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BACOM2.0 facilitates absolute 
normalization and quantification 
of somatic copy number 
alterations in heterogeneous 
tumor
Yi Fu1, Guoqiang Yu1, Douglas A. Levine2, Niya Wang1, Ie-Ming Shih3, Zhen Zhang3, 
Robert Clarke4 & Yue Wang1

Most published copy number datasets on solid tumors were obtained from specimens comprised of 
mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. 
The inability to correct for signal mixing represents a major limitation on the use of these datasets 
for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We 
describe the BACOM2.0 method with enhanced accuracy and functionality to normalize copy number 
signals, detect deletion types, estimate tumor purity, quantify true copy numbers, and calculate 
average-ploidy value. While BACOM has been validated and used with promising results, subsequent 
BACOM analysis of the TCGA ovarian cancer dataset found that the estimated average tumor purity 
was lower than expected. In this report, we first show that this lowered estimate of tumor purity is 
the combined result of imprecise signal normalization and parameter estimation. Then, we describe 
effective allele-specific absolute normalization and quantification methods that can enhance BACOM 
applications in many biological contexts while in the presence of various confounders. Finally, we 
discuss the advantages of BACOM in relation to alternative approaches. Here we detail this revised 
computational approach, BACOM2.0, and validate its performance in real and simulated datasets.

Accurate quantification of somatic copy number alterations in cancers is a systematic effort to dis-
cover potential cancer-driving genes such as oncogenes and tumor suppressors1,2. Bayesian Analysis of 
COpy number Mixtures (BACOM) is a statistically principled and unsupervised method that exploits 
allele-specific copy number signals to differentiate between homozygous and heterozygous deletions, 
estimate normal cell fraction, and recover tumor-specific copy number profiles1,3 (Methods). The type 
of data used by BACOM2.0 is high-density and allelic-specific DNA copy number profiles acquired 
by oligonucleotide-based single nucleotide polymorphism (SNP) arrays. For instance, Affymetrix offers 
several DNA analysis arrays for SNP genotyping and the newest Affymetrix Genome-Wide Human SNP 
Array 6.0 features 1.8 million genetic markers including more than 906,600 SNPs3,4. BACOM was tested 
on two simulated and two prostate cancer datasets, and very promising results, supported by the ground 
truth and biological plausibility, were obtained. In our subsequent analyses of TCGA samples with 
BACOM, we confirmed unexpectedly higher average normal cell fractions. Upon closer examination of 
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the interim results of the entire BACOM analytic pipeline, we found that many normal/amplified copy 
regions or hemi-deletions were misclassified as homo-deletions. This observation explains the suspected 
overestimation of normal cell fraction, since the normal cell fraction α will be overestimated either when 
non-deletion regions are wrongly used or when αhomo is applied to hemi-deletions (αhomo >  αhemi) in the 
estimation (Methods).

We propose that the increased estimate of the normal cell fraction is the combined result of imprecise 
signal modeling and normalization, particularly in the presence of copy-neutral loss of heterozygosity 
(LOH) and partial aneuploidy. For example, if a non-deletion region is firstly misclassified as a deletion 
due to imprecise signal normalization, it can be further misclassified as homo-deletion in the cases of 
allelic balance. Moreover, if the value of the allelic correlation coefficient ρ is underestimated due to 
copy-neutral LOH (allelic-imbalance) contamination in normal/allelic-balanced regions, hemi-deletion 
will then be misclassified as homo-deletion caused by a much reduced signal-to-noise ratio (Methods).

Accurate signal normalization essentially rescales the relative signal intensities on the basis of nor-
mal copy regions (diploid reference loci), here termed as absolute normalization5,6. As the intertwined 
result of normal cell contamination, copy number aberrations, and tumor aneuploidy, the average ploidy 
of tumor cells cannot be assumed to be 2N or an integer7. While absolute normalization is critical 
to inferring absolute copy numbers in a tumor sample, the classic normalization procedure based on 
median-centering of the total probe intensities is problematic3,4,8 because the dominant component of 
the signal mixture distribution rarely coincides with the normal copy number ‘2’7.

We developed an effective scheme to eliminate the loci belonging to the hemi-deletions (with copy 
number ‘1’) and the allelic-imbalanced regions. Note that in addition to the odd copy number loci, regions 
with even copy number can also be allelic-imbalanced, and therefore are also removed. Specifically, we 
use a sliding window centered at a locus to estimate the inter-allele correlation coefficient and remove 
those loci whose correlation coefficients are lower than an automatically-determined threshold value. 
The imbalanced allele signals associated with odd copy numbers would produce a sufficiently nega-
tive value of ρ. Subsequently, a revised Gaussian mixture model is derived solely from the remaining 
allelic-balanced loci that highlights the normal copy number loci with ‘sparse’ peaks. Tested on many 
real copy number datasets, we found that the dominant component of the revised Gaussian mixture 
distribution now corresponds to the normal copy number regions in most cancer types. In the case of 
significant chromosome instability or partial aneuploidy, it is possible that the dominant component 
of the revised Gaussian mixture distribution actually corresponds to copy number ‘4’ (or even higher). 
Thus, we propose to rescale the measured copy number signal intensities using the mode of the domi-
nant component or the component of the revised copy number signal with the lowest mean value. Since 
such signal normalization is performed in each individual sample and based on the signals of normal 
copy number regions, BACOM2.0 implements an accurate and absolute normalization5. This procedure 
also eliminates copy-neutral LOH loci and thus can improve the accuracy of estimating ρ by using only 
normal copy loci and subsequently differentiate between hemi- and homo- deletions (Methods).

We further exploit a mathematically-justified scheme to correct for the confounding impact of intra-
tumor heterogeneity on estimating tumor purity7,9. Though normal cell fraction α can hypothetically be 
estimated using any deletion segments, it can be experimentally and theoretically shown that the value 
of α will likely be overestimated when intratumor heterogeneity occurs in the deletion segment being 
used. Thus, in the presence of suspected intratumor heterogeneity, only the ‘pure’ deletion segments 
with homogeneous tumor genotypes should be used to estimate the normal cell fraction. Based on the 
distribution of α estimates across the whole genome, BACOM2.0 calculates the final value of the normal 
fraction using the 9-percentile of α estimates (Methods).

Results
Validation on realistic simulations. We first considered numerical mixtures of simulated normal 
and cancer copy number profiles across a chromosome region, a situation in which all factors are known 
and the use of a linear mixture model by equation (1) is valid (Methods). We reconstituted mixed copy 
number signals by multiplying the simulated cancer copy number profile by the tumor purity percentage 
in a given heterogeneous sample. Realistic simulations were generated using a specifically selected pair of 
matched tumor-normal ovarian cancer samples in TCGA, where the tumor somatic copy number pro-
file is approximately normal (allelic-balanced, summed copy number ‘2’, no LOH contamination). After 
variably dividing the entire region into eight segments, we assigned allelic-specific copy number status to 
each of the segments ranging from 0 to 3, as specified in Fig. 1. The raw copy number signals (the sum 
of the two alleles) were produced by mixing 1-α  fraction of simulated tumor copy number profile with 
α  fraction of normal copy number profile, as given in equation (1). This simulation represents a highly 
challenging scenario in which most probe sets were not ‘normal’ but amplified, yet also contained both 
hemi-deletion and copy-neutral LOH segments.

Using the BACOM2.0 analytic pipeline, we first calculated the histogram of the raw copy number sig-
nals (Fig. 2a); then we preprocessed the raw copy number signals by a moving-average low-pass filter that 
significantly reduced the noise effect, and re-calculated the histogram (Fig. 2b); finally we eliminated all 
allelic-imbalanced loci and generated a revised histogram where the dominant peak correctly coincided 
with the normal copy number ‘2’ component (Fig. 2c).
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With a successful absolute normalization, we first checked the estimated value of the between-allele 
correlation coefficient ρ , and then recalculated the normal cell fraction α . Based on the comparative 
estimates given in Table 1, the power of BACOM2.0 is evident since the model parameter estimates are 
very close to the ground truth when compared with the output obtained using the original BACOM. 
Additional information on validation design and experimental results is included in the Supplementary 
Information.

Analysis of benchmark real copy number data. We then applied BACOM2.0 to the challenging 
case of the TCGA ovarian cancer dataset (n =  466 samples). Substantial genomic instability has been 
well-documented in high-grade ovarian cancers10–12. We observed that, in a large number of tumor 
samples, the dominant component of raw measured copy number histogram does not correspond to the 
normal copy number ‘2’ but rather to the allele-imbalanced loci (Fig. 3a). This observation suggests the 
presence of partial aneuploidy in these samples, and highlights the improper use of global mean/median 
as the normalization baseline5.

Figure 1. Realistic simulated allelic-specific copy number signals. 

Figure 2. (a) Histogram of simulated copy number signals; (b) Histogram of preprocessed copy number 
signals after moving-average; (c) ‘revised’ histogram of copy numbers after eliminating allelic-imbalanced 
regions.

Parameter Ground truth BACOM BACOM2.0

ρ − 0.042 − 0.714 − 0.063

α 40% 79% 39%

Table 1.  Comparative parameter estimates by BACOM and BACOM 2.0.
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Using the BACOM2.0 analytic pipeline, we processed the raw measured copy number signals using a 
moving-average low-pass filter, eliminated all allelic-imbalanced loci, generated a revised histogram, and 
identified the component of normal copy number ‘2’ (Fig. 3b). With a successful absolute normalization, 
we estimated tumor purity and tumor-specific copy number profile on each sample. From a comparison 
between the histogram of tumor purities likely underestimated by the original BACOM from 466 OV 
samples (Fig. 3c) and the histogram of tumor purities newly estimated by BACOM2.0 from 466 OV sam-
ples (Fig. 3d), we can see that BACOM2.0 produced much higher tumor purity estimates (average purity 
of 64% versus 33%) that are theoretically expected and consistent with the protocol baseline adopted 
in independent studies (using 50% purity as the threshold to differentiate between high and low tumor 
purity in three cancer types)13–15.

Using the same dataset, we further compared the estimates generated by BACOM2.0 with those pro-
duced by ABSOLUTE4. As a closely relevant method, ABSOLUTE reports the estimates of tumor purity 
and average ploidy on two TCGA datasets, ovarian cancer (OV) and brain cancer (GBM). With a quality 
control selection on paired tumor and normal samples, ABSOLUTE analyzed n =  392 tumor samples in 
the OV dataset. Note that the tumor purity estimates, obtained by ABSOLUTE and used in our compar-
ison, have been partially validated experimentally4. The average tumor purity estimates by BACOM2.0 
and ABSOLUTE are 64% and 78%, respectively; and the average tumor ploidy estimates by BACOM2.0 
and ABSOLUTE are 2.33 and 2.73, respectively. The sample-wise correlation coefficients show that both 
tumor purity and tumor ploidy estimates by BACOM2.0 correlate well with the estimates by ABSOLUTE 
(Fig.  4), achieving high correlation coefficients of r =  0.74 on purity and r =  0.71 on ploidy. On the 
GBM dataset, the average tumor purity estimates by BACOM2.0 and ABSOLUTE are 59% and 71%, 
respectively; and the average tumor ploidy estimates by BACOM2.0 and ABSOLUTE are 2.09 and 2.17, 
respectively. Additional information on additional experimental results (tables and figures) is included 
in the Supplementary Information.

Cross-affirmation by expression deconvolution. In the absence of definite ground truth about 
the tumor purities in real samples, the validation of a new method for quantifying absolute copy num-
bers is always problematic. A reasonable alternative is to perform some form of ‘cross’ affirmation by 
exploiting the ‘orthogonal’ information structures provided by the independent sources related to a 
common set of nature states16. Finally, we compared the tumor purity estimates by BACOM2.0 with 
the estimates by an independent method (called UNDO) that deconvoluted the mixed gene/protein 
expression profiles of tumor and stroma cells acquired from the same TCGA OV samples17. Using the 
UNDO software, we analyzed the tumor samples with consistent purity estimates by both BACOM2.0 
and ABSOLUTE. The experimental result shows that the tumor purity estimates by BACOM2.0 (based 
on copy number data) correlates well with the estimates by UNDO (based on gene expression data 
and protein expression data18), consistently achieving a strong average ‘cross’ correlation coefficient of 
0.5 ~ 0.6 in multiple runs (Fig. 5a,b). The protein expression data on TCGA ovarian cancer samples were 
acquired using state-of-the-art mass spectrometry technologies by CPTAC (Clinical Proteomic Tumor 
Analysis Consortium), to define an integrated proteogenomic landscape and identify factors associated 

Figure 3. Analysis by BACOM2.0 on the real TCGA ovarian cancer samples. (a) Histogram of copy 
number signals after moving-average operation; (b) Histogram of ‘revised’ copy number signals after 
eliminating allelic-imbalanced loci; (c) Histogram of the overall tumor purities estimated by original 
BACOM from 466 OV samples; (d) histogram of the overall tumor purities estimated by BACOM2.0 from 
466 OV samples.
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with homologous recombination deficiency (HRD)18. These tumor samples were previously character-
ized by TCGA19, and key findings were the initial identification of transcriptional signatures associated 
with survival and the role of BRCA1/2 and CCNE1 aberrations, and an association between HRD and 
susceptibility to PARP inhibitors and improved survival. The dataset provides quantitative measurements 
for 10,030 proteins across 122 tumors. To identify a proteomic signature of HRD that could poten-
tially be used to stratify patients for clinical trials20, tumors were selected for putative HRD, defined by 
the presence of germline or somatic BRCA1 or BRCA2 mutations, BRCA1 promoter methylation, or 
homozygous deletion of PTEN21. Isobaric peptide labeling (iTRAQ) for quantitation in conjunction with 
extensive fractionation and high resolution reversed phase liquid chromatography and high-resolution 
tandem mass spectrometry was used for proteomics measurements to provide high depth of coverage for 
peptide and protein identification. Moreover, our experimental result on TCGA-OV samples shows that 
the mean of the estimated tumor purities obtained by BACOM2.0 is much closer to the result obtained 
by UNDO than the result obtained by ABSOLUTE (Fig. 5c)17.

The imperfect ‘cross’ correlation between the tumor purity estimates by BACOM2.0 and UNDO is 
expected and can be justified17 because the two methods use different molecular data types where copy 
number values are always ‘2’ across all normal cells (e.g., stroma, T-cells, monocytes) while gene expres-
sion values are cell type specific. Multiple gene expression profiles correspond to various normal cells 
and copy number values are generally ‘static’, while gene expression values are intrinsically ‘dynamic’. For 
example, in the recent supervised deconvolution work called ESTIMATE by Yoshihara et al.22, to obtain 
a high correlation between the tumor purity estimates derived from copy number and gene expression 
data, a nonlinear regression function was used to map the ‘score’ by ESTIMATE22 to the estimate by 
ABSOLUTE4. Though a higher correlation was obtained and validated on multiple datasets after such 
nonlinear mapping, it is somewhat ‘indirect’.

Open-source software packages for BACOM2.0 and original BACOM. An open-source 
BACOM2.0 software is developed and is publically available at https://code.google.com/p/bacom2/.

To better serve the research community, we previously developed a cross-platform and open-source 
BACOM Java application, which implements the entire pipeline of copy number change analysis for het-
erogeneous cancer tissues including extraction of raw copy number signals from CEL files, classic data 
normalization, identification of AB loci, copy number detection and segmentation, probe sets annota-
tion, differentiation of deletion types, estimation of the normal tissue fraction, and correction of normal 
tissue contamination. Interested readers can freely download the software and source code at http://www.
cbil.ece.vt.edu/software.htm, https://code.google.com/p/aisaic/

To take advantage of many widely used packages in R, we also implemented an R interface, bacomR, 
that enables users to smoothly incorporate BACOM into their routine copy number analysis pipeline or 
to integrate BACOM with other R or Bioconductor packages. Users can use their preferred methods to 
perform routine tasks such as array normalization and DNA copy number segmentation and estimation, 
while using the newly added BACOM to estimate the normal cell fraction and subsequently recover the 
true copy number profiles in pure cancer cells.

Figure 4. Sample-wise comparison between the estimates of tumor purity and average ploidy by 
BACOM2.0 and ABSOLUTE on 392 TCGA ovarian cancer samples. (a) Scatter plot of tumor purity 
estimates; (b) Scatter plot of tumor ploidy estimates.

https://code.google.com/p/bacom2/
http://www.cbil.ece.vt.edu/software.htm,https://code.google.com/p/aisaic/
http://www.cbil.ece.vt.edu/software.htm,https://code.google.com/p/aisaic/


www.nature.com/scientificreports/

6Scientific RepoRts | 5:13955 | DOi: 10.1038/srep13955

Discussion
In this report, we describe methods with enhanced ability to more accurately detect deletion types, esti-
mate normal cell fraction, and quantify true copy numbers in tumor cells. We achieved these objectives 
by introducing a more comprehensive signal modeling and absolute normalization scheme5. BACOM2.0 
corrects and extends the BACOM method3, and offers several attractive features including (1) perform-
ing absolute normalization by identifying the normal copy number component in a ‘revised’ Gaussian 
mixture histogram; (2) estimating signal models and their parameter values after eliminating significant 
confounding factors; (3) calculating the overall normal cell fraction (or tumor purity) with a correction 
for potential intratumor heterogeneity; and (4) adjusting the effect of copy number signal saturation. 
While the principal application here involves SNP arrays, our methodology is also applicable to sequence 
derived copy number data1.

Fundamental to the success of our approach is the rigorous signal modeling and absolute normali-
zation. In the presence of both normal cell contamination and tumor aneuploidy, with proper sample 
quality control6, absolute normalization can be done separately (or iteratively) from tumor purity/ploidy 
estimation5. We expect BACOM2.0 to be a useful tool for analyzing copy number data in heterogeneous 
tumor samples1,2, and as a complement to existing methods4,9.

We acknowledge that the absolute normalization step in BACOM2.0 may fail for highly aneuploid 
tumors. When no or very few regions are present at normal copy number, while this difficulty is math-
ematically expected, it has not been discussed effectively in the literature4,7,23,24. In BACOM2.0, we have 
taken several approaches to address this problem. Absolute normalization can be performed at both 
the chromosome-wide and the genome-wide scales and the results are then compared. Based on a sur-
vey across multiple cancer types, see Fig. 3c in4, most cancer types have an average ploidy of ‘2’. Thus, 
even for highly aneuploid tumors, BACOM2.0 may still perform well when there are sufficient regions 
at normal copy number in some chromosomes. When the normalization results obtained from the 
chromosome-wide and the genomic-wide scales are inconsistent, BACOM2.0 adopts a chromosome-wide 
scale analyses on subsequent tasks. Moreover, the window-based moving-average and elimination of 
allelic-imbalanced loci in BACOM2.0 can also ease the impact of aneuploidy.

Figure 5. (a) Sample-wise correlation between tumor purity estimated by BACOM2.0 using copy number 
data and by UNDO using protein expression data; and (b) Sample-wise correlation between tumor purity 
estimated by BACOM2.0 using copy number data and by UNDO using gene expression data; (c) Histograms 
of the tumor purity estimates by UNDO using gene expression data, by BACOM2.0 using copy number 
data, and ABSOLUTE using copy number data; on the same TCGA_OV samples.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:13955 | DOi: 10.1038/srep13955

We also acknowledge that the tumor purity estimation step in BACOM2.0 may fail when no or few 
homogeneous deletions are present. The impact of intratumor heterogeneity on copy number analysis 
has been previously acknowledged25. While accurate estimation of tumor purity in the presence of sig-
nificant intratumor heterogeneity is difficult, we have also incorporated novel approaches to address 
this problem in BACOM2.0. Specifically, tumor purity is estimated segment by segment, with varying 
lengths, in deletion regions. Assume that the absolute normalization is correctly achieved, since there will 
be only a limited number of possible combinations among deletion-subclones in any deletion segment, 
BACOM2.0 performs well by calculating the overall tumor purity using the 9-percentile of segment-wide 
purity estimates across the whole genome.

In relation to previous work, the concept of using allele-specific information for analyzing copy num-
ber data is shared by others23, and was further developed by Rasmussen et al.7 for exploratory data 
visualization in conjunction with visual inspection of aneuploidy and tumor heterogeneity. There is also 
some similarity between our objectives and others in cancer copy number restoration and tumor purity 
estimation. The major limitations of the approach by Yuan et al.26 are that it requires matched genomic 
and histopathological image data and relies heavily on image quality (coarse H&E staining, artifacts, 
batch effects). ABSOLUTE, which was developed by Carter et al.4, is supported by an elegant yet com-
plex mathematical framework and can select the most likely combination of estimated tumor purity and 
ploidy by integrating copy number data and supervised learning. However, the cornerstone system of 
equations is underdetermined and various heuristics cannot guarantee a unique and correct solution9. In 
the presence of more than one tumor subclone, the restored copy number signals are not necessarily all 
integer values. Thus, using the highest likelihood of producing all integer signals to select the most likely 
solution from the multiple solutions to the systems of equations may be problematic9. For example, in 
the presence of more than one tumor subclone, the solution with the highest likelihood of producing all 
integer copy numbers would be theoretical wrong because single α corrected signals (removal of normal 
contamination) should not lead to an all integer copy number estimate. In contrast, BACOM2.0 adopted 
a divide-and-conquer strategy by sequentially performing absolute normalization, purity estimation, 
copy number quantification, and average-ploidy estimation. PurityEst proposed by Su et al.15 estimates 
normal cell fraction using single-nucleotide variants but not original sequence reads. The formulation 
does not explicitly consider effects of copy number gains/losses and may bias tumor purity estimation. 
Moreover, PuriryEst15, THetA9, and AbsCN-seq27 rely on next-generation sequencing data, thus may not 
be applicable to existing copy number data acquired using more classic methods such as SNP arrays.

Since BACOM2.0 is supported by a well-grounded and unambiguous statistical framework, we foresee 
a variety of extensions to the concepts and strategies here. Regarding the detection of allelic-imbalanced 
loci, a good alternative to allelic correlation coefficient is the B allele frequency ratio5,6,24. When there are 
multiple deletion segments across a genome, the distribution of α estimates merits further study since it 
may indicate the presence of intratumor heterogeneity defined by subclone copy number aberrations. In 
our experimental studies, we have found that some tumor samples exhibit a wide-spread distribution of 
α values across different segments, consistent with the observation in other studies specifically address-
ing intratumor heterogeneity23. Moreover, with further development, localized chromosomal ploidy can 
be detected instead of average tumor ploidy24.

While a significant sample-wise correlation between the tumor purity estimates by BACOM2.0 and 
ABSOLUTE has been observed, further investigation into the discrepancy between the average tumor 
purity estimates by the two methods would be interesting, given the fact that no definite ground truth 
is available. For example, TCGA used 60 ~ 80% tumor purity as the threshold to select tumor samples, 
while a protocol baseline of 50% tumor purity was adopted to differentiate between high and low tumor 
purity in three cancer types13–15, and yet rather poor correlations were reported between the estimates 
by ABSOLUTE or ESTIMATE and the histological analysis probably due to miscount of infiltrating 
immune cells in pathological examinations22. Another limitation of this report is the complete reliance 
on in silico and publically available datasets. To strengthen the work, future studies could perform SNP 
array analysis on the DNA extracted from a set of tumours or a handful of cell lines (which typically 
possess multiple gross aneuploidies due to immortalization and passaging), with subsequent validation 
of the copy-number changes identified by BACOM2.0 confirmed by digital PCR. Nevertheless, the data 
we have used here is publically available, allowing others to fully replicate our findings.

Methods
In this study, the data used is high-density and allelic-specific DNA copy number profiles acquired by 
oligonucleotide-based single nucleotide polymorphism (SNP) arrays. The TCGA data sets were mainly 
acquired using Affymetrix DNA analysis arrays for SNP genotyping, e.g., Affymetrix Genome-Wide 
Human SNP Array 6.0 with 1.8 million genetic markers including more than 906,600 SNPs1,4. The DNA 
copy number associated with a somatic cell or cell type is called the genuine copy number and is assumed 
to be integers28. In complex tissues such as a tumor sample, the DNA copy number would be a weighted 
average of the genuine copy numbers associated with tumor and stromal cells in that sample and is 
assumed to be real numbers1,3. The existence of copy-neutral loss of heterozygosity (LOH) and par-
tial aneuploidy presents an additional layer of complexity to dissect mixed copy number signals4. To 
accurately estimate DNA copy numbers in tumor cells, two major analytic tasks are (1) absolute signal 
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normalization and (2) tumor purity estimation. BACOM2.0 is developed to facilitate absolute normali-
zation and quantification of somatic copy number alterations in heterogeneous tumor.

BACOM overview1,3. In a heterogeneous tumor sample, the measured copy number signal is a mix-
ture of the signals from both normal and cancer cells,

α α= × + ( − ) × , ( ), ,X X X1 1i i inormal cancer

where Xi is the observed copy number signal at locus i, α is the unknown fraction of normal cells, Xnormal,i 
and Xcancer,i are the latent copy number signals in normal and cancer cells at locus i, respectively. Let XA,i 
and XB,i be the allele-specific copy number signals, Xi =  XA,i +  XB,i are assumed to be independently and 
identically distributed random variables following a normal distribution μ σ( , )+ +N A B A B

2  whose mean 
μA+B and variance σ +A B

2  can be readily estimated by the sample averages. Allele-specific analyses are 
focused on the deletion regions with distinct genotypes3. Types of deletions are detected by a model-based 
Bayesian hypothesis testing. Specifically, BACOM uses a novel summary statistic,
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then, the average normal cell fraction α across the whole genome can be estimated3, as well as 
cancer-specific copy number profiles, given by
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Problem diagnosis. More detailed reasoning on the root causes of the underestimated tumor purity 
by BACOM method are given in Supplementary Information.

Allele-specific absolute normalization. Let us consider histogram modeling of genome-wide copy 
number signals. Based on the underlying signal characteristics, we adopt a mixture of K Gaussian dis-
tributions5, given by

∑ π μ σ( ) = ( , ), ( )=
f x g x 7k

K
k k k1

2

where πk is the relative proportion of the k-th copy number component and g(.|.) is the Gaussian kernel 
with μ σ( , )k k

2  being the mean and variance. Such mixtures can be estimated from the observed histogram 
or raw data based on the maximum likelihood principle29. In BACOM2.0, the estimation was imple-
mented by the EM (expectation-maximization) algorithm in which its E-step is also called soft cluster-
ing30. However, our experimental studies on real tumor data confirmed that the component mean with 
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the largest πk does not always correspond to the mean of normal copy regions and cannot serve as the 
baseline for absolute normalization. We have also observed that the largest component(s) often resides 
within the neighborhood of the normal copy component (with copy number ‘1’, ‘3’, ‘4’, etc.).

Accuracy of estimating ρ. It can be shown that the imbalanced allele signals associated with odd 
copy numbers would produce a sufficiently negative value of ρ, given by (in the case of copy number ‘3’)

ρ
ρ σ

α σ
≅

( + )

( − ) +
− ,

( )−

4 1
1 4

1
8allelic imbalanced

2

2 2

where σ2 is the variance of noise and ρ is the genuine inter-allele correlation coefficient. Furthermore, it 
can be shown that copy-neutral LOH contamination will result in an inaccurate estimate of ρ, given by

ρ
ρ σ

η α σ
≅

( + )

( − ) +
− ,

( )−

1
1

1
9LOH contaminated

2

2 2

where η is the percentage of copy-neutral LOH contamination. Thus, BACOM2.0 includes an accurate 
estimation of the allelic correlation coefficient ρ (related to model parameter λ  in defining hemi-deletion 
summery statistic) that was often underestimated due to copy-neutral LOH contamination. Again, by 
excluding copy-neutral LOH loci and identifying the correct normal copy regions we can now obtain a 
more accurate estimate of allelic correlation coefficient ρ.

Calibration of allele signal crosstalk. We also calibrated allele signal crosstalk and saturation 
effects. Theoretically, signal crosstalk from the probes that differ only in one SNP adds positive bias to 
the copy number estimate that could lead to an overestimation of normal cell fraction by equation (6). 
Allelic crosstalk also biases the estimate of the allele correlation coefficient ρ. Concerning copy number 
signal saturation using SNP arrays, we adopted a similar linearization strategy used by ABSOLUTE4.

Correction of confounding intratumor heterogeneity. With an accurate absolute signal normal-
ization, the normal cell fraction α (or tumor purity 1-α) can be estimated segment-by-segment, using 
the scheme discussed in the main text or elsewhere1,3. When tumor cells are homogeneous, the values of 
α estimated from different segments is expected to be very close. However, due to potentially significant 
intratumor heterogeneity7,9,23, we have observed that in some real copy number datasets the distributions 
of segment-based purity estimates α are scattered3. This intratumor heterogeneity presents an additional 
layer of complexity to estimating tumor purity4. It can be theoretically illustrated that the normal cell 
fraction α will be overestimated when significant intratumor heterogeneity exists, since within a segment 
there may only be a fraction of tumor cells with deletions.

For example, assume that there are only two deletion-type subclones in the tumor cells. In a copy 
number segment, there are a total of 5 copy number combinations among normal cell, tumor clone 1, 
and tumor clone 2: (1) normal, hemi, hemi; (2) normal, homo, homo; (3) normal, hemi, normal; (4) 
normal, homo, normal; and (5) normal, hemi, homo. Only the first 2 cases represent a homogeneous 

Figure 6. Analytic pipeline of BACOM2.0: schematic flowchart. 
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tumor subpopulation that can be well-handled by the existing scheme used in the original BACOM. For 
cases 3 and 4, even an overall ‘deletion’ is correctly detected, the deletion type is leaning to homo-deletion 
type due to normal copy number fraction in a tumor subpopulation. Thus, normal cell fraction α will 
be overestimated, due to an imprecisely higher value of E[Xi] and imprecise use of αhomo. For case 5, 
there is a high probability that normal cell fraction α will be overestimated, once again due to potential 
misclassification as a pure homo-deletion and the imprecise use of αhomo.

In BACOM2.0 we use empirically the 9-percentile of the genome-wide α estimates to calculate the 
final estimate of sample-specific tumor purity. Rather than using the mean of ‘local’ purity estimates over 
genome-wide deletion segments, we use the 9-percentile of ‘local’ purity estimate distribution to deter-
mine the overall tumor purity in a sample. The rationale behind this choice is twofold. Firstly, there are 
5 possible combinations of 2 deletion types in an overall deletion segment. Only 2 of these 5 scenarios 
can produce an accurate tumor purity estimate. Since purity estimation on homo-deletion segment is 
less reliable, due to the potential confusion between ‘normal’ and ‘homo-deletion’, the 9-percentile of 
‘local’ purity estimate distribution should capture the most reliable and accurate overall tumor purity 
estimates that are associated with homogeneous hemi-deletion segments. Secondly, the tumor purity esti-
mation using the 9-percentile of ‘local’ purity estimate distribution on TCGA datasets has produced con-
sistent results that correlated well with the estimates obtained by the benchmark method ABSOLUTE. 
Nevertheless, we acknowledge that this choice is empirical (based on our experience with TCGA data-
sets) and alternative schemes should be further studied.

BACOM2.0 flowchart. More information on BACOM2.0 method and algorithm, summarized in 
Fig. 6, is included in Supplementary Information.
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