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Introduction 

The problem of analyzing symbolic sequences appears in many areas of research, such as 
“big data” [1] and “dynamic systems” [2]. The most significant example of a symbolic se-
quence is nucleotide sequence. Moreover, a nucleotide sequence is an interesting and im-
portant mathematical object. Of special importance is the task of clustering nucleotide 
sequences [3-6]. A nucleotide sequence is hereby referred to as a sequence whose ele-
ments assume the values A, C, G, T. First the mathematical analysis of nucleotide se-
quences was suggested by the physicist Gamow in 1954 [7]. The problem of symbols re-
lation of nucleotide sequences was first discussed by the physicist Yockey in the 1950s 
[8]. About 50 years later, in 2003, the mathematician Gelfand noted that “the use of 
mathematics in studying gene sequences is an adequate language” [9]. This implied the 
finding of formal (mathematical) properties of gene nucleotide sequences. Yet, insuffi-
cient attention has been paid to this subject. 

The main method of investigating numeric sequences (or discrete numerical time se-
ries) is the construction and analysis of autocorrelation functions. However, the principal 
difference of numeric sequences from nucleotide sequences is that the nucleotides in the 
sequence take the symbolic values A, C, G, T. This means that statistical apparatus cannot 
be used for the analysis of such sequences, insofar as statistics does not have theoretically 
justified measures of correlation between symbolic (discrete) random variables. The im-
possibility of utilizing theoretically justified statistical methods in genetics has been noted 
earlier [10]. Therefore, information theory, having a solid theoretical justification, has 

An information-theoretical analysis of 
gene nucleotide sequence 
structuredness for a selection of aging 
and cancer-related genes  
David Blokh1, Joseph Gitarts2, Ilia Stambler3*   

1C.D. Technologies Ltd., Beer Sheba 8445914, Israel 
2Efi Arazi School of Computer Science, Interdisciplinary Center, Herzliya 4673304, Israel 
3Department of Science, Technology and Society, Bar Ilan University, Ramat Gan 5290002, 
Israel 

Received: November 6, 2020 
Revised: November 26, 2020 
Accepted: November 27, 2020

*Corresponding author: 
E-mail: ilia.stambler@gmail.com  

eISSN 2234-0742
Genomics Inform 2020;18(4):e41
https://doi.org/10.5808/GI.2020.18.4.e41

Original article

We provide an algorithm for the construction and analysis of autocorrelation (information) 
functions of gene nucleotide sequences. As a measure of correlation between discrete ran-
dom variables, we use normalized mutual information. The information functions are indic-
ative of the degree of structuredness of gene sequences. We construct the information 
functions for selected gene sequences. We find a significant difference between informa-
tion functions of genes of different types. We hypothesize that the features of information 
functions of gene nucleotide sequences are related to phenotypes of these genes. 

Keywords: gene sequence, gene structuredness, information function, information theory, 
normalized mutual information  

http://crossmark.crossref.org/dialog/?doi=10.5808/GI.2020.18.4.e41&domain=pdf&date_stamp=2020-12-31


been increasingly used in the study of biological data. Earlier we 
have applied information theory to analyze data on aging-related 
diseases [11,12], including cancer [13-15]. The approach de-
scribed in [13] is presented in the monograph [16]. 

An overview of the use of information theory for the analysis of 
biological sequences, in particular DNA sequences, has been pre-
sented earlier [17-19]. In the work by Li (1990) [20], mutual in-
formation was first used as a measure of correlation for autocor-
relation symbolic sequence function. However, mutual informa-
tion is a non-normalized value, and therefore it does not allow the 
researchers, in the general case, to compare different mutual infor-
mation functions for different symbolic sequences. 

The present work, for the first time, uses normalized mutual in-
formation as a measure of correlation to construct an autocorrela-
tion function for the symbolic (nucleotide) sequence. Hence, we 
will refer to this function as information function. The use of nor-
malized mutual information allows us to compare information 
functions of any symbolic sequences. The present article presents 
an algorithm for distributing sets of genes according to their infor-
mation functions, that is, according to the interconnection be-
tween elements in the nucleotide sequences of these genes. Each 
value of the information function estimates the interconnection 
between elements of a nucleotide sequence with a corresponding 
lag. The set of all the values of the information function provides 
an estimate for the interconnection of the elements in a nucleotide 
sequence with all the lags, that is to say, it provides an estimate of 
the degree of structuredness of that sequence. 

It may be hypothesized that genes with “close” information 
functions may produce similar phenotypes, and the proposed ap-
proach may help reveal unknown phenotypic properties of genes 
according to their nucleotide sequences. 

Methods 

Gene sequences 
To illustrate the algorithm of distribution, we consider the nucleo-
tide sequences of 14 genes. Table 1 lists the genes and their sizes as 
the number of nucleotides. The data on the genes’ sequences were 
obtained from NCBI Gene database (https://www.ncbi.nlm.nih.
gov/gene). 

The genes used in this study—BCL2, mTOR, FOXO3, FOXO1, 
IGF1, BRCA2, BRCA1, Klotho, Sirtuin 1, p16, BECN1, CCND1, 
Sirtuin 6, APOE—were selected for the most part insofar as these 
genes are often recognized as being involved in aging processes and 
often constitute networks in aging-associated pathways [21,22]. 
Hence both their phenotypic properties and their possible mutual 
relation could be suggested. 

Let X and Y be symbolic random variables. The mutual infor-
mation between the variables X and Y is as follows: 

 
    

where H(XY) is the entropy of the product of the random vari-
ables X and Y. 

Let X and Y be symbolic random variables. The normalized mu-
tual information (also termed “uncertainty coefficient”) is as fol-
lows:  

Mathematical analysis 
Let X be a symbolic random variable with a distribution function 
as follows: 

Entropy of random variable X is as follows:  

Table 1. Genes used for the construction of information functions 
and their sizes as the number of nucleotides

No. Gene Gene size (No. of nucleotides)
1 BCL2 196,935
2 mTOR 166,967
3 FOXO3 124,947
4 FOXO1 110,934
5 IGF1 85,980
6 BRCA2 84,193
7 BRCA1 81,189
8 Klotho 50,083
9 Sirtuin 1 33,722
10 p16 27,292
11 BECN1 14,185
12 CCND1 13,370
13 Sirtuin 6 8,496
14 APOE 3,647

Note: In the first four genes, the numbers of nucleotides exceed 100,000.

The normalized mutual information has the following properties. 
(1) 0 ≤  C(X;Y) ≤  1. 
(2) C(X;Y) =  0 if and only if the random variables X and Y are 

independent (no correlation between the variables). 
(3) C(X;Y) =  1 if and only if there is a functional relation (cor-

relation or influence) between X and Y. 
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Let x(n) =  (x(1), x(2), …, x(n),…) represent discrete time se-
ries having symbolic values. 

Let x(n+j) =  (x(1 + j), x(2 + j),…, x(n + j),…) be a time series 
x(n) with a lagj. 

The auto-mutual information of the time series x(n) with a lagj 
equals: 

I(x(n); x(n + j)) =  H(x(n)) + H(x (n + j)) – H(x(n), x(n + j)). 
The normalized auto-mutual information of the time series x(n) 

with a lagj equals:  

The normalized mutual information C(x(n); x(n + j)) is then 
calculated as a function of the lagj. 

We shall refer to function F(j) = C(x(n); x(n + j)) as the infor-
mation function of the discrete time series x(n). 

Properties of the information function F(j) are as follows. 
(1) 0 ≤  F(j) ≤  1. 
(2) F(j) =  0 if and only if x(n) and x(n + j) are mutually inde-

pendent. 
(3) F(j) =  1 if and only if there exists a functional relationship 

between x(n) and x(n+1). 
Let {x1(n), x2(n), …, xk(n)} be a set of discrete time series, 

whose elements are symbols, e.g. gene nucleotide sequences, n =  
1, 2, 3,…, and the maximum value n for a sequence xi(n) 1 ≤  i ≤  k 
equals the number of elements in this nucleotide sequence. 

The algorithm of distributing a set of time series {x1(n), x2(n), 
…, xk(n)} consists of three procedures: (1) construction of an in-
formation function matrix; (2) ranking of columns of the informa-
tion function matrix; and (3) application of a multiple compari-
sons method. 

Construction of an information function matrix 
For each time series xi (n) 1 ≤  i ≤  k, we construct the information 
function as follows: 
Fi(j) 1 ≤  i ≤  k, 1 ≤  j ≤  m, where m is the number of lags in the in-
formation function. 

We obtain the k x m [Fi(j)] matrix of values of the information 
functions, i.e., a matrix where each row is an information function 
of the corresponding time series.  

Ranking of columns of the information function matrix 
Each row of [Fi(j)] matrix is an information function of time se-
ries, and each column contains the values of information functions 
corresponding to the same lag. 

For each column of [Fi(j)] matrix, we rank its entries and assign 

(
(

the rank 1 to the smallest entry of the column. We obtain k x m 
matrix of ranks [ri(j)], with each column of the matrix containing 
ranks from 1 to k. 

We estimate the element interconnection of the i-th time series as 
compared to the element interconnection of other time series by the sum 
of all the elements of i-th row of the matrix [ri(j)]. Such an estimation 
allows us to use multiple comparisons of rank statistics for the 
comparison of time series interconnection. 

Application of a multiple comparisons method 
We compare rank sums using the Newman-Keuls test [23]. This 
test provides adequate results in the analysis of biomedical data, 
including aging-related multimorbidity [11,12], and is appropriate 
for the present problem. 

Results 

The values and clustering of gene information functions 
Following the above algorithm for distributing a set of time series, 
we calculate and cluster the values of gene information functions, 
as follows. 

(1) For each gene, out of the 14 genes under consideration, we 
calculate the information function with 12 lags. We obtain 
the information functions matrix [Fi(j)] 1 ≤  i ≤  14, 1 ≤  j ≤  
12 (Table 2). 

(2) We rank the entries of each column of the information func-
tion matrix, while attributing to the least values the rank 1. 
We obtain the rank matrix [ri(j)] 1 ≤  i ≤  14, 1 ≤  j ≤  12 
(Table 3). 

Let us consider Table 3 as the Friedman statistical model [24] 
and examine the row effect of this table. 

Hypotheses: 
H0: There is no row effect (“null hypothesis”). 
H1: The null hypothesis is invalid. 
Critical range: 
The sample is “large”, therefore, the critical range is the upper 

1%-range of χ2
13 distribution. 

Let us calculate the χ2-criterion. This gives us χ2 =  91.65. The 
critical range is χ2

13 >  27.69. Since 91.65 >  27.69, the null hypoth-
esis with respect to Table 3 is rejected. Thus, according to the 
Friedman test, the row effect has been found. Hence, there is a dif-
ference between the rows under consideration. 

For multiple comparisons, we use the Newman-Keuls test. We 
obtain /Ri - Ri+1/ >  8.93, where Ri and Ri+1 are elements of the col-
umn “Sum of ranks” in the i-th and (i+1)-th rows of Table 3, re-
spectively. By multiple comparisons, we construct the clustering 
shown in Table 4. 
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Table 4. Gene distribution according to sums of ranks

No. Cluster Sub-cluster Gene Sum of ranks
1 Cluster 1 APOE 147
2 Cluster 2 2.1 CCND1 132.5
3 2.2 p16 131
4 2.3 BRCA1 124
5 2.4 Sirtuin 1 122
6 2.5 Sirtuin 6 116
7 Cluster 3 BECN1 91.5
8 Cluster 4 mTOR 80
9 Cluster 5 5.1 Klotho 69
10 5.2 BRCA2 62.5
11 5.3 BCL2 59.5
12 Cluster 6 6.1 FOXO1 50
13 6.2 FOXO3 50
14 Cluster 7 IGF1 25

The obtained clustering possesses the following properties: (1) 
For two neighboring sets of Table 4, the smallest element of one 
set and the greatest element of another set located nearby are sig-
nificantly different (αT =  0.01); (2) Elements belonging to the 
same set do not differ from each other (αT =  0.01). 

Note that the differences between cluster 1 (APOE gene) and 
all the other elements (genes) are statistically significant (αT =  
0.01). The same holds true for cluster 3 (BECN1 gene), cluster 4 
(mTOR gene), and cluster 7 (IGF1 gene).  

The significance of gene information functions  
The domain of the information functions under consideration is 
the set {Lag 1, Lag 2, Lag 3, … , Lag 12}, and the values are the set 

Table 5. Table of ranks: ranking by rows

Gene Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12
APOE 12 11 9 7 5 10 1 8 6 3 4 2
BRCA1 12 11 5 9 2 10 3 6 7 8 1 4
p16 12 10 8 3 4 11 2 9 7 6 1 5
Sirtuin 6 12 11 9 5 4 10 2 7 8 1 3 6
Sirtuin 1 12 11 10 6 5 9 2 8 7 4 1 3
mTOR 12 11 6 10 3 9 4 8 2 7 1 5
BCL2 12 11 7 4 6 9 2 5 10 8 1 3
BECN1 12 11 8 3 2 10 4 7 9 5 1 6
BRCA2 12 11 10 8 2 9 5 1 6 4 3 7
CCND1 12 11 9 6 5 10 2 8 7 4 1 3
FOXO1 12 11 9 7 5 10 6 4 8 3 1 2
FOXO3 12 11 7 10 5 8 4 9 6 3 1 2
IGF1 12 11 10 8 2 7 1 5 9 3 4 6
Klotho 12 11 10 8 2 7 1 5 9 3 4 6
Sum of ranks 168 153 117 94 52 129 39 90 101 62 27 60

of real numbers 0 to 1. We perform the comparative analysis of the 
values of information functions on the domain of those functions. 

In Table 2, each row represents the values of the information 
function of a corresponding gene. We rank the values of each row 
of Table 2, attributing rank 1 to the least value. We obtain Table 5. 

We evaluate the values of the information functions in Lag j as 
the sum of elements of the column Lag j of Table 5. Let us consider 
Table 5 as the Friedman statistical model, and examine the column 
effect of this table. 

Hypotheses: 
H0: There is no column effect (“null hypothesis”). 
H1: The null hypothesis is invalid. 
Critical range: 
The sample is “large”, therefore, the critical range is the upper 

1%‒range of χ2
11 distribution. 

Let us calculate the χ2-criterion. This gives us χ2 =  121.5. The 
critical range is χ2

11 >  24.73. Since 121.5 >  24.73, the null hypoth-
esis with respect to Table 4 is rejected. Thus, according to the 
Friedman test, the column effect has been found. Hence, there is a 
difference between the columns under consideration. 

For multiple comparisons, we use the Newman-Keuls test. We 
obtain /Ri ‒ Ri+1/ >  9.64, where Ri and Ri+1 are elements of the col-
umn “Sum of ranks” in the i-th and (I + 1)-th rows of Table 5, re-
spectively. By multiple comparisons, we construct the clustering 
shown in Table 6. 

The obtained clustering possesses the following properties: (1) 
For two neighboring sets of Table 5, the smallest element of one 
set and the greatest element of another set located nearby are sig-
nificantly different (αT =  0.01); (2) Elements belonging to the 
same set do not differ from each other (αT =  0.01). 
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Note that the differences between cluster 1 (Lag 1) and all the 
elements are statistically significant (αT =  0.01). The same holds 
true for cluster 2 (Lag 2), cluster 3 (Lag 6), and cluster 4 (Lag 3). 

The values of the information functions in Lag 6 are greater than 
the values of the information functions in Lag 3, Lag 4, and Lag 5. 
This signifies that, for the group of genes under consideration, the 
interconnection between elements distanced five elements from 
each other is greater than the interconnection between elements 
located closer together, namely distanced 2, 3, and 4 elements 
from each other. 

Discussion 

In this work we established a novel information theory based 
method for the evaluation of the level of structuredness of gene se-
quences (information function) by the sequences’ normalized 
mutual information. This new method may serve as an additional 
structural evaluation tool for genomic analysis, and for omics bio-
markers analysis generally. In the future, it may be possible to asso-
ciate between the gene structuredness as evaluated by the present 
method and the expression and phenotype of particular genes un-
der consideration. Here we, for the first time, describe the meth-
odology to calculate the gene structuredness, while the association 
of the gene structuredness with gene expression and phenotypic 
function will be the task of future work. 

Even though the present work only describes the methodology, 
some hypotheses may be advanced considering the possible asso-
ciation of the value of gene structuredness as shown here by the 
clustering (Table 4) with some known phenotypic properties of 
the selected genes considered in this study. Thus the genes APOE, 
BECN1, mTOR, and IGF1 each form a separate cluster according 
to their level of structuredness. This may indicate that each of 

Table 6. Distribution of lags

No. Cluster Sub-cluster Lag Sum of ranks
1 Cluster 1 Lag 1 168
2 Cluster 2 Lag 2 153
3 Cluster 3 Lag 6 129
4 Cluster 4 Lag 3 117
5 Cluster 5 5.1 Lag 9 101
6 5.2 Lag 4 94
7 5.3 Lag 8 90
8 Cluster 6 6.1 Lag 10 62
9 6.2 Lag 12 60
10 6.3 Lag 5 52
11 Cluster 7 Lag 7 39
12 Cluster 8 Lag 11 27

these genes possesses properties not common for the other genes. 
The genes FOXO1 and FOXO3 are in the same cluster, which 
may be expected for the genes of the same group. Interestingly, the 
genes BRCA1 and BRCA2 are found in different clusters. As it has 
been demonstrated, the BRCA1 and BRCA2 genes are associated 
with different types of tumors, and this distinction may have been 
reflected in the information function (structuredness) of these 
genes [25,26]. 

Of special interest are clusters 2 and 5. Сluster 2 includes the 
genes Sirtuin 1 and Sirtuin 6, together with the genes CCND1, 
p16, and BRCA1. A special characteristic of all these five genes in 
cluster 2 is that under conditions of overexpression, these genes 
are associated with oncological diseases, though not necessarily 
under conditions of normal expression or under-expression [27-
32]. On the other hand, a characteristic feature of cluster 5 is that 
all the three genes in this cluster—Klotho, BRCA2, and BCL2—
under conditions of under-expression are associated with oncolog-
ical diseases [33-35]. Yet, under normal expression or overexpres-
sion, such an association is not observed. Thus it may be hypothe-
sized that the level of gene sequence structuredness, at least in the 
present gene selection, may be somehow associated with effects of 
extreme gene expression, either overexpression or under-expres-
sion. Yet, a clarification of such a hypothesis, as well as positing 
and testing additional hypotheses for a potential association of 
gene structure and function, will require further extensive investi-
gation. 
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