory and Bivariate Analysis

Analyses were undertaken in R version 3.5.1. The primary outcome
was final disposition (death or survival). The outcome of five patients
was missing due to being transferred to another facility. We carried
out an initial bivariate analysis of all factors against outcome, using
the χ2 test with Yates correction for the binary variables, and the point
biserial correlation test for numerical variables.

2.6. Multiple imputation

Across all the potential predictors in the dataset, 22% of fields had
missing values. Predictor exclusion was limited to those having more
than 50% missingness so as to minimize bias in the regression coeffi-
cients [16]. The remaining missing values were assessed for their suit-
ability for imputation, using Little's MCAR test (R package
BaylorEdPsych), which tests for bias in the missing values or whether
they are “missing completely at random” (MCAR) [17]. Multiple impu-
tation was undertaken with the aregImpute function from the R pack-
age Hmisc [18], which generates a Bayesian predictive distribution
from the known data, and outputs a number N of imputed datasets.
Each missing value in the ith imputation is predicted from an additive
model fitted on a bootstrap sample with replacement from the original
data. We set N = 100, well above standard imputation guidelines [19].

2.7. Machine learning Feature Selection and Multivariate Modeling

Several logistic regression models were constructed to predict the
binary outcome death/survival from the demographic, clinical (signs
and symptoms), and laboratory data (viral load and malaria rapid test
results) collected at triage. The predictors for the models were selected
in a machine learning variable-selection process, where an initial set of
candidate factors associated with death in EVD were submitted to pe-
nalized logistic regression using the R package Glmnet [20] with Elastic
Net regularization. To define a non-redundant, parsimonious subset of
predictors, variableswith a coefficient N0 in at least half of the penalized
models were retained. As marginal associations can become less signif-
icant when accounting for confounding dependencies in suchmultivar-
iate models, the process tended to include variables with weak

https://dataverse.harvard.edu/dataverse/ebola
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correlations to the outcome in bivariate analysis, such as bleeding and
dyspnea, and elimination of variables that had a low P-value, like con-
junctivitis. Using these variables, we constructed a family of non-
penalized logistic regression models using the lrm function from the R
package rms [21]. This included a parsimonious model (using all the
variables obtained from the selection process), and several fallback
models that can be applied on smaller subsets of demographic informa-
tion, clinical features and laboratory results, for use when more limited
data is available at triage. This approach has been shown to outperform
predictive value imputation, which consists of having only one full
model and imputing missing values at prediction time using the data
distribution from the training set [22]. Each final model in the family
was obtained by fitting N copies of the model on each imputed dataset,
and then averaging those copies into a single model using the fit.mult.
impute function in Hmisc. Internal validation was performed using
bootstrap resampling and model performance is presented by the area
under the curve (AUC), McFadden's pseudo-R2, Brier score, accuracy,
sensitivity and specificity. A prediction was classified as death when
the score from the model was over the 0.5 threshold. Confidence inter-
vals (CI) of all the performance estimates were calculated using Fisher's
transformation [23]. Odds ratios (OR) from logistic regressionwere con-
verted to risk ratios (RRs) according to Zhang and Yu [24].

3. Results

3.1. Prognostic Potential and Prevalence of Signs and Symptoms Recorded
at Triage

Triage symptoms reported by over 50% of fatal Ebola patients were
anorexia/loss of appetite, fever, asthenia/weakness, musculoskeletal
Table 2
Bivariate analysis. Correlation between binary (A) and continuous (B) clinical variables and the
the 2 × 2 contingency table. For continuous variables, the odds ratios (OR) correspond to inter-
years increase in the case of age).

A

Variable Total (%) Non-fatal (%) Fat

Jaundice 24/464 (5) 4/197 (2) 2
Conjunctivitis 128/464 (27) 64/197 (32) 64
Comaa 5/178 (2) 0/83 (0)
Confusiona 16/178 (8) 4/83 (4) 1
Dyspnea 109/464 (23) 39/197 (19) 70
Headache 268/464 (57) 122/197 (61) 14
Bleeding 26/464 (5) 7/197 (3) 1
Asthenia/weakness 334/464 (71) 135/197 (68) 19
Diarrhea 234/430 (54) 96/187 (51) 13
Malariab 49/225 (21) 17/94 (18) 32
Dysphagia 112/464 (24) 43/197 (21) 69
Vomiting 197/464 (42) 87/197 (44) 11
Nauseab 94/286 (32) 35/114 (30) 59
Abdominal pain 203/464 (43) 89/197 (45) 11
Bone/muscle/joint pain 272/465 (58) 118/197 (59) 15
Throat paina 55/178 (30) 24/83 (28) 3
Cougha 61/178 (34) 30/83 (36) 3
Hiccups 55/464 (11) 22/197 (11) 33
Rasha 8/178 (4) 3/83 (3)
Chest paina 88/178 (49) 41/83 (49) 4
Photophobiaa 24/178 (13) 11/83 (13) 1
Anorexia/poor appetite 316/464 (68) 135/197 (68) 18
Fever 349/464 (75) 148/197 (75) 20

B

Variable Non-fatal (mean, 95% CI) Fatal (mean, 95% CI)

Cycle threshold 26.72 (15.92, 37.52) 22.23 (11.18, 33.28)
Wellness scaleb 2.49 (0.82, 4.17) 3.20 (1.17, 5.22)
Patient age 28.49 (0.00, 58.72) 32.03 (0.00, 72.10)
Body temperatureb 37.41 (35.50, 39.32)a 37.67 (35.34, 40.01)
Time-to-presentation 4.28 (0.00, 12.03) 4.20 (0.00, 9.90)

a Variables not recorded at the Sierra Leonean ETUs
b Variables not recorded at the Liberian ETUs.
pain, headache and diarrhea (Table 2A). Prevalence of several triage
symptomswas notably different between fatal and non-fatal outcomes,
as can be seen by comparing their ranking (Suppl. Fig. 2A) or their dif-
ferential prevalence (Suppl. Fig. 2B). Fewvariableswere significantly as-
sociated with patient outcome. Only CT, age (Table 2B), and jaundice
(Table 2A) were associated with death at a level of P b 0.05, while con-
junctivitis, confusion, dyspnea, headache, and bleedingwereweakly as-
sociated at P b 0.15.

3.2. Multivariate Logistic Regression Models

3.2.1. Variable Selection
Applying a machine learning selection model described in the

methods, we obtained a set of variables including patient age, Ebola-
specific PCR result (CT), and several clinical features recorded at triage
(body temperature, bleeding, jaundice, dyspnea, dysphagia, and time-
to-presentation (TTP)).

3.2.2. Multiple Imputation
Before procedure, selected variables were assessed for bias. We ap-

plied restricted cubic splines to model the non-linear relationships be-
tween CFR and age (Suppl. Fig. S2A) and CFR and body temperature
(Suppl. Fig. S2B). The actual values of age and temperature were the
input of the splinefitting procedure, as implemented in theHmisc pack-
age. The lack of a saddle in the CFR vs CT plot (Suppl. Fig. S3) suggested
that cubic splines were not required to model CT. Following Hartley's
[10] observation that viral load can act as a confounding factor for out-
come and TTP (where patterns in early viral load directs care-seeking
behavior as well as determines outcome), we added a CT × TTP interac-
tion. While non-random patterns of missing values were found when
outcome of death. For binary variables, crudemarginal risk-ratios (RR)were obtained from
quartile range changes in the variables when used as the only predictor of death (and 10-

al (%) Missing (%) RR (95% CI) P-value

0/267 (7) 1/470 (0) 1.06 (1.02, 1.10) 0.016
/267 (23) 1/470 (0) 0.89 (0.79, 1.00) 0.054
5/95 (5) 292/470 (62) 1.05 (1.00, 1.11) 0.096
2/95 (12) 292/470 (62) 1.09 (1.00, 1.19) 0.120
/267 (26) 1/470 (0) 1.09 (0.98, 1.20) 0.133
6/267 (54) 1/470 (0) 0.84 (0.67, 1.05) 0.142
9/267 (7) 1/470 (0) 1.04 (0.99, 1.08) 0.148
9/267 (74) 1/470 (0) 1.24 (0.92, 1.65) 0.187
8/243 (56) 35/470 (7) 1.13 (0.92, 1.38) 0.304
/131 (24) 241/470 (51) 1.08 (0.95, 1.24) 0.331
/267 (25) 1/470 (0) 1.05 (0.95, 1.17) 0.374
0/267 (41) 1/470 (0) 0.95 (0.81, 1.11) 0.587
/172 (34) 179/470 (38) 1.05 (0.90, 1.24) 0.613
4/267 (42) 1/470 (0) 0.96 (0.81, 1.13) 0.662
4/268 (57) 0/470 (0) 0.94 (0.76, 1.17) 0.666
1/95 (32) 292/470 (62) 1.06 (0.87, 1.28) 0.709
1/95 (32) 292/470 (62) 0.95 (0.77, 1.17) 0.738
/267 (12) 1/470 (0) 1.01 (0.95, 1.08) 0.805
5/95 (5) 292/470 (62) 1.02 (0.96, 1.08) 0.867
7/95 (49) 292/470 (62) 1 (0.75, 1.34) 0.889
3/95 (13) 292/470 (62) 1 (0.89, 1.13) 0.892
1/267 (67) 1/470 (0) 0.98 (0.75, 1.28) 0.946
1/267 (75) 1/470 (0) 1.01 (0.73, 1.39) 0.944

Missing fraction (%) Pearson's R OR (95% CI) P-value

137/470 (29) −0.37 0.33 (0.23, 0.47) b0.0001
247/470 (52) 0.34 4.57 (2.44, 8.58) b0.0001
4/470 (1) 0.09 1.33 (1.01, 1.74) 0.043

265/470 (56) 0.12 1.39 (0.94, 2.06) 0.099
108/470 (22) −0.01 0.97 (0.76, 1.25) 0.83
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considering all data, Little's MCAR test was satisfied at P = 0.05 when
considering the Sierra Leonean and Liberian records separately, thus
identifying geographical location as the main source of non-
randomness. The remaining weak non-random patterns for missing
fields in the TTP variable in Sierra Leonean records (P = 0.03) could
be explained by low CT values. Inclusion of CT in the model controlled
for this effect and ensured randomness within each subset of CT (high
versus low).

3.2.3. Model Performance
In addition to the parsimonious model (using all features described

above), we constructed three fallback models for use when certain fea-
tures were unavailable. The first “parsimonious without temperature”
model was identical to the parsimonious but with backwards elimina-
tion of body temperature. A second “clinical-only” model selected only
clinical features after omitting CT from the initial list of variables before
the machine learning selection step. This model included jaundice,
bleeding, dyspnea, dysphagia, asthenia/weakness, and diarrhea. A final
“minimal” model only incorporated CT and age, which were the stron-
gest individual predictors of outcome, as observed in our data and re-
ported by other researchers [25]. Table 3 contains the validation
indices and their 95% CIs. Most indices are very similar between the par-
simonious and minimal models, with largely overlapping CIs. The spec-
ificity and R2 are higher in the parsimonious models, while the
sensitivity is slightly higher in the minimal model. The addition of tem-
perature consistently increases performance across all indices, but only
by a minor amount. The clinical-only model shows consistently lower
performance. Detailed description of all the models is provided in
Suppl. Table S1.

The calibration curves comparing the predicted and actual probabil-
ities of death (Fig. 1) suggest that the two parsimonious models repre-
sent the actual probabilities well, with some underestimation for low
risk patients. The minimal and clinical-only models are less calibrated,
with the former underestimating the actual probabilities at both the
low- and high-risk ends, and the later overestimating the actual proba-
bilities for a wide range of risks above 60%.

The ranking of all of the variables by their importance in the parsi-
monious model, as measured by the Wald χ2 statistic, reveals that the
most important variables are CT and patient age, with jaundice and
bleeding coming in at a distant third and fourth place respectively,
followed by body temperature and the CT-TTP interaction (Fig. 2A).
The odds ratios (Fig. 2B) indicate that presentation of either jaundice
or bleeding are associated with more than a doubling of the odds of
death, although their prevalence is low at 5% (Table 2). Transformation
of the odds risks into risk ratios (Suppl. Table S1) yields a more reason-
able estimate of 4% increase in risk associated with the occurrence of
those symptoms at presentation.

3.2.4. Temporal Flexibility of Models
To test the temporalflexibility ofmodelswe compared the predictions

from the parsimoniousmodel when using the CT value fromday 0 versus
day 2, for those patients forwhom these CT valueswhere available. There
were 84 patients in the d0 subcohort (CFR: 63%) and 14 patients in the d2
subcohort (CFR: 64%). The model performed similarly on these cohorts
Table 3
Validation indices for the prognostic models. These indices include AUC, McFadden's pseudo R2

and 95% confidence intervals were obtained with 200 iterations of bootstrap resampling.

Parsimonious (95% CI) Parsimonious w/out te

AUC 0.75 (0.70, 0.79) 0.74 (0.69, 0.7
R2 0.22 (0.17, 0.27) 0.21 (0.16, 0.2
Brier 0.21 (0.16, 0.25) 0.21 (0.16, 0.2
Accuracy 0.69 (0.64, 0.74) 0.68 (0.63, 0.7
Sensitivity 0.80 (0.75, 0.84) 0.79 (0.74, 0.8
Specificity 0.57 (0.51, 0.63) 0.55 (0.49, 0.6
(Suppl. Table S2A)with 15misclassifications using d0 CT reads subcohort,
and 3 using d2 CT reads. Further, comparing patients with slow (N3 d) or
rapid (≤3 d) times to presentation, we see little difference (Suppl.
Table S2B) in performance parameters for the parsimonious model.

3.3. External Validation

External validation on the 158 EVD-positive patients in the GOAL
dataset shows that the fourmodels described earlier improve their per-
formance with respect to the internal validation. CT was missing in 37
patients, and both CT and TTP were missing in 53, so the parsimonious
models were validated on 105 patients and the minimal model on 121.
The clinical-only model was validated on all the 158 patients. We ob-
tained AUCs of 0.82, 0.84, 0.73, and 0.82 for the parsimonious, parsimo-
nious without temperature, clinical-only, and minimal (Table 4A). In
terms of the accuracy, sensitivity, and specificity, all the models, with
the exception of the clinical-only, performed similarly well with accura-
cies around 74%. Excluding again the clinical-only model, sensitivity
ranged between 78% and 82%, while specificity was lowest for the min-
imal model at 61% and highest for the parsimonious model at 68%.
Therefore, it is not possible to pick an overall best model between the
three including CT but depending on what is the priority in the predic-
tive task, higher sensitivity or specificity, one could favor either the par-
simonious or the minimal.

For the KGH dataset (Table 4B), only 11 patients had enough com-
plete records to validate the parsimonious models, but after multiple
imputation, all the 106 KGH cases could be used. As it was observed in
the first validation, all models with the exception of the clinical-only,
exhibited consistent performance in terms of AUC and overall accuracy,
with analogous differences in terms of specificity and sensitivity. The
parsimonious models have higher specificity, while the minimal is
more sensitive. The impact of imputation was inconsequential.

3.4. Wellness Scale Models

Four additional models were constructed using the wellness scale
(WS) variable in place of the detailed clinical signs and symptoms:well-
ness parsimonious (including CT, patient age, body temperature, WS,
TTP and CT x TTP), wellness parsimonious without temperature, well-
ness clinical-only (including patient age, body temperature, and WS),
and wellness minimal (including CT, patient age, and WS). The perfor-
mance indices of these models, obtained from internal validation on
the Sierra Leonean patients from the IMC dataset, are shown in Table 5.

All the performance indices of these newmodels are higher than the
corresponding original models. In fact, the performance of the worst
performing model in this set, the wellness clinical-only, is comparable
to that of the parsimonious model including the detailed signs and
symptoms. The calibration curves for the parsimonious models with
and without wellness scale are almost indistinguishable, but it is possi-
ble to note an improvement for the clinical-only and minimal models
with the addition of the wellness scale (Fig. 3). To evaluate the effect
of imputation of wellness score, we fitted the four wellness models
only on those patients with knownWS (Suppl. Table S3) and found im-
puted variance inflation to be minimal.
goodness-of-fit index, Brier score, overall accuracy, sensitivity, and specificity. The means

mp. (95% CI) Clinical-only (95% CI) Minimal (95% CI)

8) 0.64 (0.58, 0.69) 0.76 (0.71, 0.80)
5) 0.12 (0.09, 0.15) 0.16 (0.13, 0.21)
6) 0.24 (0.19, 0.29) 0.21 (0.16, 0.25)
3) 0.60 (0.54, 0.66) 0.68 (0.63, 0.73)
3) 0.70 (0.64, 0.75) 0.81 (0.76, 0.85)
1) 0.51 (0.44, 0.57) 0.52 (0.46, 0.58)



Fig. 1. Bootstrap overfitting-corrected calibration curve. Estimated for the four prognostic models: parsimonious (A), parsimonious without body temperature (B), clinical-only (C), and
minimal (D). Each plot contains the rug chart at the top showing the distribution of predicted risks. The dotted line represents the apparent calibration curve and the solid line shows the
optimism-corrected calibration. A perfectly-calibrated model will fall along the diagonal. Generated with the calibrate function in the rms package.
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3.5. Ebola Care Guidelines App

We created a multilingual (English and French) Android app for
health workers, named Ebola Care Guidelines, that integrates available
patient care and management guidelines for EVD patients with the
prognosticmodels described earlier. To adapt to the needs of rural or re-
mote locationswith limited internet access, the app only requires inter-
net connectivity to be installed thefirst time, and all subsequent use can
be performed offline. The home screen shows a list of supportive care
recommendations for Ebola patients, compiled from Lamontagne et al.
[26], and care and management guidelines for hemorrhagic fevers
from WHO [27] and MSF [28] (Fig. 4A). The list is categorized by inter-
vention type and selecting a guideline from this list provides a summary
description and specific interventions related to that guideline (Fig. 4B).
When users select a specific intervention, the app redirects to the corre-
sponding page in the reference document (Fig. 4C).

Users can also input patient information (age, sex, pregnancy status,
weight, height), clinical signs and symptoms recorded at triage, labora-
tory results, and the wellness scale (WS) from the first clinical rounds
after admission (Fig. 4D), through a built-in form, or via a separate
CommCare (https://dimagi.com/commcare/) app. After all, or some, of
this data is recorded, the app computes the severity score of the patient
by selecting the model most appropriate for the available data. It then
offers a visualization of the score and the magnitude of patient-
specific contributions for each feature included in their score, where
the score value is shown at the top in a color-graded scale and
patient-specific feature contributions to that score are depicted in a
bar chart summary page (Fig. 4E). Each clinical feature is linked to one
or more of the care guidelines according to their appearance in the
guideline, so that when that feature is present in the data, the corre-
sponding guidelines are highlighted (Fig. 4F). The total severity score
can also be linked to specific guidelines when it is over a threshold de-
fined in the app's settings. Those guidelines will also be highlighted
when the score is higher than a user-defined threshold. This feature is
designed to bring the user's attention to the resource-consuming rec-
ommendations that could bemost relevant given the clinicalmanifesta-
tion of the patient (e.g. intensive monitoring). It is important to note
that the app does not make any choices for the user nor does it deviate
or omit information from the guidelines, it simply directs the user to the
section in the guidelines that advises them in that decision. The trigger
signs/symptoms linking to the guidelines are straightforward, since are
precisely those listed in the guidelines themselves (e.g. vomiting and

https://dimagi.com/commcare/


Fig. 2. Evaluation of predictor variables in the parsimonious model. Ranking of the variables according to their predictive importance in the model, as measured by the χ2-d.f. (degrees of
freedom) statistic (A). Odds ratios for all the variables, using interquartile-range odds ratios for continuous features, and simple odds ratios for categorical features (B). Generatedwith the
anova.rms and summary functions in the rms and base packages in R.
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diarrhea for the ORS/IV fluids). The app's source code is available on
GitHub under theMIT license. An online wiki provides detailed instruc-
tions on how to update the models and the guidelines included in the
app (https://github.com/broadinstitute/ebola-imc-public/wiki).

4. Discussion

The purpose of this study was two-fold: first, to present generaliz-
ablemachine learning prognosticmodels for EVDderived from the larg-
est multi-center clinical dataset available to date, externally validated
across diverse sites representing various periods of the largest Ebola ep-
idemic on record; and second, to show how these models could guide
Table 4
External validation on the GOAL (A) and KGH (B) datasets. The AUC, Brier, accuracy, sen-
sitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV)
indices were calculated (A) on all the records from the GOAL dataset with complete data
and (B) all the records from the KGH dataset that had enough data to evaluate the clinical-
only and minimal models. The results for the parsimonious models were obtained after
imputing missing values in the KGH patients, and the performance indices include the
mean and standard deviation over 100 multiple imputations.

A

Parsimonious Parsimonious w/out temp. Clinical-only Minimal

AUC 0.82 0.84 0.73 0.82
Brier 0.17 0.16 0.21 0.17
Accuracy 0.74 0.75 0.66 0.74
Sensitivity 0.78 0.82 0.77 0.82
Specificity 0.68 0.63 0.52 0.61
PPV 0.81 0.80 0.66 0.79
NPV 0.63 0.67 0.65 0.66
B

Parsimonious
(SD)

Parsimonious w/out temp.
(SD)

Clinical-only Minimal

AUC 0.78 (0.04) 0.78 (0.04) 0.72 0.82
Brier 0.19 (0.01) 0.18 (0.01) 0.22 0.17
Accuracy 0.73 (0.03) 0.72 (0.03) 0.59 0.74
Sensitivity 0.73 (0.03) 0.73 (0.03) 0.56 0.82
Specificity 0.88 (0.03) 0.86 (0.02) 0.75 0.61
PPV 0.88 (0.03) 0.86 (0.02) 0.91 0.81
NPV 0.48 (0.05) 0.48 (0.05) 0.27 0.50
clinical decisions by organizing existing knowledge of patient care and
management more efficiently andmaking it easily available as a mobile
app.
4.1. PrognosticModels Recapitulate Prior Findings and Highlight the Impor-
tance of Clinical Intuition

In order to account for different levels of clinical detail collected at
the ETUs, we constructed a family of prognostic models that range
from models requiring only clinical signs/symptoms or age and viral
load, to more complex models incorporating a mixture of laboratory
data, signs/symptoms, and observational assessments fromexperienced
health providers. The discriminative capacity of the models is robust
across the training set and two independent validation sets, with AUCs
ranging from 0.75 up to 0.80. Furthermore, these models recapitulate
several findings reported earlier in the literature and also reveal further
associations between mortality and clinical signs/symptoms. The most
informative predictors of EVD outcome are patient age and viral load,
and models incorporating just these two variables exhibit good perfor-
mance. Occurrence of jaundice or bleeding at initial presentation are im-
portant predictors of death, but both have low incidence at triage
among the patients in the IMC cohort of only 5%. In contrast,morewide-
spread EVDmanifestations such as dyspnea, dysphagia, and asthenia at
triage have a much weaker correlation with mortality. Even though
fever is a non-specific symptom with no predictive power, body tem-
perature at triage is informative by increasing specificity in the predic-
tions. The performance of models incorporating the clinical wellness
score is at least comparable or superior to the more detailed models in-
cluding individual clinical features deemed as themost predictive in our
variable selection process. This is a particularly interesting result in our
study, since it suggests that machine learning approaches, when prop-
erly designed and implemented, and applied on rich-enough data,
could approximate the clinical intuition that physicians acquire through
their experience in the field. Conversely, this also provides evidence that
good bedside intuition can very effectively integrate the individual indi-
cators of the patient's clinical status into an overall health assessment of
great predictive power. These models may be useful in emergency

https://github.com/broadinstitute/ebola-imc-public/wiki


Table 5
Validation of the wellness scale models. These models were evaluated using the same indices of performance as the previous models: AUC, R2, Brier, accuracy, sensitivity, and specificity.
The means and 95% confidence intervals were obtained with 200 iterations of bootstrap resampling.

Wellness parsimonious (95% CI) Wellness parsimonious w/out temp. (95% CI) Wellness clinical-only (95% CI) Wellness minimal (95% CI)

AUC 0.80 (0.74, 0.84) 0.81 (0.76, 0.85) 0.74 (0.68, 0.80) 0.80 (0.74, 0.84)
R2 0.31 (0.24, 0.38) 0.30 (0.23, 0.37) 0.19 (0.14, 0.25) 0.25 (0.19, 0.32)
Brier 0.19 (0.13, 0.24) 0.18 (0.13, 0.23) 0.20 (0.15, 0.26) 0.19 (0.13, 0.24)
Accuracy 0.73 (0.66, 0.79) 0.73 (0.67, 0.79) 0.69 (0.62, 0.75) 0.72 (0.65, 0.77)
Sensitivity 0.82 (0.76, 0.86) 0.82 (0.77, 0.86) 0.79 (0.72, 0.83) 0.81 (0.75, 0.85)
Specificity 0.63 (0.55, 0.70) 0.63 (0.55, 0.70) 0.57 (0.48, 0.64) 0.61 (0.53, 0.68)
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situations when the appropriate experience is unavailable or under-
developed.

4.2. Updating the Models and App

Our prognostic models and guidelines app can be easily updated
with new data. With increasing knowledge on the management of
Ebola, we expect the mortality rate to decrease over time or to be
more reliably estimated by earlier symptoms. New information from
Fig. 3. Bootstrap overfitting-corrected calibration curves for the wellness models. Estimated fo
(A), wellness parsimonious without body temperature (B), wellness clinical-only (C), and wel
predicted risks. The dotted line represents the apparent calibration curve and the solid line sh
diagonal. Generated with the calibrate function in the rms package.
the ongoing outbreak in DRC or future epidemics would enable us to
train and update the models to more appropriate calculations that are
adapted to improving standards of care, and geographically divergent
variables. For example: health-care seeking behavior in the conflict-
afflicted DRC would be undoubtedly more limited than that in West
Africa in 2014–16, and perhaps other factors will be more predictive
of death. Therefore, not only are themodels adapted to the newly avail-
able information but the new models would also automatically link up
to the easily-updatable guidelines as they become available.
r the four prognostic models using the wellness scale as predictor: wellness parsimonious
lness minimal (D). Each plot contains the rug chart at the top showing the distribution of
ows the optimism-corrected calibration. A perfectly-calibrated model will fall along the



Fig. 4. Ebola Care Guidelines app. The home screen presents the list of recommendations (A), which can be selected to access specific interventions associated with each recommendation
(B). Selecting a specific intervention or guideline redirects theuser to the corresponding section in theWHO'smanuals for care andmanagement of hemorrhagic fever patients (C). The app
allows the users to enter basic demographic information (age, weight), vitals, signs & symptoms at presentation, lab data (CT value from first RT-PCR andmalaria test result), andwellness
scale (D). Based on the available data, the app calculates the severity score of the patient using the suitable prognostic model and presents a customized risk visualization (E). The
recommendations that are associated with the presentation signs and symptoms are highlighted in the home screen (E).
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4.3. Data-harmonization Challenges

When aggregating data from several sources, care must be taken to
search and correct for systematic differences between datasets and
best ensure interoperability. For example, in order to aggregate CT
values and control for analytical bias generated by the different PCR
labs, we applied an intra-site normalization to ensure that values were
comparable across sites. We had to discard several potentially informa-
tive clinical variables such as confusion and coma since they were not
available in all the IMC ETUs. Other features could be imputed, such as
body temperature by using fever as a proxy variable.

4.4. Validation Strategies

Our prognostic models, particularly those incorporating the parsi-
monious sets of predictors, perform well on two independent datasets
used for external validation. These datasets have a wide temporal, geo-
graphic and clinical scope. A major difference between these datasets
was the time during which they were collected, with the KGH data
representing an earlier time point, with less refined treatment proto-
cols, increased patient volume and admission intensity with a larger
number of patients delayed during transfers from holding centers. On
the other hand, the GOAL dataset includes patients from the final
months of the epidemicwith a 13% lower CFR. Thus, asmay be expected,
the models underestimated the observed risk for patients of the KGH
cohort, while observed risk was slightly overestimated in the GOAL co-
hort. The IMC training dataset covers amuch broader temporal window
of the epidemic aswell as a wider catchment area, spanning several dis-
tricts across two countries, which may explain its consistent perfor-
mance in these disparate populations. We also investigated the
temporalflexibility of themodels by testing themon CT values obtained
two days after triage and comparing model performance on patients
with short or long times to presentation at the ETU. The results show
that the parsimonious models could maintain their performance pa-
rameterswhen deployed in contextswith systematically different refer-
ral times or laboratory turnaround times, and further justifies the use of
time-to-presentation within the model to control for time-dependent
effects.

4.5. mHealth Applications

Finally, with the Ebola Care Guidelines app we benchmark a robust
and flexible mHealth platform for clinicians that could be extended to
other diseases affecting rural and low-resource areas. By linking
evidence-based prognostication with trusted clinical care information,
we propose the app both as a reference tool to improve training and ad-
herence to protocol, as well as a support system that better tailors the
prioritization of clinical interventions to the patient's data. The integra-
tion of mHealth platforms with rapid point of care diagnostic kits [29,
30] has the potential to realize the concept of a “pocket lab” [31],
which could be used outside laboratory settings and during health
emergencies. The ultimate goal of these platforms is to aid clinical man-
agement decisions by personalizing the understanding of individual
prognostic predictions and better organizing access to the trusted,
updateable medical knowledge. This platform also allows updating of
the prognostic models, where new weightings may be trained on
more geographically or temporally relevant data as it becomes avail-
able. The current update process simply involves bundling the specifica-
tions of the new models (predictor variables and coefficients),
rebuilding the app, and releasing it through Android's app store. Future
versions of the app may not even require to be updated, as they could
retrieve new models directly from a central server. We believe that if
clinical staff can obtain actionable information from the data they col-
lect, they may be incentivized to generate more and higher-quality
data: creating a positive feedback loop which drives precision. Further,
the visualization of the clinical basis of prediction models (such as the
charts provided in our app) provides a learning platform that builds in-
formed clinical experience rather than simply replacing it.

4.6. Limitations

Despite being the largest EVD prognosis modeling study to date, the
amount and quality of available clinical data is still limited. We
accounted for these limitations by harmonizing the data from different
ETUs and applying various statistical techniques recommended for
prognosis modeling (multiple imputation, bootstrap sampling, external
validation). Even with the help of these approaches, data might be af-
fected by variations in clinical assessments from clinicians with varying
levels of experience, errors in data collection (including patient symp-
tom recall or history taking skills), and differences in lab protocols. Ulti-
mately, future predictive models will require larger and better datasets,
and consensusmechanisms to ensure that data is consistent across sites.

5. Conclusions

It is possible to generate generalizable machine learning prognostic
models if data from representative cohorts can be harmonized and ex-
ternally validated. The use of low-cost mHealth tools on the ground in-
corporating the insights gained from such models, in combination with
effective data collection and sharing among all stakeholders, will be key
elements in the early detection and containment of future outbreaks of
Ebola and other emerging infectious diseases.

Availability of source code, data, and app

The full source code is openly available at https://github.com/
broadinstitute/ebola-imc-public. Refer to IMC's Ebola Response page
(https://internationalmedicalcorps.org/ebola-response), for instruc-
tions on how external researchers can access the data. The app is freely
available on Google Play: https://play.google.com/store/apps/details?
id=org.broadinstitute.ebola_care_guidelines.
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