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Brain structural covariance network (SCN) can delineate the brain synchronized
alterations in a long-range time period. It has been used in the research of cognition
or neuropsychiatric disorders. Recently, causal analysis of structural covariance network
(CaSCN), winner-take-all and cortex–subcortex covariance network (WTA-CSSCN), and
modulation analysis of structural covariance network (MOD-SCN) have expended the
technology breadth of SCN. However, the lack of user-friendly software limited the
further application of SCN for the research. In this work, we developed the graphical
user interface (GUI) toolkit of brain structural covariance connectivity based on MATLAB
platform. The software contained the analysis of SCN, CaSCN, MOD-SCN, and WTA-
CSSCN. Also, the group comparison and result-showing modules were included in the
software. Furthermore, a simple showing of demo dataset was presented in the work.
We hope that the toolkit could help the researchers, especially clinical researchers, to
do the brain covariance connectivity analysis in further work more easily.

Keywords: structural covariance connectivity, causal network analysis of structural covariance, modulation,
winner-take-all, GUI

INTRODUCTION

The brain is a connectome that collects network architectures by fragmental and coalescent
organizations (Bullmore and Sporns, 2009). The human brain could be described by anatomical
pathways and functional interactions among distinct brain regions (Bullmore and Sporns, 2009;
Sporns, 2011). The human brain connectome can be separated into functional connectivity based
on signal process (Biswal et al., 1995; Liao et al., 2010; Sporns, 2018), structural connectivity
based on fiber tracts (Liao et al., 2011; Zhang et al., 2011a; Watson et al., 2019), and covariance
connectivity based on structural covariance analysis (He et al., 2007; Zhang et al., 2011b;
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Liao et al., 2013). The covariance connectivity, mainly referred
to as the structural covariance network (SCN) constructed
by morphological images, could be used to measure the
synchronized topological patterns of brain regions in a long-
range time period (He et al., 2007; Liao et al., 2013; Zhang et al.,
2017; Xu et al., 2020). Using a cross-sectional morphological
image dataset, the structural covariance connectivity could
measure the undergoing pathological processes between brain
regions during development, plasticity, or diseases (He et al.,
2007; Seeley et al., 2009; Sanabria-Diaz et al., 2010; Liao et al.,
2013; Jiang et al., 2018; Li et al., 2019).

Recently, new techniques have expended the breadth of SCN.
Based on the Granger causality algorithm, the causal analysis
of structural covariance network (CaSCN) could be used to
detect the progression patterns of SCN (Zhang et al., 2017;
Jiang et al., 2018; Li et al., 2019; Guo et al., 2020). The strategy
of CaSCN was to assign the temporal order to the structural
covariance analysis (Zhang et al., 2017). The temporal order
could be based on the variables with sequential order, such as
the duration of diseases or disorders, age of participants, etc.,
(Zhang et al., 2017). With the temporal order, the Granger
causality analysis (GCA) could be used to calculate the influences
among the brain regions (Zhang et al., 2017). The winner-take-
all and cortex–subcortex covariance network (WTA-CSSCN)
was the combination of winner-take-all strategy and structural
covariance analysis between cortex and subcortex regions (Xu
et al., 2020). It could be used to build the parcelations of
subcortex regions according to the cortex parcelations. And it
could provide novel insight of the subcortex by using structural
covariance analysis (Xu et al., 2020). Additionally, modulation
analysis of structural covariance network (MOD-SCN) was
developed for the detection of the influence of clinical variables
onto the structural covariance connectivity (Bernhardt et al.,
2014; Sharda et al., 2016; Valk et al., 2017; Xu et al., 2020).
These developments of SCN widely extended the applications
of the technique.

However, until now, there was no dedicated software
for the analysis of brain structural covariance connectivity.
Meanwhile, it was difficult to do the statistical analysis of SCN,
especially for the clinical researchers. Hence, we developed
this user-friendly graphical user interface (GUI) software, Brain
Covariance Connectivity Toolkit (BCCT), which was based on
MATLAB platform, to operate the related process of structural
covariance connectivity. We hope it could help researchers
who would like to do the structural covariance analysis
in their studies.

INTERFACE AND MAIN FUNCTIONS OF
THE BRAIN COVARIANCE
CONNECTIVITY TOOLKIT

Brain Covariance Connectivity Toolkit was developed by the
Department of Radiology, Jinling Hospital, Medical School
of Nanjing University. It was scripted on the MATLAB
platform. It is suggested that the MATLAB version is later
than R2014a. It could be downloaded from the website of

github1. The supported operation systems include the Linux
and Windows systems, while the MAC system has not been
tested. It is suggested that the memory (RAM) should be
larger than 8 GB for running the toolkit for seed-to-brain
SCN analysis. It would be better that the RAM is larger
than 16 GB for the large voxel and vertex numbers of
gray matter volume (GMV) in MNI space and thickness in
fsaverage space. It would cost large RAM and time for the
permutation test. The toolkit needs spm2, freesurfer matlab
tools3, and SurfStat toolkit4 for the I/O operation of the related
image dataset.

Four kinds of SCN methods were included in the toolkit:
SCN, CaSCN, MOD-SCN, and WTA-CSSCN. Apart from the
WTA-CSSCN, the other SCN methods could deal with the
morphological image datasets either on volume space or on
surface space. The WTA-CSSCN could only process the volume-
based morphological dataset currently.

Meanwhile, two kinds of statistical analysis methods were
included in the toolkit, the interaction analysis (Lerch et al., 2006;
Valk et al., 2017; Xu et al., 2020), and the permutation test (Liao
et al., 2013; Teipel et al., 2016; Xu et al., 2020). Currently, the
software only supported the comparison between two groups.
Additionally, the simple result-showing mode was included in the
utilities of the toolkit (Figure 1). Also, the utilities included the
mask generation function and help documents.

For SCN, CaSCN, and MOD-SCN, the input datasets
should be the processed morphological indices, such as GMV
from voxel-based morphometry (VBM) analysis5/Computational
Anatomy Toolbox toolkit (CAT12)6, brain area, thickness from
FreeSurfer software (see text footnote 3), etc. The “ROI signals”
were conducted with the mean values of region of interest
(ROI) of the morphological indices in participants, and the
“voxel/vertex signal” was produced by the value of the related
vortex/vertex of the indices in participants.

There were four kinds of ROI definitions in the toolkit: the
MNI coordinate mode, the ROI image mode, the mat mode, and
the ASCII text mode.

After extracting the “ROI signals” and/or whole brain
“voxel/vertex signal,” the related analysis methods of different
SCN modes were used for further analysis: correlation analysis
for SCN, GCA for CaSCN, and generalized linear model (GLM)
analysis for MOD-SCN.

Then, the statistical analysis was applied to the group
comparison analysis. For SCN and MOD-SCN, the interaction
analysis could be used for the comparison. And for SCN
and CaSCN, the permutation test could be used for the
comparison (Figure 2A).

For WTA-CSSCN, the “ROI signals” were extracted from
the parcelation of the cortex. Then, the correlation analysis
was used to gain the correlation coefficients between “ROI
signals” of the cortex and the “voxel signals” of the subcortex

1https://github.com/JLhos-fmri/BrainCovarianceConnectToolkitV2.1
2https://www.fil.ion.ucl.ac.uk/spm/
3https://www.freesurfer.net/
4http://www.math.mcgill.ca/keith/surfstat/#ICBMagain
5http://dbm.neuro.uni-jena.de/wordpress/vbm/
6http://www.neuro.uni-jena.de/cat/

Frontiers in Human Neuroscience | www.frontiersin.org 2 April 2021 | Volume 15 | Article 641961

https://github.com/JLhos-fmri/BrainCovarianceConnectToolkitV2.1
https://www.fil.ion.ucl.ac.uk/spm/
https://www.freesurfer.net/
http://www.math.mcgill.ca/keith/surfstat/#ICBMagain
http://dbm.neuro.uni-jena.de/wordpress/vbm/
http://www.neuro.uni-jena.de/cat/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-641961 April 19, 2021 Time: 12:39 # 3

Xu et al. BCCT Toolkit on MATLAB

FIGURE 1 | The main interface of the brain covariance connectivity toolkit (BCCT) toolkit. CaSCN, causal analysis of structural covariance network; SCN, structural
covariance network; WTA, winner-take-all.

structure. Each voxel of the subcortex structure was labeled
according to the cortical parcelation with the highest correlation
coefficient, respectively. Then, the permutation test was used
for the group comparison of the connectivity numbers of the
subcortex structure in WTA-CSSCN (Figure 2B).

STRUCTURAL COVARIANCE NETWORK

Structural covariance network was the basic function of
the brain structural covariance analysis. The SCN in the
toolkit was constructed by correlation analysis. Two kinds
of SCN were implemented in the toolkit: the voxel-/vertex-
wise seed-to-brain structural covariance connectivity of volume-
/surface-based morphological images and ROI-wise structural
covariance connectivity of volume-based morphological images.
Additionally, the regression of variables of no interest could
be selected in the analysis. According to the advisement of
VBM/CAT, the total intracranial volume (TIV) should be
regressed out during the morphological analysis. There were
two kinds of correlation methods in the toolkit, the Pearson

correlation and partial correlation analysis. It was noted that it
should make sure that the number of participants was larger than
the number of the ROIs.

CAUSAL ANALYSIS OF STRUCTURAL
COVARIANCE NETWORK

Causal analysis of structural covariance network was firstly
developed in 2017 (Zhang et al., 2017). In the study, the duration
of disease was selected as the sequential order of participants.
The GCA was applied to the seed-to-brain analysis and ROI-wise
analysis. There were two kinds of GCA algorithms in the toolkit,
one was the residual-based GCA (John, 1982; Goebel et al., 2003;
Wu et al., 2013) and the other was the coefficient-based GCA
(Chen et al., 2009; Zang et al., 2012).

The formulas of the residual-based GCA are as follows:

Yn = βYn−k + ε

Yn = αXn−k + β̄Yn−k + δ
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FIGURE 2 | Workflow of BCCT toolkit. (A) Workflow of SCN, CaSCN, and modulation analysis of structural covariance network (MOD-SCN). (B) Workflow of
winner-take-all and cortex–subcortex covariance network (WTA-CSSCN). Here, the gray matter volume (GMV) from VBM/CAT12 could be used for the voxel-wise
seed-to-brain analysis of volume-based morphological images and region of interest (ROI)-wise analysis of volume-based morphological images. The thickness from
FreeSurfer could be used for the vertex-wise seed-to-brain analysis of surface-based morphological images.

Here, Yn represents the current value of Y signal, Xn−k and Yn−k
represent the former values of X and Y signals with k-order, and
ε and δ represent the residual of the linear fit modes. When ε > δ,
the X shows Granger causal effect on Y. The residual-based GCA
is defined like this:

Fx→y =
ln(ε)

ln(δ)

The formula of coefficient-based GCA is as follows:

Yn = αXn−k + βYn−k + ε

Here, Yn represents the current value of Y signal, Xn−k and
Yn−k represent the former values of X signal and Y signals with
k-order, and ε represents the residual of the linear fit modes. The
coefficient of α represents the causal effect of X to Y.

According to the distributions of the residual-based GCA
and coefficient-based GCA, the significance of GC values
could be calculated.

The permutation test analysis could be used for the
significance of GC values. The null distribution of GC values

was conducted by random realigning the orders of participants.
Then, the normal distribution function was used to calculate the
significance of the GC values.

Similar to the SCN, the CaSCN mode supported the analysis of
the voxel-/vertex-wise seed-to-brain analysis of volume-/surface-
based morphological images and ROI-wise analysis of volume-
based morphological images.

Please note that since the large number of the voxel/vertex
of morphological images, the permutation analysis of CaSCN
in voxel-/vertex-wise seed-to-brain analysis of volume-/surface-
based morphological images would cost a related long time and
need large memory.

MODULATION ANALYSIS OF
STRUCTURAL COVARIANCE NETWORK

Modulation analysis of structural covariance network was based
on the GLM. It could evaluate the modulation effect of clinical
variables on the structural covariance connectivity. The SurfStat
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toolkit (see text footnote 4) was applied for the analysis (Lerch
et al., 2006; Bernhardt et al., 2009; Worsley et al., 2009).

The formula of the modulation analysis is as follows:

Y = β1 × X + β2 × Var Of Clinic+ β3 × X × Val Of Clinic

+β4 × Cov Of No Int

Here, × indicates an interaction between terms, and
Cov Of No Int is the covariate of no interest. Y is the “Signal” of
target ROI, and X was the “Signal” of seed ROI. Var Of Clinic is
the clinical variance for the modulation analysis. The significance
of β3 could represent the power of modulation effect on the
structural covariance connectivity between X and Y.

Similar to the SCN, the MOD-SCN mode supported the
analysis of the voxel-/vertex-wise seed-to-brain analysis of
volume-/surface-based morphological images and ROI-wise
analysis of volume-based morphological images.

WINNER-TAKE-ALL AND
CORTEX–SUBCOTEX COVARIANCE
NETWORK

Winner-take-all and cortex–subcotex covariance network was
introduced in 2020 (Xu et al., 2020). It described the parcelations
of the subcortex structure according to the parcelations of the
cortex. In the study, the WTA-CSSCN analysis was used to find
the differences of cortico-striato-thalamo-cerebellar covariance
connectivity between different types of epilepsy patients with
generalized tonic–clonic seizures. In the toolkit, the WTA-
CSSCN mode included the setup, calculation, group comparison,
and result showing.

STATISTICAL ANALYSIS OF
STRUCTURAL COVARIANCE
CONNECTIVITY

Two kinds of statistical analysis methods were included in the
toolkit, the permutation test (Liao et al., 2013; Teipel et al.,
2016) and the interaction analysis (Lerch et al., 2006; Xu et al.,
2020). These two kinds of methods were only suitable for the
comparison of two groups in the toolkit.

In the permutation test, the null distribution was conducted
by random disarrangement and regroupment of the two groups
of participants. The differences between the regrouped datasets
could be used to make up the null distribution, and the
significance of the true difference between two groups could be
calculated by the normal distribution functions. Let IA and IB
represent the indices of Group A and Group B, 1A−B = IA − IB
represent the difference between Group A and Group B. Then,
Group A and Group B were randomly disarranged and regrouped
to be Group A’ and Group B’. I

′

A and I
′

B represent the indices
of Group A’ and Group B’, and 1

′

A−B = I
′

A − I
′

B represent the
difference between Group A’ and Group B’. Repeat the random
disarrangement and regroupment of Group A and Group B

many times, such as 5,000 times. Then, 1
′

A−B could build a
null distribution. After that, the significance of 1A−B could be
calculated by using the normal distribution function according to
the null distribution. The permutation test could be used in the
group comparison of SCN, CaSCN, and WTA-CSSCN.

In the interaction analysis, the GLM model was applied in the
analysis. It was based on the differences of coefficient of the SCN
and MOD-SCN (Bernhardt et al., 2009; Sharda et al., 2016; Xu
et al., 2020).

The formula of the SCN group comparison using the
interaction analysis is as follows:

Y = β1 × Group1 + β2 × Group2 + β3 × X + β4 × Group1

×X + β5 × Group2 × X + β6 × Var Of Clinic

Here, × indicates an interaction between terms, and
Cov Of No Int is the covariate of no interest. X is the “signal”
of the seed region, Y is the “signals” of target region, Group1
and Group2 represent the labels of two groups. The difference
of β3 and β4 presents the difference of covariance connectivity
between seed region and target region.

The formula of MOD-SCN group comparison using the
interaction analysis is as follows:

Y = β1 × Group+ β2 × X + β3 × Var Of Clinic+ β4 × Group

×Val Of Clinic+ β5 × X × Val Of Clinic+ β6 × Group× X

+β7 × Group× X × Val Of Clinic+ β8 × Cov Of No Int

Here, × indicates an interaction between terms, and
Cov Of No Int is the covariate of no interest. Y is the “Signal”
of target ROI, and X is the “Signal” of seed ROI. Group is the
labels of two groups of participants. Val Of Clinic is the clinical

TABLE 1 | The parameters of the demo dataset for BCCT.

Seed Seed Template

MNI coordinate 0–53
30, radius 10 mm

MNI coordinate 0–53
30

Automated anatomical
labeling

SCN: GMV SCN: thickness SCN: GMV

seed-to-brain seed-to-brain ROI-wise

Interaction Analysis for
Group Comparison

Interaction Analysis for
Group Comparison

Permutation Test for
Group Comparison

CaSCN: GMV CaSCN: thickness CaSCN: GMV

Seed-to-brain, sorted
by age

Seed-to-brain, sorted
by age

ROI-wise, sorted by
age

Residual-based Coefficient-based Coefficient-based

Permutation test for
group comparison

Permutation test for
group comparison

Permutation test for
group comparison

Modulation: GMV Modulation: thickness Modulation: GMV

Seed-to-brain Seed-to-brain ROI-wise

Clinical variable: age Clinical variable: age Clinical variable: age

Interaction Analysis for
Group Comparison

Interaction Analysis for
Group Comparison

Interaction Analysis for
Group Comparison

BCCT, brain covariance connectivity toolkit; CaSCN, causal analysis of structural
covariance network; GMV, gray matter volume; ROI, region of interest; SCN,
structural covariance network.
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variance for the modulation analysis. The significance of β7
could represent the power of modulation effect on the structural
covariance connectivity between X and Y between two groups
of participants.

The interaction analysis in the toolkit was based on the
SurfStat Toolkit (see text footnote 4) (Lerch et al., 2006; Bernhardt
et al., 2009; Worsley et al., 2009).

RESULTS-SHOWING MODE

Six modes of result showing were included in the toolkit:
Map (SCN&Modulate), Matrix (SCN&Modulate), Map (GCA),
Matrix (GCA), Winner-Take-All, and View for Surf. The
Map (SCN&Modulate) and Map (GCA) were suitable for the
result showing of SCN, MOD-SCN, and CaSCN of voxel-
wise analysis of volume-based morphological images. The
Matrix (SCN&Modulate) and Matrix (GCA) were suitable
for the result showing of SCN, MOD-SCN, and CaSCN of
ROI-wise analysis of the morphological images. The Winner-
Take-All was designed for the result showing of WTA-
CSSCN. And the View for Surf was suitable for the result
showing of the SCN, MOD-SCN, and CaSCN of vertex-
wise analysis of surface-based morphological images. For

each mode, the parameter results and group comparison
results could be shown. In parameter result showing, the
related p information should be selected for the threshold
selection. The permutation p result could be shown in each
mode independently. The Winner-Take-All mode provided the
radar map and cross-sectional slice maps of parcelation and
the group comparison result of the permutation test. More
detailed description of the result showing would be listed in
the help document.

DEMO DATASET

For demo, 52 healthy participants (28 female, age range 20–
40 years, 25.82 ± 6.59 years; 24 male, age range 21–46 years,
27.5 ± 7.09 years) were included in the study. All healthy
participants were collected in Jinling Hospital, Medical School
of Nanjing University. This study was approved by the Medical
Ethics Committee in Jinling Hospital, Medical School of Nanjing
University. Written informed consent was obtained from all the
participants. There was no significant difference in age between
the two groups (T =−0.884, p = 0.381).

All participants were scanned in 3T MRI scanner (Siemens
Trio, Germany). High-resolution T1-weighted anatomical

FIGURE 3 | The results of SCN mode. Panels (A,D,G) were the results of seed-to-brain connectivity of the GMV. Panels (B,E,H) were the results of seed-to-brain
connectivity of thickness. Panels (C,F,I) were the results of ROI-wise connectivity of the GMV with the automated anatomical labeling (AAL) template. All results were
set at the threshold of p < 0.05 uncorrected.
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images were acquired in the sagittal orientation using a
magnetization-prepared rapid gradient-echo sequence with
the following parameters: repetition time (TR) = 2,300 ms,
echo time (TE) = 2.98 ms, flip angle = 9◦, field of view
(FOV) = 25.6 × 25.6 cm2, acquisition matrix = 256 × 256, slice
thickness = 1 mm, 176 slices without interslice gap.

Before being used for the toolkit, the two indices were
processed in advance. The GMVs were conducted by CAT12 (see
text footnote 6) implemented in SPM12 (see text footnote 2).
And the cortical thickness indices were conducted by FreeSurfer
5.3 (see text footnote 3). The TIV was used as the variable
of no interest during the following brain structural covariance
connectivity analysis.

For a whole view of the software, the showing results of
different combinations were listed in Table 1. The sex factor was
used as the group label in the group comparison.

For WTA-CSSCN analysis, we employed a cortical parcelation
by dividing bilateral hemispheres into five non-overlapping lobes:
(1) frontal lobe, (2) motor/premotor lobe, (3) somatosensory
lobe, (4) parietal/occipital lobe, and (5) temporal lobe (Zhang
et al., 2008; Ji et al., 2015). The cerebellum from automated
anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002) was set

to be the subcortex structure for analysis. In the toolkit, there
were templates of thalamus, striatum, and cerebellum available
for the WTA-CSSCN analysis. Here, we took the cerebellum for
the demo. Additionally, the subcortex did not fully fit the usage
range of this mode, since this mode could be used to analyze the
winner-take-all and SCN between parcelations of brain part A
and regions of brain part B, such as cortex parcelations to the
thalamus, parcelations of the thalamus to the cerebellum, etc.
The permutation test was used for the comparison of numbers
of connected voxels. The sex factor was used as the group label in
the group comparison.

RESULTS OF DEMO DATASET

Here, we only presented the results of the software. We would
not discuss the meaning of the results. The results were presented
according to the setting in Table 1.

Figure 3 represented the results of the SCN mode. The left
column was the seed-to-brain connectivity maps of volume-
based morphological images in the female group, the male
group separately, and the group comparison result. The middle

FIGURE 4 | The results of CaSCN mode with X (seed)-to-Y (Brain/Target ROI). Panels (A,D,G) were the results of seed-to-brain connectivity of the GMV. Panels
(B,E,H) were the results of seed-to-brain connectivity of thickness. Panels (C,F,I) were the results of ROI-wise connectivity of the GMV with the AAL template. All
results were set at the threshold of p < 0.05 uncorrected.
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column was the seed-to-brain connectivity maps of surface-
based morphological images in the female group, the male
group separately, and the group comparison result. The right
column was the ROI-wise connectivity matrices of volume-based
morphological images in the female group, the male group
separately, and the group comparison result. All results were set
to be p < 0.05 uncorrected. The hot color represented the positive
values, and the winter color represented the negative values.

Figures 4, 5 were the results of the CaSCN mode. Figure 4
represented the out effect of GCA of the seed region, and
Figure 5 represented the in effect of GCA of the seed region.
Similar to the SCN result-showing mode (Figure 3), the left
column was the results of seed-to-brain connectivity maps of
volume-based morphological images, the middle column was
the results of seed-to-brain connectivity maps of surface-based
morphological images, and the right column was the results of
ROI-wise connectivity matrices of volume-based morphological
images. All results were presented as the female group (top),
the male group (middle), and the comparison result (bottom).
All results were set to be p < 0.05 uncorrected. The hot color
represented the positive values, and the winter color represented
the negative values.

Figure 6 represented the results of the MOD-SCN mode.
Similar to the SCN result-showing mode (Figure 3), the left
column was the results of seed-to-brain connectivity maps of
volume-based morphological images, the middle column was
the results of seed-to-brain connectivity maps of surface-based
morphological images, and the right column was the results of
ROI-wise connectivity matrices of volume-based morphological
images. All results were presented as the female group (top),
the male group (middle), and the comparison result (bottom).
All results were set to be p < 0.05 uncorrected. The hot color
represented the positive values, and the winter color represented
the negative values. The seed-to-brain results represented the
modulation effect of the connectivity with seed region to
whole brain. The upper triangular of the ROI-wise connectivity
matrix represented the seed-to-target effects, while the lower
triangular represented the target-to-seed effects. It was an
asymmetric matrix.

Figure 7 represented the results of the WTA-SCN mode with
the female group (upper left), the male group (left bottom)
separately, and the group comparison result (right). The colors
in the cerebellum represented the corresponding brain regions of
the cortex. The group comparison represented the significance of

FIGURE 5 | The results of CaSCN mode with Y (Brain/Target ROI)-to-X (seed). Panels (A,D,G) were the results of seed-to-brain connectivity of the GMV. Panels
(B,E,H) were the results of seed-to-brain connectivity of thickness. Panels (C,F,I) were the results of ROI-wise connectivity of the GMV with the AAL template. All
results were set at the threshold of p < 0.05 uncorrected.
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FIGURE 6 | The results of modulation mode with X (seed)-to-Y (Brain/Target ROI). Panels (A,D,G) were the results of seed-to-brain connectivity of the GMV. Panels
(B,E,H) were the results of seed-to-brain connectivity of thickness. Panels (C,F,I) were the results of ROI-wise connectivity of the GMV with the AAL template. All
results were set at the threshold of p < 0.05 uncorrected. The ROI-wise connectivity contained the seed-to-Target and Target-to-seed effects.

FIGURE 7 | The results of WTA-CSSCN mode. Red, frontal lobe; green, motor and premotor; blue, somatosensory; yellow, parietal and occipital; and violet,
temporal lobe. The red star represented the female group > male group, and the blue star represented the male group < female group.
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the numbers of cortex ROI-to-cerebellum connectivity between
female and male groups.

DISCUSSION

In the current work, we developed a user-friendly GUI BCCT in
MATLAB platform. We also present the results of BCCT toolkit
with the demo dataset. A completed workflow of structural
covariance connectivity analysis was presented to the researchers
who would like to use the toolkit.

As far as we know, this toolkit is the first software dedicated
to structural covariance analysis. Additionally, for the first time,
the toolkit integrated the group comparison, which formerly
restricted the application of structural covariance analysis
for clinical researchers. Furthermore, the advanced methods,
CaSCN, MOD-SCN, and WTA-CSSCN, have extended the
application areas of SCN. Structural covariance analysis holds
great promise in many areas of neuroscience (Bermudez et al.,
2009; Lv et al., 2010; Zielinski et al., 2010) and neuropsychiatric
disorders (Ge et al., 2020; Zhang et al., 2020).

The result showings of SCN, CaSCN, and MOD-SCN of demo
dataset could help researchers to be familiar with the toolkit.
Furthermore, the volume-based and surface-based analysis could
help meet more requirements of the researcher. The WTA-
CSSCN could be used for the parcelation of subcortex structures
(Xu et al., 2020). The MOD-SCN connected the covariance
connectivity and the clinical variables (Bernhardt et al., 2009;
Xu et al., 2020). The statistical analysis of structural covariance
connectivity could give the researcher more useful information.

The results of the toolkit could be used for the later analysis of
other toolkits, such as the graph theoretic analysis. Additionally,
the functional covariance connectivity, such as hemodynamic
(Tzourio-Mazoyer et al., 2002), metabolic (Di and Biswal, 2012),
and amplitude of low-frequency fluctuation (Zhang et al., 2011b;
Taylor et al., 2012; Liao et al., 2013) descriptor, could be done
in the toolkit. The text-based and mat-based mode of ROI-wise
connectivity could be used for other kinds of neuroimage mode,
such as electroencephalogram (EEG) signals of sensors.

METHODOLOGICAL CONSIDERATION

For the limitation of time and abilities of the developer, there
were several methodological considerations in the toolkit. Firstly,
the surface-based analysis was only limited to the data structures

of FreeSurfer software. The support of other types of surface-
based images would be added in future versions. Secondly, the
group comparison was restricted into two groups, and only two
kinds of statistical analysis tools were included in the toolkit.
The statistical analysis beyond two groups and other statistical
tools need to be discussed later. Additionally, some other kinds of
covariance connectivity analysis and statistical tools require new
ideas from the user of the toolkit. The result-showing mode of the
toolkit needed further update in the later version.
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