
Robotic Telemedicine for Mental
Health: A Multimodal Approach to
Improve Human-Robot Engagement
Maria R. Lima1, Maitreyee Wairagkar1, Nirupama Natarajan2, Sridhar Vaitheswaran2 and
Ravi Vaidyanathan1*

1Department of Mechanical Engineering, Imperial College London, and UK Dementia Research Institute—Care Research and
Technology Centre, London, United Kingdom, 2Schizophrenia Research Foundation (SCARF), Chennai, India

COVID-19 has severely impacted mental health in vulnerable demographics, in particular
older adults, who face unprecedented isolation. Consequences, while globally severe, are
acutely pronounced in low- andmiddle-income countries (LMICs) confronting pronounced
gaps in resources and clinician accessibility. Social robots are well-recognized for their
potential to support mental health, yet user compliance (i.e., trust) demands seamless
affective human-robot interactions; natural ‘human-like’ conversations are required in
simple, inexpensive, deployable platforms. We present the design, development, and pilot
testing of a multimodal robotic framework fusing verbal (contextual speech) and nonverbal
(facial expressions) social cues, aimed to improve engagement in human-robot interaction
and ultimately facilitate mental health telemedicine during and beyond the COVID-19
pandemic.We report the design optimization of a hybrid face robot, which combines digital
facial expressions based on mathematical affect space mapping with static 3D facial
features. We further introduce a contextual virtual assistant with integrated cloud-based AI
coupled to the robot’s facial representation of emotions, such that the robot adapts its
emotional response to users’ speech in real-time. Experiments with healthy participants
demonstrate emotion recognition exceeding 90% for happy, tired, sad, angry, surprised
and stern/disgusted robotic emotions. When separated, stern and disgusted are
occasionally transposed (70%+ accuracy overall) but are easily distinguishable from
other emotions. A qualitative user experience analysis indicates overall enthusiastic and
engaging reception to human-robot multimodal interaction with the new framework. The
robot has been modified to enable clinical telemedicine for cognitive engagement with
older adults and people with dementia (PwD) in LMICs. The mechanically simple and low-
cost social robot has been deployed in pilot tests to support older individuals and PwD at
the Schizophrenia Research Foundation (SCARF) in Chennai, India. A procedure for
deployment addressing challenges in cultural acceptance, end-user acclimatization and
resource allocation is further introduced. Results indicate strong promise to stimulate
human-robot psychosocial interaction through the hybrid-face robotic system. Future
work is targeting deployment for telemedicine to mitigate the mental health impact of
COVID-19 on older adults and PwD in both LMICs and higher income regions.
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INTRODUCTION

Dementia is a leading cause for disability and dependence across
the world. As a chronic neurodegenerative condition, demands
for care increase over time. Many people with dementia require
social support, day care or assisted residence facilities with
advancing illness. A staggering one in four United Kingdom
hospital admissions is due to a dementia-related condition
(Alzheimer’s Research UK, 2020)1. Global care costs are
projected to exceed $2 trillion/annum demanding 40 million
new care workers, which could easily overwhelm medical and
social care systems as they stand today (Alzheimer’s Research UK,
2020)1. Prevalence of dementia is further skyrocketing in LMICs;
63% of PwD already live in LMICs, where 70% of new cases occur
(Prince et al., 2007; Prince et al., 2013). In India, the treatment gap
today is a staggering 90% (Dias and Patel, 2009). Lower-income
nations will have comparable or even worse rates. Availability of
resources, including human resource capacity, are major
contributing factors to this gap (Prince et al., 2007; Shaji et al.,
2010). Recent industrialization, migration, and urbanization in
Asia have also impacted traditional family structures such that
older people face less family support and more isolation today
than ever before (Dias and Patel, 2009).

This global health crisis has become even more critical during
the COVID-19 pandemic. However, planning and response to
public health emergencies (i.e., COVID-19 outbreak) often do not
directly address mental health, in particular for vulnerable groups
such as older adults and PwD (Vaitheswaran et al., 2020).
Dementia is already an emerging pandemic (Wang et al.,
2020) with more than 50 million cases worldwide and a new
case occurring every 3 s (Alzheimer’s Disease International,
2019)2. The combined strain of COVID-19 and dementia
pandemics is severely increasing suffering of PwD and their
caregivers. COVID-19 has caused unprecedented stress, fear
and agitation among the seniors, especially those with
cognitive impairment or dementia (Mehra and Grover, 2020),
who are considered to be more vulnerable to COVID-19 (Wang
et al., 2020). Isolation and confinement measures imposed to
prevent infection of high-risk populations have undercut essential
sources of support. Care is reduced or, in some cases, completely
removed and important face-to-face contact lost, which may have
long-lasting psychosocial and cognitive consequences in PwD.
Caregivers for PwD are also in dire need of mental health support
and many older adults without specific mental health diagnosis
are also suffering pronounced psychological consequences due to
isolation. Furthermore, the level of anxiety and exhaustion among
staff in care residence facilities has increased during COVID-19
(Wang et al., 2020). There is immediate, urgent and desperate call
for greater mental health support in this arena.

The need for mental health and psychosocial support of PwD
and their carers worldwide is well-documented (Wang et al.,
2020) both during and prior to the COVID-19 pandemic. The
effect of COVID-19 on healthcare infrastructure in LMICs,

however, is arguably more extreme due to the health system
capacity and deeper dependency on families for support of PwD
(Walker et al., 2020). A recent study conducted with caregivers in
South India (Vaitheswaran et al., 2020) highlights a clear need for
more services and support of PwD and caregivers for the post-
pandemic, including stronger adoption of technology.
Affordable, accessible and scalable solutions to monitor mental
health, improve independence, increase quality of life, and reduce
caregiver burden are urgently needed both in the immediate
situation, as well as beyond the current global lockdowns.

Socially assistive robots (SAR) are well-documented for
promise to support dementia and mental health (Tapus et al.,
2007), with strong potential specifically to mitigate COVID-19
impact on PwD. Prior to the COVID-19 pandemic, a range of
tools from simple voice interfaces to interactive social robots have
been introduced with the aim of providing stimulation,
entertainment, personal assistance, monitoring and safety for
older adults and PwD (Inoue et al., 2012; Martín et al., 2013;
Mordoch et al., 2013; Joranson et al., 2015;Moyle et al., 2017; Falck
et al., 2020); see (Abdi et al., 2018) for a recent review. Exemplary
cases such as the humanoid robot NAO (Agüera-Ortiz et al.,
2015), PaPeRo (Inoue et al., 2012), Bandit (Tapus et al., 2009), Eva
(Cruz-Sandoval and Favela, 2016), and robot alternatives to
animal assisted therapy such as AIBO, the robotic dog
(Tamura et al., 2004), NeCoRo, the robotic cat (Libin and
Cohen-Mansfield, 2004), and the well-known Paro, the robotic
seal (Wada and Shibata, 2007) have shown the possibility of
improving patient engagement, reducing agitation, improving
mood and communication, and decreasing stress (Inoue et al.,
2011; Petersen et al., 2017), though comparable results have been
argued with a simple stuffed animal (Moyle et al., 2017). Recent
literature (Martín et al., 2013; Valenti Soler et al., 2015; Rouaix
et al., 2017) has argued social robots can help improve irritability,
global neuropsychiatric symptoms, and PwD’s emotional
responses with robot assisted therapies. The neuropsychological
effects of interaction with robots has also shown increased cortical
neuron activity (Wada et al., 2005a). Social robots hold specific
promise in the COVID-19 crisis by providing older adults and
PwD with complementary support to alleviate anxiety and
loneliness, improve engagement, and reduce caregiver burden.
Social robots can also provide clinicians with an alternative
platform to deliver remote therapies and support PwD,
especially at a time when nonemergency clinical appointments
are increasingly shifting to remote alternatives.

There are several verbal and nonverbal interaction modes used
by SAR to engage with humans—such as facial expressions,
speech, gestures, or behavior—but the most effective
communication mode in human-robot interaction (HRI) is
largely considered to be speech (Fong et al., 2003). Intelligent
virtual assistants (IVA), also known as conversational agents,
chatbots, or virtual assistants, are AI-powered systems that
understand user intents in natural language and generate
relevant responses using machine learning (ML) algorithms.
Despite benefits in feasibility of implementation and
commercial availability, virtual assistants and voice-enabled
smart speakers (e.g., Amazon Alexa, Google Home) alone have
limited flexibility to adapt for mental health care applications,

1https://www.dementiastatistics.org/statistics/hospitals/
2https://www.alz.co.uk/research/WorldAlzheimerReport2019.pdf
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particularly to support PwD. Emerging social robots, on the
contrary, can use a multimodal approach with combined
social and emotional nonverbal cues, such as facial expressions
or gestures, in addition to verbal communication. The integration
of affective communicative modalities and implementation in
social robots can ultimately lead to improved engagement in HRI
in demanding healthcare contexts, such as dementia care, during
and beyond the COVID-19 pandemic. Social robots can be used
as a means of telemedicine and remote therapy delivery for
mental health monitoring and psychosocial support of high-
risk populations, particularly older adults and PwD. By
providing companionship and enhancing independent living,
such robotic technologies could also give carers some respite
time and relieve the caregiver burden especially faced during
lockdowns.

The high cost of such complex interactive systems is
oftentimes a barrier for deployment, especially in LMICs.
While SAR have shown great potential to support PwD in
clinical and residential environments, no research to date has
developed and pilot tested mechanically simple and low-cost
robotic solutions to support dementia care in challenging
scenarios imposed by the COVID-19 outbreak in LMICs,
particularly in India.

The goal of this investigation is to design, develop, and test
the feasibility of a social robotic platform to support people
with dementia, during and following the COVID-19
pandemic. We are particularly interested in surmounting
cost constraints and ease of use demands for utility in
LMICs. In our previous work (Bazo et al., 2010) we
introduced a ‘hybrid face’ robot with combined static
physical features and a digital face that simulates facial
expressions based on mathematical affect space emotion
mapping. We further quantified the neurophysiological
response to the robot and initiated work to translate a
simplified version of it as a consumer product (Wairagkar
et al., 2020). In this study, we:

(1) Propose a new multimodal robotic framework that integrates
animated representation of emotions with a voice system
supported by a cloud-based AI conversational engine for
enhanced engagement in HRI.

(2) Test human-robot multimodal interactions with healthy
participants in the United Kingdom demonstrating the
robot’s ability to adapt facial expressions to users’ speech
in real-time and a strong user preference for multimodal vs.
pure voice communication.

(3) Introduce a user-centred procedure for cultural validation
addressing telemedicine acceptance of robotic mental health
support of older individuals and PwD. Modifications to our
robotic platform based on this procedure as implemented in
South India are presented, and the procedure is offered as a
broader method for introduction of such technology in new
cultural arenas and demographics.

(4) Present a pilot study introducing the robot into practice for
dementia support in LMICs through experiments conducted
with people with dementia at the Schizophrenia Research
Foundation (SCARF) in Chennai, India.

Results demonstrate the capacity to deliver telemedicine
cognitive engagement and mental health support through the
hybrid face robot. Current work is targeting trials in South India
with planned investigations on deployment in LMICs as well as
wealthier nations.

RELATED WORK

The ability to recognize, understand, and show emotions plays a
fundamental role in the development of SAR capable of
meaningful interactions (Breazeal, 2009). Facial expressions,
speech, and body language are proved to carry essential
affective information for social interactions (Breazeal, 2003).
According to (Schiano et al., 2000) facial expressions are the
primary means of communicating emotions. Ekman introduced
the facial action coding system (FACS) (Donato et al., 1999) and
posits that all human expressions are a combination of the
primary expressions: happiness, sadness, anger, fear, disgust,
and surprise.

Robotics researchers are faced with the question of whether to
design physically embodied, fully actuated robots, or simpler and
cheaper virtual agents. Literature has argued the level of a robot’s
embodiment is key to develop trust and rapport, and may affect
human judgements of the robot as a social partner (Wainer et al.,
2006; Bainbridge et al., 2011). (Ghazali et al., 2018) have
suggested trust toward robotic agents is also influenced by its
facial characteristics. Though it remains unclear how robot’s
gender shapes human trust, in this experimental study, gender
did not affect user trust and a higher psychological reactance was
observed in participants during interactions with a robot of
opposite gender. Embodiment is also an influencing factor of
users’ expectations of the robot’s abilities and autonomy
(Clabaugh and Matarić, 2019). However, the mechatronic
complexity in the development of embodied, fully actuated
robots with the desired expressive ability is associated with
high costs. This in turn constitutes a barrier for real-world
deployment beyond academic research, especially in LMICs.
The implementation of expressive robotic faces on LCD
screens has recently been applied in different SAR platforms,
which allows easy customization, adaptability to users’
preferences and culture, higher accessibility and scalability
(Abdollahi et al., 2017; Portugal et al., 2019); this may be
especially relevant for human-robot engagement with older
adults with and without dementia, as the screen can also be
used for interactive activities, visualization of the robot’s speech,
or as an additional user input. Regardless of the social robot level
of embodiment, facial characteristics, or gender, care should be
taken to avoid reaching the uncanny valley, graphically
represented by a sudden negative drop in human’s emotional
response toward robots when shifting from non-human/artificial
faces toward optimal human faces (Mori et al., 2012).
Additionally, when designing social robots to effectively
interact with older citizens and cognitive impaired individuals,
researchers must consider ethical concerns that may limit the
deployment of such technologies. These include increased use by
vulnerable populations, reduced human contact, loss of privacy,
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emotional deception, which occurs when users’ expectations of
the robot are not met, and attachment to the robot, which may
cause emotional distress (VanMaris et al., 2020; Van Patten et al.,
2020). In a longitudinal study with older citizens, (Van Maris
et al., 2020) highlight the need for research metrics to analyze
emotional attachment to social robots, people’s behaviors, and
speech patterns.

The field ofML has recently experienced extraordinary progress
in the development of IVA. These AI-powered systems interact
with users using natural language and are able to generate relevant
responses in the form of text, speech, or both. This technology
started in the 1960s with ELIZA (Weizenbaum, 1966), which held
text-based conversations with users acting as a psychotherapist. A
recent body of work (Romero et al., 2017; Harms et al., 2018) has
provided novel approaches for the development of conversational
agents for increased user engagement. Along similar lines, there has
been work on the development of embodied conversational
agents—virtual animated characters, usually with the
appearance of a human-like avatar, capable of understanding
multimodal utterances, such as voice, gestures, and emotion
(Griol et al., 2019). These systems aim to provide a more
empathetic response based on dialogue and behavior (Merdivan
et al., 2019), yet they often cause a sense of discomfort explained by
the uncanny valley (Ciechanowski et al., 2019).

Intelligent virtual assistants have been deployed in healthcare
for delivering cognitive behavior therapy (Fitzpatrick et al., 2017)
or assist older people in the living environment; see (Laranjo
et al., 2018) for a recent review. Yet, evidence of efficacy and
safety of conversational agents to reliably support healthcare is
limited (Laranjo et al., 2018); prior research has reported
inconsistent responses even when user statements explicitly
contained risk or harm (e.g., “I want to commit suicide,” “I
am depressed”) (Miner et al., 2016). To assist those with cognitive
impairments, (Wolters et al., 2016) have explored the use of
virtual assistants with PwD, highlighting the importance of
adapting voice and interaction style to each user’s preferences
and expectations, but importantly, to cognitive decline. One

interesting observation that deserves more introspection is that
people with dementia questioned the acceptability of a voice
system without a face. Furthermore, the COVID-19 outbreak has
spurred greater interest in the use of voice assistants and chatbots
as a tool to support high-risk populations, such as older
individuals and PwD; if designed effectively, these may
support patients in need for routine care via conversations,
provide up-to-date information, and alleviate the mental
health burden (Miner et al., 2020; Sezgin et al., 2020).

METHODS

Development ofMultimodal Robotic System
Affective Hybrid Face Robot
The hybrid face robot integrates a digital face capable of
showing facial expressions and a 3D printed faceplace to
convey realism and depth, which can be flexibly added to
the robot (Figure 1). The robot’s software was programmed
using Max 8 (Cycling ’74, San Francisco, CA, United States)
and was implemented on a tablet PC, building upon our
previous work (Bazo et al., 2010).

The robotic face is simply made of four facial features:
eyebrows, eyelids, eyes, and lips, with a total of 13 degrees of
freedom (DoF) illustrated in Figure 2. Realism features, such as
constant motion of the face, random blinking of the eyes, and
pupil dilation (Bazo et al., 2010; Craig et al., 2010; Wairagkar
et al., 2020) can be controlled and may lead to more dynamic
HRIs. Our choice of a simplistic three-dimensional design for the
robotic face aims to avoid the uncanny valley effect. Ideally, this
mechanically simple robot would elicit human-like trust and
engagement in HRIs, yet without the mechatronic complexity
and associated high-costs of a fully actuated face.

The robot’s software design is based on a mathematical
approach for emotion mapping, in which the robot’s expression
state, e→(t), for any given time, t, is defined as the weighted linear
combination of a set of basis expressions B � { b→1, b

→
2, . . . , b

→
n}.

Each vector contains 13 values, one for each degree of freedom
of the digital face. In our previous work (Bazo et al., 2010),
this set has been defined with the following expressions:
B � { b→happy, b

→
sad , b

→
angry, b

→
stern, b

→
surprised , b

→
disgusted , b

→
afraid , b

→
tired}.

The intensity vector w→�[w1,w2, . . . ,wn]T , wi ∈ [0,1], symbolizes
the amount by which an expression b

→
i contributes to e

.(t). Hence,
any expression state is the weighted sum of variances of each basis
expression, b

→
i, from the neutral expression, b

→
N , and then added

to the neutral expression along the following equation (time is
omitted from notation for simplicity):

e
. � ∑

n

i�1
(b.i − b

.

N)w→i + b
.

N (1)

Following this approach, the modeling of emotions can be
manually and remotely controlled by selecting each expression’s
intensity, which is in turn converted into a 13-value vector,
defining the DoF of the desired facial expression (Figure 3).
Additionally, the robot’s mouth is animated and synchronized
with the audio input’s amplitude, in decibel (dB), in such a way

FIGURE 1 |Hybrid face robot running on a tablet PCwith option to add a
3D printed faceplate for realism and depth.
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that when it surpasses a cut-off dB value the DoF correspondent
to the top and bottom lips (Mt and Mb, respectively) open and
close simultaneously, while the mouth width, Mw, changes by
30% to simulate the elastic movement of a human mouth.

The design of robot’s facial expressions and its control system
were optimized in this work. This optimization included: 1)
creating an interface with Python to enable automatic and

remote control of facial expressions integrated with
autonomous speech (see Section Intelligent Virtual Assistant);
2) optimizing the voice stream synchronization parameters in
Max software; 3)modifying DoF for some expressions to improve
recognition rates. Taken together, these improvements allowed
us to:

(1) Integrate the robot’s speech capacity with facial expressions
for adaptable emotion in response to users’ speech in real-
time.

(2) Introduce the robot into practice for aging and dementia
support in LMICs; a pilot study was conducted at SCARF
India using the hybrid face robot as a telemedicine tool for
remote cognitive engagement with a person with dementia
through repeated sessions, in the form of Wizard of Oz
experiment [see (Natarajan et al., 2019) for our recent
work].

Our aim is to enhance engagement in HRI by endowing the
robot with a set of multimodal affective cues (i.e., verbal and
nonverbal, through facial expressions), and further validate the
cultural acceptability and usefulness of such robotic tool as a
telemedicine solution for mental health support of older adults
and people with dementia in India. This may be of special interest
(but not limited to) in the context of COVID-19, particularly in
LMICs.

Figure 4 shows the optimized design of different facial
expressions simulated by the robot. Importantly, the

disgusted expression, which as pointed by Ekman in (Donato
et al., 1999) features a peculiar wrinkling of the nose impossible to
simulate with the current face design, was redesigned following
psychology and robotics literature (Donato et al., 1999; Breazeal,
2003): the eyes were narrowed, by decreasing Ll and Lr and
adjusting the eyelid asymmetry; eyebrows were lowered, with a
significant change in the right angle, Bal; upper and lower lips

FIGURE 2 | The 13 degrees of freedom of the expressive face: eyebrow
angles (Bal and Bar) and vertical height (Bhl and Bhr); eyelid openness (Ll and Lr);
eye vergence (Ev), pitch (Ep) and yaw (Ey); mouth corner vertical height (Mh),
width (Mw), top lip openness (Mt) and bottom lip openness (Mb).

FIGURE 3 | Front-end control of robotic animated facial expressions.
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were raised, and the mouth was slightly opened, by adjusting Mt

and Mb; lastly, the mouth width, Mw, was increased. Afraid and
surprised expressions were modified to avoid past confusion
between one another (Bazo et al., 2010), as both feature raised
eyebrows, opened eyes andmouth. Major modifications included:
for surprised, the DoF Mt and Mb were increased to their
maximum values and Mw decreased to the minimum; for
afraid, the eyebrows vertical height was raised (DoF Bhl and
Bhr) and the angles were slightly rotated (DoF Bal and Bar). Other
expressions were used as in previous work (Bazo et al., 2010;
Craig et al., 2010).

Intelligent Virtual Assistant
In order to extend the social robot’s autonomous interactive
capabilities and explore multimodal affective HRI, we developed a
virtual assistant powered by state-of-the-art IBM Watson (IBM,
New York, United States) cloud-based AI capabilities. These AI
cloud services have been used in past research in robotics and
computer science (Chozas et al., 2017; Novoa et al., 2018; Di
Nuovo et al., 2019). Overall, the implementation of the
multimodal architecture described below allows the robot to
emotionally interact with humans through voice, in addition
to simulated facial expressions, and adapt the displayed
emotion depending on users’ speech in real-time.

System Architecture
The system uses speech recognition algorithms, natural language
understanding (NLU), and the training data provided to simulate
a natural conversation. The cloud-based AI conversational
system was designed to interact with users through speech,
text, or both, maintaining a conversation in four different
domains of knowledge, i.e., skills, atomic programs that
represent a capability in a specific domain. The implemented
skills enhance the flow of conversation and lead the system to:

• Converse about the user’s emotional state.
• Entertain the user with a quiz on selected topics.
• Provide definitions of any concept the user asks about

(integration with Wikipedia3).
• Give local weather forecasts if requested (integration with

The Weather Company4).

To create natural, believable interactions between intelligent
virtual assistants and humans, understanding the context of
conversations is of utmost importance (Harms et al., 2018).
Therefore, for each dialogue skill designed several context
variables were programmed (i.e., information that is stored
during the dialogue), such as the user’s name, mood, time of
day, or location. These allowed a certain degree of
personalization, in that for each interaction the system
dynamically tailors responses to user preferences and mood.
Figure 5 shows an extract of a human-robot conversation,
including different dialogue skills, context variables and the
interface with the affective hybrid face robot (see Section
Implementation for further details). Our principal aim in this
investigation was to integrate the IVA system with the robot’s
affective framework and address feasibility of acceptance and
deployment. In future work we intend to introduce a knowledge
base with user profiles and implement machine learning to
personalize interactions over time.

Implementation
Several APIs were programmable combined and integrated
with the robot’s affective capabilities in the back-end system
by an orchestrator coded in Python. The main cloud-based
services used include: 1) IBM Watson Assistant to create a
dialogue flow, context variables, and provide training
data—intents and entities, the user goal and its context,
respectively; 2) IBM Tone Analyzer, which detects sentiment
from text; 3) Google Speech to Text to perform speech
recognition; 4) Google Text to Speech to generate the
robot’s voice with a relevant response.

The interface created in Python between the hybrid-face robot
and the IVA takes as input 13-integer strings via sockets UDP and
local IP address, which represent the 13 degrees of freedom for
each facial expression simulated by the robot. The default facial
expression simulated by the robot was defined as happy. The
orchestrator is therefore responsible to manage the flow of
conversation by 1) controlling the jump between several
dialogue skills and 2) adapting the robot’s facial expression
depending on users’ responses in real-time, which are analyzed
by IBM Tone Analyzer and sent to the robot’s software (e.g., if the
user says “I had a bad day” the robot will verbally reply while
displaying a sad expression). To trigger a conversation ‘skill’ and
subsequently a dialogue node, the IVA algorithm evaluates
intents, entities, and context variables included in the user
response. This process is done based on the confidence level,
i.e., the probability that the variable was correctly identified, with

FIGURE 4 | Optimized design of facial expressions simulated by the
robot. Major modifications were made for the disgusted, surprised, and afraid
robotic expressions with the aim of improving emotion recognition rates.

3https://en.wikipedia.org/wiki/Main_Page
4https://www.ibm.com/weather
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regards to the examples given when training the algorithm. The
confidence scoring (decimal in the range 0–1) is done
independently of previous utterances and its default threshold
is 0.35.

Figure 6 illustrates the four layers coordinated by the
orchestrator, which were designedly integrated to enhance
engagement in multimodal HRIs. The interface layer includes
APIs for communication (speech and text), the interface with the
robot’s software and control of facial expressions; it receives input
from the cognitive layer, which comprises the cognitive process of
understanding user inputs through NLU. This is algorithmically
achieved by recognizing intents, entities and context variables,
and by analyzing the emotion in user responses. Further, the
enrichment layer establishes communication with external
services to get information about the current weather (The
Weather Company and Python library geopy were used to
locate coordinates and provide weather forecasts), or general
definitions provided by Wikipedia. Lastly, the support layer is
responsible for all links with external services and APIs,
i.e., config files, and stores all the cognitive processes involved
in interactions, indicating intents, entities and context variables
recognized for each user response, their confidence level, or
possible errors encountered (i.e., application logs). The latter
were utilized for algorithm training using the Watson Assistant
platform so that the system could understand different natural

language syntaxes, adapt its responses, and retrain itself in case
the wrong intent was identified.

Evaluation of Human-Robot Interactions
with Healthy Participants
In order to evaluate interactions with the multimodal robotic
system proposed, we conducted a user study to assess emotion
recognition of simulated facial expressions and the user
experience in human-robot multimodal interactions. Ethics
clearance was obtained by Imperial College London Science,
Engineering and Technology Research Ethics Committee
(SETREC). Written informed consent was obtained from
participants.

Emotion Recognition Experiments
Recognition of Ekman’s basic expressions is a standard test to
assess the emotional abilities of an expressive robotic face
(Schiano et al., 2000; Breazeal, 2003). Therefore, an expression
recognition task was conducted with N � 15 healthy participants
(23–49 years, 3 female, 12 male) in the United Kingdom to
qualitatively assess the optimized design (Section Affective Hybrid
Face Robot) of the affective robotic face, particularly the
disgusted, afraid and surprised facial expressions. Participants
were given a list with the eight facial expressions and were shown
a sequence of the robot’s eight expressions (see Figure 4) of
approximately 5 s each. After each facial expression observed,
participants chose the best match from the given list, following a

FIGURE 5 | Section of a human-robot conversation transcript from testing with healthy participants in the United Kingdom. Various context variables ($) and entities
(@) are identified. These allow to 1) change dialogue skills (e.g., gather definitions from Wikipedia, start a quiz to entertain the user), and 2) simultaneously adapt the
robot’s facial representation of emotion according to the sentiment in user response, ultimately leading to more engaging and personalized interactions.

5https://cloud.ibm.com/docs/assistant?topic�assistant-expression-language
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forced-choice paradigm in line with research (Breazeal, 2003).
The hybrid face robot was shown both with and without the 3D
faceplate (see Figure 1) to address its likeability. After the task,
qualitative feedback was gathered from in-depth interviews to
understand how the design of robot’s facial expressions could be
adjusted for further experiments and address the overall
impression of the robot.

User Experience Experiments
A user experience questionnaire (UEQ) was used to evaluate the
multimodal robotic system. The UEQ matched those deployed
for measuring the user experience of interactive products
(Schrepp, 2015; Memeti and Pllana, 2018). Our testing was
completed with N � 10 healthy volunteers (21–59 years, 5
female, 5 male) who had never interacted with the hybrid face
robot but had previous experience with interactive technologies.
This study was implemented as a new experiment drawing on
findings from the emotion recognition task (Section Emotion
Recognition Experiments). It was conducted independently with a
different set of users to obtain entirely unbiased user experience
feedback. For instance, the additional 3D faceplate was not used
in this study as it was not perceived favourably in previous
human-robot interaction experiments, suggesting a potential
uncanny valley effect, induced when the faceplate was added
to the digital face (see Section Emotion Recognition). The main
goal of the UEQ is to evaluate the interaction and engagement
between participants and the robotic system. The UEQ used in
this study considers five aspects: attractiveness evaluates the
overall impression of the robot; perspicuity assesses the
difficulty level to get familiar with the robotic tool; efficiency
relates to the effort required to understand the robot’s emotional
responses; stimulation evaluates howmotivating and exciting is to
interact with the robot; lastly, novelty judges how innovative and
creative the robotic system was perceived by users.

Participants were seated in front of the robot and interacted
with it, through speech and visualization of simulated facial

expressions. The IVA system was activated in one laptop, and
a speaker was placed behind the tablet PC, where the robot’s
software runs. This allowed a better synchronization of the
robot’s mouth animation and the audio signal (dB), in such a
way that the robot is assumed to be the one speaking. Following
human-robot interactions, participants answered the UEQ.
Table 1 lists the questions used for each aspect in this UEQ
analysis. The Likert scale system (Boone and Boone, 2012) was
used in this method with a scale range from 1 to 5 (1 represents
the most negative answer, 3 a neutral answer, and five the most
positive answer). For the novelty aspect, participants were asked
to choose between two terms with opposite meaning, using the
same scale. Afterward, we conducted a short in-depth interview
with the aim of qualitatively understanding benefits of
multimodal vs. pure face or voice interactions. Specifically,
participants were asked whether they would prefer to verbally
interact with the virtual assistant (voice only), or with the
multimodal robotic system instead (speech integrated with
facial expressions).

Robotic Telemedicine for Mental Health
Support
The overarching goal in this study is to facilitate introduction of
the robot into practice for mental health and PwD support in
LMICs. We introduce a user-centred procedure for cultural
adaptation of the robot in the context of South India and
describe the infrastructure to deploy it as a telemedicine tool
to deliver regular cognitive engagement. The pilot study here
described is the first of its nature to explore the feasibility and
cultural acceptability of robotic telemedicine for mental health
and dementia support in India. This may be of particular
interest during and following the COVID-19 context to
alleviate end-user anxiety and loneliness, improve
engagement, and reduce the caregiver burden especially faced
during lockdowns.

FIGURE 6 | Proposed architecture design of the intelligent virtual assistant for engagement in multimodal HRI. Multiple cloud-based AI services were combined and
integrated with the robot’s affective capabilities in the back-end system by an orchestrator coded in Python. The orchestrator manages the flow of conversation and
adapts the robot’s facial representation of emotion in response to users’ speech in real-time. The orchestrator coordinates the interface, cognitive, support and
enrichment layers.
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Designing Infrastructure
Due to regional language barriers, the AI voice system integration
(Section Intelligent Virtual Assistant) was not suitable for clinical
experiments conducted at SCARF India. Hence, we designed a
test infrastructure to use the hybrid face robot as an assistive tool
to deliver meaningful cognitive engagement with PwD and
healthy older adults in Chennai, India. This infrastructure
gives medical professionals the remote control of robot’s
animated facial expressions and speech. The proposed
experimental approach may provide clinicians with an
alternative platform for remote therapy delivery and enhanced
mental health support of PwD, in particular that meets the cost
constraints and ease of use demands for utility in LMICs.

Figure 7 illustrates the experimental setup to conduct remote
cognitive engagement using the hybrid face robot, in the form of
Wizard of Oz experiments. PwD and clinicians were located in
separate rooms to emulate a remote therapy session. PwD was
seated in front of the hybrid face robot which was placed on the
table. An external webcam was placed right under the robot to
record PwD’s expressions and gaze, which will be used for further
analysis; video of the whole session was recorded to capture all
human-robot interactions. In a separate room, a laptop was used
by the clinician to remotely control the robot’s facial expressions
(see front-end control in Figure 3). The clinician spoke audio
over a Bluetooth wireless microphone connected with the tablet
running the robotic face to allow synchronization of the robot’s
mouth animation with the clinician’s speech. The two-way verbal
communication between PwD and clinician during cognitive
engagement sessions took place via an additional phone call
connection due to unreliable internet connectivity for smooth
voice over IP. The mobile phone in PwD’s roomwas placed out of
sight behind the hybrid face robot as shown in Figure 7 such that
participants assumed the voice came from the robot (Wizard of
Oz approach). This additional voice connection for two-way
communication was required because the robot’s ability to
communicate autonomously could not be used, as the regional
language in Chennai, India (Tamil) is not yet supported by the

IVA. Furthermore, we aimed to provide clinicians with an
alternative robotic platform to deliver meaningful cognitive
engagement to PwD remotely, which may be of special utility
in the COVID-19 era. However, our experimental approach is
applicable to other scenarios where in-person meetings with
clinicians are not feasible, necessary or desirable.

LMIC Pilot Testing in India
This study protocol: “Use of a Hybrid Face Humanoid Robot in
Dementia Care: A preliminary study of feasibility and
acceptability” was reviewed and approved by the Institutional
Ethics Committee (IEC) of the Schizophrenia Research
Foundation (SCARF) in Chennai, India. It was executed as a
part of ongoing experiments conducted at Dementia Care
(DEMCARES), a geriatric outpatient mental health service run
by SCARF. All participants were required to provide informed
consent before recruitment.

Cultural Acceptability and Emotion Recognition in Target
Population
The acceptability and cultural appropriateness of the hybrid face
robot was explored in South India through qualitative
interviewing techniques, such as focus group discussions and
in-depth interviews with people with dementia and caregivers,
professionals with experience in dementia care, and robotics
researchers. We present a user-centred procedure for
successful introduction of the new affective robot in different
cultures, which involves iterative adjustments based on a set of
user studies with healthy older adults and people diagnosed with
dementia. We further validate the robot and its facial
representation of emotions specifically in the cultural context
of South India.

We conducted a series of emotion recognition tasks with a
total of N � 14 PwD and N � 26 healthy older adults to assess
cultural appropriateness and recognition of robotic facial expressions
in South India. Two types of emotion recognition tasks were used.
Participants were first shown a sequence of culturally validated

TABLE 1 | Questions selected for the user experience questionnaire (UEQ) evaluating response to the multimodal robotic system. Questions were grouped to evaluate five
aspects: attractiveness evaluates the overall impression of the robot; perspicuity assesses the difficulty level to get familiar with the robotic tool; efficiency addresses the
effort required to understand the robot’s emotional responses; stimulation judges how motivating and exciting human-robot interactions are perceived; novelty relates to
how innovative and creative the robot was perceived by end-users.

Aspect Id Question

Attractiveness a1 What is your overall impression of the proposed robotic system?
a2 How useful do you find the possibility to communicate with voice?
a3 How attractive and friendly do you find the robot’s facial expressions?

Perspicuity p1 How intuitive are the robot’s emotions?
p2 How clear are the robot’s responses?
p3 How easy is it to communicate with the robotic system?

Efficiency e1 How efficient is the robot to convey emotion through speech and expressive faces?
e2 How practical are the robot’s answers or suggestions?

Stimulation s1 How exciting is to communicate with this robotic system?
s2 How interesting was the conversation/interaction?
s3 How much does the robot motivate you to have new interactions?

Novelty n1 Dull/creative
n2 Conventional/Inventive
n3 Usual/leading edge
n4 Conservative/innovative
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pictures of Indian people displaying facial expressions (Mandal,
1987), corresponding to those simulated by the hybrid face robot
(seeFigure 4). After each emotion observed, participants selected the
best match from the given list, following a forced-choice paradigm.
Then, the same procedure was followed using the animated facial
expressions displayed by the hybrid face robot. The recognition of
robot’s emotive responses was compared with the recognition of
validated Indian photographs of the corresponding emotions for the
two cohorts in India: healthy older citizens and people diagnosed
with dementia.

Application of Hybrid Face Robot in Dementia Care
Finally, beyond use for social engagement with older adults, we
wish to target feasibility of using the robotic platform as a
telemedicine system to support mental health, dementia care,
and eventually therapeutic intervention. As a basis for this utility,
three repeated sessions of remote cognitive engagement using the
hybrid face robot, of 30 min each, were conducted with a person
with dementia [67 years, male, vascular dementia diagnosis, CDR
rating 1 (mild) (Morris, 1991)] at SCARF in Chennai, India. The
aim was twofold:

(1) Exploration of the feasibility of such robotic system to be
used for cognitive engagement with PwD with regard to end-
user acceptance and clinician ease-of-use.

(2) Test system infrastructure in clinical settings to troubleshoot
potential technical problems, prior to planned trials and
larger scale deployment beyond the COVID-19 pandemic.

The test infrastructure (Section Designing Infrastructure) was
applied in a set of three robot-assisted cognitive engagement
sessions to a person with dementia using the telemedicine
interface. Beyond demonstrating the feasibility of the clinician-
robot-patient interface in telemedicine for mental health in LMIC
setting, we wish to generate initial data on the hybrid face robot as
an engagement tool with PwD in the cultural context of South
India. A Wizard of Oz approach was used during the three
sessions. Hence, a clinician located in a separate room

controlled the robot’s range of facial expressions and spoke
with the participant ‘through’ the robot (Figure 7). In a
separate room, the participant was seated in front of the
hybrid face robot. Interactions between the robot and
participant included: presentation of the robot, discussion of
newspaper articles, and listening to music. The following pre-
and post-measures were used to understand the effect of robot-
assisted cognitive engagement sessions on mood and
engagement, respectively: the face scale (7-item modified
version) (Lorish and Maisiak, 1986; Wada et al., 2005b) and
the observational measure of engagement (OME) modified
(Cohen-Mansfield et al., 2009), a tool to assess direct
observations of engagement in people with dementia. The
measures were observed by a trained nursing assistant who
was present with the participant during experiments. This
follows the standard technique described in (Cohen-Mansfield
et al., 2009). Repeated sessions were used to acclimatize the
participant to the robotic system and develop a level of
familiarity. Together with the pre- and post-measures, this
enabled a comprehensive comparison of user behavior and
engagement in repeated human-robot sessions. After each
session, qualitative feedback was collected from the person
with dementia, the nursing assistant, caregiver, and clinician.

RESULTS

Findings of Human-Robot Interactions with
Healthy Participants
Emotion Recognition
Table 2 shows the results obtained in a confusion matrix of
expression recognition accuracies. The values on each row
represent, for a single facial expression, the percentage of
responses of the forced-choice. Results showed improved
recognition rates compared to our past experiments [see (Bazo
et al., 2010; Wairagkar et al., 2020)] All facial expressions showed
high recognition rates above 70%. Participants perfectly identified
the emotions for happy and tired. Disgusted and stern showed the

FIGURE 7 | Setup for using the hybrid face robot as a telemedicine interface to deliver cognitive engagement to PwD in the cultural context of South India. PwD’s
room includes: tablet with hybrid face robot, webcam to capture participant’s emotions; Clinician’s room includes: laptop with robot’s control, Bluetooth wireless
microphone; phone 1 and phone 2 were used to troubleshoot two-way voice communication.
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lowest recognition rates (73.3%) and were often confused
between one another, which is in line with our past results.
Notably, the recognition rate for disgusted rose from 18.4% (Bazo
et al., 2010) to 73.3%. To a lesser degree, afraid was slightly
confused with surprised and sad. Afraid shared the elevated
eyebrows and opened eyelids of surprise, as well as the sparse
downward-curving mouth of sad, which may explain the
confusion. Nevertheless, recognition rates were high. In
particular, afraid showed an increase to approximately double
the recognition rate previously obtained, from 44% (Bazo et al.,
2010) to 86.7%.

Qualitative data from interviews indicates the need to adjust
some features for the happy expression to increase its likeability,
namely increase the eyebrows’ vertical height (Bhl and Bhr) and
show an open mouth (increase Mt and Mb). Though the tired
expression showed 100% recognition, participants reported some
confusion with stern and disgusted, which can be due to their
similarity of partially-closed eyelids and low eyebrows. Despite
the added human features, participants’ feedback indicated the
addition of the faceplate was perceived unfavourably and the
physical depth was poorly perceived. The majority (13 out of 15
participants) disliked the robot and its capacity to show facial
expressions when the faceplate was added. We hypothesize our
experiments lie on the downslope of the uncanny valley; at this
negative gradient, an increase in human likeness (e.g., added
faceplate) worsens the human response toward the robot as its
partial human appearance moves toward the minimum in the
valley. Adding the 3D faceplate to the robot’s digital face appears
in this context to induce a stronger uncanny valley effect, which
we have considered in subsequent human-robot experiments.

User Experience of Multimodal Human-Robot
Interactions
Results from UEQ analysis are shown in Figure 8. An overall
positive impression of the multimodal robotic system by healthy
participants is shown. On average, the novelty and stimulation
aspects have received the most positive ratings. Notably, all
respondents consistently considered the robot as a creative
and inventive robotic platform (n1 and n2) and showed
enthusiasm in having new interactions with the robot (s3).
The attractiveness aspect showed positive responses.
Particularly, 70% of respondents found the possibility to
interact with voice extremely useful (a2). The lowest rate
within this aspect corresponded to the robot’s design (a3 with
20% neutral answers), which may suggest that our design choice

of a simplistic robotic face (with only four facial features) is not
sufficient to elicit trust and acceptability in HRI. Regarding
questions about perspicuity, there was an overall easiness in
interacting and getting familiar with the robot and 90% of
participants found the robotic platform easy to use (p3). The
efficiency aspect showed the less positive answers (e1, e2) and
20% of participants claimed difficulty identifying the emotion
conveyed by the combination of robotic speech and facial
expression. In post experimental interviews, all 10 participants
reported a strong preference for the multimodal system over pure
voice communication, which turned interactions and the overall
user experience more “enthusiastic”. Particularly, the robot’s
ability to adapt its animated facial representation of emotion
in response to user speech in real-time stood out.

Cross-Cultural Pilot Testing
Cultural Acceptability and Emotion Recognition
We have investigated cultural acceptability and feasibility of using
the hybrid face robot to support dementia care in India. The
overall perception of stakeholders was positive. The preliminary
indications are promising as the robot was considered a viable,
low-cost and culturally appropriate tool to assist in clinical
cognitive engagement with healthy older adults (healthy
control—“HC”) and PwD in India. Stakeholders concurred
that the possibility of using a hybrid face robot for remote
cognitive engagement can potentially help in meaningful
engagement of people with dementia at home and also
alleviate the perils of social isolation. Plans to deploy the robot
as a remote platform to deliver regular cognitive engagement with
more participants are underway. Ultimately, these findings
suggest the use of this mechanically simple robotic platform
for remote cognitive engagement may enhance mental health
care and mitigate the impact of COVID-19 on people with
dementia.

Emotion recognition experiments with healthy older adults
and PwD aimed to assess cultural appropriateness of the hybrid
face robot’s simulated facial expressions. Recognition rates of
human pictures were similarly high for PwD and HC for all
emotions except for afraid, which was well recognized by HC but
showed an accuracy below 50% for PwD.We found accuracies for
all robot’s simulated facial expressions were lower than expected
(between 14 and 62%), with similar values for both PwD and HC.
Afraid, angry and disgusted expressions showed the lowest
accuracies (between 14 and 20%) for both testing cohorts.
Emotions with subtle differences such as surprised and afraid

TABLE 2 | Expression confusion matrix for the hybrid face robot (% of total per presented expression). Bolded values indicate the % of correctly identified emotions.

Happy Stern Angry Disgusted Surprised Afraid Sad Tired

Happy 100 0 0 0 0 0 0 0
Stern 0 73.3 0 20 0 0 0 6.7
Angry 0 0 93.3 6.7 0 0 0 0
Disgusted 0 20 6.7 73.3 0 0 0 0
Surprised 0 0 0 0 93.3 6.7 0 0
Afraid 0 0 0 0 6.7 86.7 6.7 0
Sad 0 0 0 0 0 6.7 93.3 0
Tired 0 0 0 0 0 0 0 100
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were regularly transposed in user perception. The major
difference between the two control groups was observed for
the happy expression: double recognition value was obtained
for HC. Hence, a discrepancy was observed between cultural
recognition of human emotions vs. robotic simulated expressions,
however both PwD and healthy older participants perceived the
robot’s facial representation of emotion comparably. Results from
recognition of robot’s simulated emotions in Chennai, India are
in contrast to the high emotion recognition rates obtained with
healthy, younger participants in the United Kingdom (Section
Emotion Recognition). Recognition may show differences due to
age, cultural context, and cognitive state. Hence, expressions of
the hybrid face robot should be adapted accordingly for use in
South India to maximize long-term user engagement and
compliance.

Pilot Testing Remote Cognitive Engagement for
Dementia Support
We piloted repeated sessions with one person diagnosed with
dementia as a test of the infrastructure to deliver cognitive
engagement in regular sessions. We investigated feasibility of
using a mechanically simple, low-cost robotic platform as a
robotic telemedicine system to support mental health,
particularly in the cultural context of South India. The
participant enjoyed interacting with the robot in all three
sessions and his mood was rated “very happy” on the pre and
post measures of the modified face scale before and after each
session, respectively. As shown in Table 3, results from the OME
showed a trend of longer duration of engagement with the robot
from session 1 (9 min 35 s) to session 3 (18 min 1 s). The
participant had no difficulty talking to the robot as assessed by
OME “Talking to robot” measure, which received the highest
possible score of engagement in all three sessions. Furthermore,
the participant was never disruptive during any of the sessions as

shown by the lowest possible score received on OME “Disruptive”
measure (Table 3).

We identified the main areas of technical difficulties and
potential improvements for the next planned trials: 1) network
connection, which resulted in lags and distortion of voice during
remote human-robot sessions; 2) dependency of same network
for clinician and PwD; 3) problems in streaming music; 4) lack of
a synthetically generated robot’s voice instead of a recognizable
human one, which may interfere with participants’ acceptability
of the robot. As observed by the nursing assistant, these technical
issues often resulted in distraction, impacting participant’s
engagement, yet the advantages of robot-assisted cognitive
engagement with PwD were acknowledged. The caregiver
reported a positive impression of using the hybrid face robot
as a telemedicine tool for cognitive engagement and perceived it

FIGURE 8 | Analysis of the user experience questionnaire. The vertical line marks neutral answers. All positive answers of the 5-point Likert scale are shown on the
right with correspondent %. Negative answers and each % are shown on the left side.

TABLE 3 | Results from the observational measure of engagement (OME)
modified, which considered the following parameters to assess engagement
during robot-assisted clinical sessions: participant’s attention on a scale of 1 (very
disruptive) to 7 (very attentive); attitude to stimulus rated on a scale of 1 (very
negative) to 7 (very positive); duration of engagement (time until not interested);
frequency rate, 0 (none) to 3 (most or all the session), of talking to the robot,
talking about the robot with the nursing assistant, being disruptive or
distracted. The measures were observed by a trained nursing assistant.

Measure Session 1 Session 2 Session 3

Attention Average 7 6 5
Highest 7 7 7

Attitude Average 4 4 3
Highest 6 4 4

Duration of engagement 9 min 35 s 10 min 47 s 18 min 1 s
Talking to the robot 3 3 3
Talking about the robot 0 0 0
Disruptive 0 0 0
Distracted 0 1 2
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as a technology to help with her husband’s condition. The
clinicians who conducted cognitive engagement sessions
commented that the use of affective robotic platforms for
engaging persons with dementia, who otherwise are unable to
participate in many activities due to the restrictions imposed by
pandemic scenarios, holds significant promise. Further work will
be necessary to identify factors that will facilitate the use of
robotic platforms as a means of telemedicine and develop
methods to overcome potential barriers.

Overall, our results demonstrate remote cognitive engagement
is feasible with PwD in India using the hybrid face robot as a
telemedicine tool. The user-centred design and testing procedure
followed with 14 PwD and 26 older adults interacting with the
robot, in addition to repeated trials of remote cognitive
engagement with one PwD through repeated sessions, provides
a basis for deployment with larger participant cohorts. The
robotic system may be used as an alternative platform to assist
clinicians and support dementia care, which may be especially
useful in times when social and medical support of PwD is
limited, such as during and beyond the COVID-19 pandemic.

DISCUSSION

We have introduced a multimodal affective robotic framework to
enhance engagement in HRI with capacity to deliver robotic
telemedicine to support mental health and dementia care during
and beyond the COVID-19 context. We summarize the main
findings of the study, their implication for future research and
larger scale telemedicine deployment. We also outline the
limitations of our investigation and highlight future directions.

Summary of Findings
At a time of unprecedented overwhelming of global health
systems in face of the COVID-19 outbreak, limited social and
medical support is delivered to older adults and people living with
dementia, who face greater isolation than ever before. Social
robots hold significant promise to support mental health and
may provide end-users with complementary assistance to
stimulate interaction, alleviate anxiety and loneliness, in
addition to reducing the caregiver burden, which is a critical
need during and after the COVID-19 context. While user trust,
complexity and expense of socially assistive robots is a challenge
in any setting, we believe there is a larger gap of both resources
and targeted research in LMICs. Cultural differences—which
influence compliance—as well as technical challenges and cost
need to be addressed. In this work, we make progress toward
these challenges. In summary, contributions of this investigation
include: 1) the robot’s software design optimization; 2) emotion
modeling; 3) integration of autonomous conversation capability;
4) testing of the multimodal robotic system with healthy
participants in the United Kingdom; 5) validation of the
modified robot and its telemedicine interface with older adults
with and without dementia in the cultural context of South India.

Our study demonstrates feasibility and cultural
appropriateness of robotic telemedicine for mental health
support in India. One of the major findings of our study is

that cultural adaptation of a social robot is critical—we propose a
user-centred procedure that may be followed for successful
introduction of a new affective robot in different cultural
backgrounds, which involves iterative adjustments based on a
set of validation experiments with target users (Section Robotic
Telemedicine for Mental Health Support). The user-centred
procedure followed with 14 PwD and 26 healthy older adults
interacting with the robot in South India, in addition to a set of
repeated cognitive engagement pilot sessions with one person
with dementia, provides a strong foundation for subsequent
clinical use.

Our approach for robotic affective communication offers
novelty in its mechanically simple, low-cost and multimodal
design. We propose it as clinically useful and culturally
appropriate technology to deliver cognitive engagement for
dementia support in LMICs, particularly in India. Therefore,
this social robotic platform may result in a potential telemedicine
solution for mental health support of vulnerable populations, not
only in the COVID-19 era—which presents a unique opportunity
to introduce the robotic system, bringing familiarity with the
technology, which may enhance acceptability and compliance in
the near future—but also in scenarios where in-person patient-
clinician sessions are not logistically feasible or desirable.

Design Implication and Cultural Adaptation
We optimized the software design and control system of a hybrid
face robot comprising an animated digital face that simulates
facial expressions based on mathematical affect space emotion
mapping with a 3D faceplate to convey realism and depth. This
led to considerably higher emotion recognition accuracies than
earlier implementations of this style of robot (Section Emotion
Recognition). More specifically, accuracies above 90% were
obtained for happy, tired, sad, angry, surprised and stern/
disgusted robotic simulated facial expressions. When
separated, stern and disgusted were occasionally mistaken for
one another (70%+ accuracy overall) but were easily
distinguishable from all other simulated emotions.
Furthermore, we have ported the entire robotic system to an
inexpensive tablet platform. This highlights the flexibility and
adaptability in design of the hybrid face robot, which we have
identified as a key feature for cultural usefulness in India. By
integrating the robot’s facial expressions with an autonomous
conversational engine, we demonstrated real-time adaptable
emotion of the robot in response to users’ speech in HRI
experiments with healthy participants in the United Kingdom.
Although participants did not interact with the robot with
different modalities (i.e., speech with and without integration
of the robotic expressive face), there was a strong user preference
for multimodal over pure voice communication.

To understand the cultural differences in recognition of
robot’s simulated emotions, we conducted a series of
expression recognition tasks with PwD and healthy older
citizens in South India. Despite the increased recognition
accuracies obtained from younger participants in the
United Kingdom, we observed lower recognition rates for all
facial expressions simulated by the robot in India. One potential
explanation is the fact that young participants might be more
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familiar with robotic faces and digital characters, such as
emoticons, than older adults tested in India. These findings
are very intriguing as a basis for direct comparison between
cultural perception of affective emotion. Testing on a wider
cohort with parallel controls on subject age, experience with
interactive technologies, and possibly education represents a very
promising area for future work. In our experiments, we further
observed differences between healthy older adults and PwD in
India were marginal except for the happy expression, for which
double recognition was obtained for the healthy control group.
These results inform the cultural acceptability of the robot. As
PwD are from the same culture, this allows us to infer that
problems with acceptability are unlikely due to the cultural
influences but rather due to the effects of cognitive
impairment in dementia. Regardless of the current precision of
facial expression recognition, stakeholders were positively
disposed toward using the robot.

Although further investigation is needed, these studies suggest
that emotion recognition of affective robots and the overall
effectiveness of HRI are influenced by culture, age, cognitive
ability and familiarity with similar technologies. We argue the
expressiveness of social robots must be adapted to the culture they
will be deployed to following a user-centred and iterative
approach to ensure effectiveness, user acceptability and
compliance.

Robotic Telemedicine Beyond COVID-19
While our investigation of human-robot multimodal interactions
with healthy participants in the United Kingdom yielded
promising results, the AI voice system would need to support
regional languages for fully autonomous use in India. Hence, we
have designed an alternative test infrastructure to deploy the
hybrid face robot as a telemedicine interface to deliver cognitive
engagement in regular sessions (Section Designing
Infrastructure). In our set of user-centred validation studies,
including focus group discussions with stakeholders and
emotion recognition experiments with 14 PwD and 26 healthy
older adults, we identified the hybrid face robot as a feasible,
culturally appropriate, and low-cost telemedicine system to
support mental health in India. Additionally, we have piloted
repeated sessions with one person with dementia as a test of the
infrastructure to deliver cognitive engagement in regular sessions.
Finally, we have proposed a protocol to introduce the robot for
use with PwD and acclimatize the participant to the robot which,
through repeated sessions, was received favourably by the
participant in experiments, paving the way for further use.

We argue remote cognitive engagement assisted by such
robotic platform is feasible with PwD in the cultural context
of South India. We observed a trend of increased duration of
engagement with the robot from the first to last session, and no
alterations in PwD’s mood before and after each session. Positive
feedback was obtained from the caregiver and clinician present in
robot-assisted sessions. Particularly, the clinician indicated strong
promise in using social robotic platforms as a means of
telemedicine for dementia support; the caregiver also perceived
the robot as a technological tool to help with her husband’s
condition. As no similar study has been previously conducted in

the literature, this work may provide useful insights into testing
and adjusting a hybrid social robot for cognitive engagement with
PwD in the cultural context of India and lay the foundation for
future telemedicine deployment. This technology may be of
special utility, but not limited to dementia support in the
COVID-19 era. While the system could be used for other
psychological disorders, we wish to establish some veracity
through dementia and mental health support of older adults,
who are facing more isolation than ever before.

Limitations and Future Work
Limitations of the AI conversational system integration were
acknowledged pointing toward the need for a more natural and
unstructured dialogue, and adaptation for mental health
applications, e.g., to guide cognitive stimulation therapies for
older individuals and PwD. One potential way of increasing trust
and acceptability of the AI voice system among the target
population is to include different voices and speaking styles.
Future improvements of the system architecture should
include more training data, i.e., intents, entities and context
variables, in the attempt to step beyond a conversational flow.
This is a common drawback of existing dialogue systems
(Fitzpatrick et al., 2017; Harms et al., 2018). Nevertheless,
great efforts are being made in this promising research field to
create natural ‘human-like’ conversations (Harms et al., 2018;
Griol et al., 2019)6, including the exploration of conversational
robots and voice-based systems for supporting cognitive impaired
individuals (Cruz-Sandoval et al., 2020; Pou-Prom et al., 2020;
Salichs et al., 2020). A possibility for future work is to use the
camera of the tablet PC running the robot’s software to
automatically recognize user emotions. A thorough analysis
combining emotion detected from camera, speech and natural
language processing could ultimately allow the robot to sense the
user’s mood, behavior and personality traits and adapt its
response (verbal and nonverbal) in the most appropriate way
based on that multimodal feedback, in real-time. Future studies
may also use machine learning to adapt behavior to each user over
time, which is key for long-term compliance.

One fundamental limitation of the pilot study conducted in
India using the robotic telemedicine interface was that only one
person with dementia participated. These experiments were
logistically very challenging; one of the major drawbacks
identified was the screening of patients due to the resources
and time available. The main limitation of the experimental setup
created for remote cognitive engagement (Section Designing
Infrastructure) is that both PwD and clinician are required to
be connected to the same internet network.We identified lags and
distortion of voice during remote clinical sessions as the main
technical issue to solve for next trials, in order to ensure
maximum engagement. Although the nursing assistant
indicated distraction of PwD when technical issues occurred,
the participant was overall attentive and enjoyed interacting with
the robot. Future experiments could quantify engagement with
the robot, with more participants, different types and stages of

6https://www.research.ibm.com/artificial-intelligence/project-debater/
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dementia. Furthermore, for a more direct and rigorous
assessment of cultural differences in recognition of robot’s
simulated emotions, stricter controls would be needed for
subject age, experience with interactive technologies, and
cognitive ability. Education level of participants, which may
impact acceptability and compliance, could also be used as a
metric to be monitored in larger testing cohorts. Future clinical
trials and wider deployment could also include end-user training
sessions to fully judge the system capability, which may improve
its performance.

Finally, aiming to improve robustness, ease of use, availability
and scalability of the current system, we have also developed a
mobile app working in a similar fashion to the hybrid face robot,
as a digital affective robotic platform. Our new mobile-based face
robot will allow communication between clinicians and PwD via
mobile, without restrictions on location. Even in its current form,
our robotic framework provides a more accessible tool to deliver
cognitive engagement in LMICs, with potential for positive
impact in mental health and dementia care, during and
beyond the COVID-19 pandemic. Plans for deployment in
India are underway, specifically through robot-assisted
telemedicine sessions with older adults and PwD.

CONCLUSION

The major contributions of this paper are the development,
implementation and pilot testing of a multimodal robotic
framework that emotionally interacts through facial
expressions and speech to enhance engagement in human-
robot interactions. We qualitatively identified the benefits in
user engagement of multimodal vs. pure voice communication.
We modified this robot further to provide clinicians with a
telemedicine interface to deliver regular cognitive engagement,
which may be of great utility during and beyond the COVID-19
era. We followed a user-centred design of the robot to ensure it
meets the cost constraints and ease of use demands for utility in
LMICs, in addition to cultural acceptability. We found cultural
validation of a social robot is paramount and introduced a
procedure that may inform future studies for engaging
human-robot interactions in local cultures. We successfully
introduced the modified hybrid face robot into practice for
dementia support in LMICs through a pilot study. Results
revealed robot-assisted cognitive engagement sessions are
feasible in India (and more broadly LMICs), and a trend of
longer duration of engagement with the robot was observed
through our protocol to introduce the robot to people with
dementia in the cultural context of South India. Moreover,
clinicians, PwD and caregivers indicated strong promise in
the use of this social robotic platform as a means of
telemedicine for dementia support in India. Hence, we
propose it as an alternative or complementary technological
solution to deliver cognitive engagement and enhanced
mental health support to older citizens or PwD, during and
beyond COVID-19. Plans for deployment in telemedicine
sessions specifically motivated by the pandemic are currently
underway.
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